射频拉远与光纤直放站的区别是
- 格式:docx
- 大小:173.01 KB
- 文档页数:4
rrhRRH(Remote Radio Head,射频拉远头)是用于移动宽带网络基站中的新技术设备,主要效益在于提升既有讯号传输效率,并且在更容易建置的网络架构下,扩大其网络覆盖率。
新一代RRH产品可把基站中的射频服务器(Radio Server)集中在1个基站中,并透过光纤与机房联接,因为导入光纤连结可将传输距离拉得很远,电信业者便无须于每个基站盖1个机房,只要在40公里的区域内,透过光纤就可设许多RRH装置据点,以强化整体网络讯号效能。
也就是说,将以前的基站模块的一部分分离出来,通过将无线基带控制(RadiosServer ,RS)与RRH分离,可以将烦琐的维护工作简化到RS端,一个RS可以连接几个RRH,其间采用光纤连接,既节省空间,又降低设置成本,提高组网效率。
对大多数人来说,RRH一词也许很生疏。
RRH技术的特点是可以将基站分成无线基带控制(RadioServer)和射频拉远两部分。
该无线设备部分可以单独进行远程设定,进而在灵活构建网络的同时降低运营商的资本支出(CAPEX)和运营成本(OPEX)。
使用RRH技术,可以灵活、有效地根据不同环境,构建星形、树形、链形、环形等构造的各种网络。
例如,该技术可以用于扩展购物中心、机场、车站等人流密集区域的容量,以及改善企业总部、办公楼或地下停车场等信号难以到达区域的覆盖质量。
RRH技术被众多设备商采用的理由是,3G网络具有其他网络所不具备的优点。
将以前的基站模块的一部分分离出来,通过将RS(无线基带控制部分)与RRH分离,可以将繁琐的维护工作简化到RS端。
而且,一个RS可以连接几个RRH,既节省空间,又降低设置成本,提高组网效率。
而且,连接二者之间的接口采用光纤,损耗少,可大幅度降低电力消耗。
另外,对于接口,设备商所采取的方式各有不同,值得一提的是,其中NEC的RRH是基于开放式CPRI接口。
RRU射频拉远单元(RRU) ,是将基带信号转成光信号传送,在远端放大。
GSM-R数字光纤直放站与基站射频拉远系统在铁路枢纽应用分析摘要:各线GSM-R系统引入铁路枢纽后,存在着频率资源紧张,各系统间干扰大的问题,本文将就采用数字光纤直放站与基站射频拉远系统解决枢纽内GSM-R覆盖方案进行探讨。
关键词:铁路枢纽;GSM-R;数字光纤直放站;基站射频拉远系统;覆盖方案中图分类号:TN253 文献标识码:A1引言目前GSM-R移动通信系统在新建200km/h及以上铁路中得到全面应用。
多条新建铁路采用GSM-R系统引入同一铁路枢纽的情况逐渐增加,贵阳、南宁等枢纽均考虑采用GSM-R系统覆盖。
由于枢纽内线路密集,站间距短,往往出现多个基站信号重叠覆盖,造成频率资源紧张,易同频干扰的问题。
为合理利用频率资源,减少系统内和来自公网的干扰,本文试就利用基站射频拉远系统和数字光纤直放站系统克服上述问题提出本人的粗浅设想供大家探讨。
2基站射频拉远系统简介基站射频拉远系统将基站BTS分为带处理单元(BBU)和远端射频处理单元(RRU)两部分,二者通过光纤相连。
在网络部署时,将BBU设置在通信机房内,通过光纤与规划站点上部署的RRU进行连接,完成网络覆盖。
主要优点:①上行引入噪声小,单个RRU覆盖范围大。
不同的RRU将接收信号解调后进行比选,选择最优信号给BBU,从而克服上行噪声积累的问题。
由于信号的调制解调均在RRU完成,RRU每载频的发射功率可达30W,加之RRU单元可采用室外安装方式直接装在铁塔上,到天线的衰耗小,可用功率更高,目前一个BBU可支持6个RRU,一套基站射频拉远系统可相当于6个传统BTS覆盖范围。
②有效克服时延色散。
GSM-R系统基站接收到的两个同频信号强度差小于9dB时,如时延相差大于15μs则会引起掉话。
基站射频拉远系统BBU可自动计算与RRU之间的时延,并把参数下发给RRU进行调整,补偿光纤时延,实现各个RRU与BBU间时延差小于15μs。
③RRU载频单元配置灵活。
光纤直放站的关键的技术是近端机内包括与近端耦合器相光纤直放站包括通过带有基站天线的基站耦合器与基站连接的近端机和通过光纤与近端机相连接的远端机。
关键的技术是近端机内包括与近端耦合器相连接的带有外部通讯接口的具有智能化传感器功能的臵有无线调制解调器的中心控制系统,与中心控制系统相连接的近端下、上行链路信号采集控制模块和接口板;远端机内包括通过远端接口板与远端光模块相连接的中央处理器,与中央处理器相连接的远端下、上行链路信号采集控制模块。
具有智能化功能、远程控制功能和自动动态调节功能。
光纤直放站主要由光近端机、光纤、光远端机(覆盖单元)几个部分组成。
光近端机和光远端机都包括射频单元(RF 单元)和光单元。
无线信号从基站中耦合出来后,进入光近端机,通过电光转换,电信号转变为光信号,从光近端机输入至光纤,经过光纤传输到光远端机,光远端机把光信号转为电信号,进入RF单元进行放大,信号经过放大后送入发射天线,覆盖目标区域。
上行链路的工作原理一样,手机发射的信号通过接收天线至光远端机,再到近端机,回到基站。
光纤直放站近端机的定向天线收到基站的下行信号送至近端主机,放大后送到光端机内进行电/光转换,发射1.55&1.31μm波长的光信号,再送到光波复用器,同原传输链路的光信号(波长 1.31μm)合在一起经光缆传到远端;远端光波波分器将1.31μm和1.55μm波长的光信号分开后,让1.55μm波长的光信号输入光端机进行光/电转换,还原成下行信号,再经远端主机内部功放放大,由全向天线发射出去送给移动台。
移动台的上行信号逆向送到基站,这样就完成了基站与移动台的信号联系,建立通话。
您好,在室分系统中,直放站作用就是信源或者干放。
作为信源时,无线直放机入口端接接受天线,接受室外宏站信号,例如八木天线或者抛物面天线等。
光纤直放站或者GRRU,入口处是通过光缆连接近端机。
作为干放时,入口接分布系统主干线路的耦合端,出口接分布系统。
数字光纤直放站和RRU的比较第二代移动通信系统基站设备的典型设计方案是将接收天线、发射天线安装在室外,将射频收发信机安装在室内,射频收发信机与接收天线、发射天线间用低损耗的射频电缆连接。
这就是所谓射频拉远技术。
第三代移动通信系统结合射频拉远技术,诞生了新型信号传输设备RRU,通过光纤传输基带信号。
同样,数字光纤直放站也可通过光纤传送基带信号,两者既有区别,又有联系。
一、RRU工作原理及应用射频拉远单元RRU(Remote Radio Unit)带来了一种新型的分布式网络覆盖模式,它将大容量宏蜂窝基站集中放置在可获得的中心机房内,基带部分集中处理,采用光纤将基站中的射频模块拉到远端射频单元,分置于网络规划所确定的站点上,从而节省了常规解决方案所需要的大量机房;同时通过采用大容量宏基站支持大量的光纤拉远,可实现容量与覆盖之间的转化。
RRU的工作原理是:基带信号下行经变频、滤波,经过射频滤波、经线性功率放大器后通过发送滤波传至天馈。
上行将收到的移动终端上行信号进滤波、低噪声放大、进一步的射频小信号放大滤波和下变频,然后完成模数转换和数字中频处理等。
RRU同基站接口的连接接口有两种:CPRI(Common Public Radio Interface 通用公共射频接口)及OBASI(Open Base Station Architecture Initiative 开放式基站架构)。
其中,CPRI组织成员包括:爱立信、华为、NEC、北电、西门子。
OBSAI组织成员包括:诺基亚、中兴、LGE、三星、Hyundai。
信号覆盖方式上,RRU可通过同频不同扰码方式,从NodeB引出。
也可通过同频不同扰码方式,从RNC引出。
这两种覆盖方式都是常规的方式,除此之外,对于3扇区,但配有多余信道板以及多余基带处理设备的基站可以利用基带池共享技术,将多余的基带处理设备设为第4小区,二、数字光纤直放站原理及应用数字光纤直放站不同于以往的模拟光纤直放站,它将RF信号经变频处理变为中频数字信号,再通过光纤拉远进行传输。
WCDMA数字光纤直放站与基站远端射频单元RRU的比较摘要:文章简要介绍基站基带传输接口标准,并对两种遵守标准接口技术的数字光纤直放站系统和基站远端射频单元RRU进行介绍和比较。
引言:作为3G主流技术之一的WCDMA系统,其基站的基带信号可以通过数字光纤传输技术将信号传到远处,并恢复射频,采用的技术之一是数字光纤直放站,其二是基站的RRU系统,由于两种技术有共同的接口技术,又有不同的组成,因此其应用范围既有相同部分,又有不同之处,下文将对两种技术进行介绍,并重点介绍数字光纤直放站的系统组成。
一.基站的基带传输接口标准1.标准的CPRI和OBSAI接口如图1示,两种标准接口,基带处理处在近端的基站侧,射频调制处在覆盖远端,之间通过标准的接口将两者连接在一起。
2.基带传输速率(仅列举CPRI比特率)二.WCDMA数字光纤直放站系统1.WCDMA数字光纤直放站系统采用数字的方式来传输基带信号,其数字接口采用CPRI接口系统,CPRI(TheCommonPublicRadio Interface)定义了基站数据处理控制单元REC(Radio Equipment Control)与基站收发单元RE(Radio Equipment)之间的接口关系,它的数据结构可以直接用于直放站的数据进行远端传输,成为基站的一种拉远系统。
这个接口表明是基带和射频之间的接口。
该系统的应用范例如图2(a)、(b)所示。
图2中近端中继机完成对基站信号的获取和发送,图中远端机完成对移动终端机信号的获取和发送,近端中继机与远端机之间的数字传送采用以太网的标准光纤收发器。
2.系统构成系统由近端中继机设备(基站端)和远端设备(覆盖端)组成,如图3所示:近端中继机和远端机均包含:射频接收子系统和发射子系统;上变频器和下变频器子系统;ADC和DAC子系统、基带处理子系统;光纤收发器;监控子系统和电源子系统。
所述近端中继机接收到移动通信基站的信号,下变频到基带或低中频I/Q信号,经ADC变换到数字信号,按一定帧格式打包成串行数据,再经光纤收发器发送到远端机,经基带处理单元解帧,恢复I/Q或低中频信号,再经上变频到射频,经发射机发射出去。
RRU射频拉远单元((Radio Remote Unit)) ,是在远端将基带光信号转成射频信号放大传送出去。
直放站就是将基站射频信号接收放大再传送出去。
区别就是直放站会将噪声同时放大,而射频拉远则不会。
射频拉远单元(RRU) ,是在远端将基带光信号转成射频信号放大传送出去。
直放站就是将基站射频信号接收放大再传送出去。
区别就是直放站会将噪声同时放大,而射频拉远则不会。
拉远的就是把基站的基带单元和射频单元分离,两者之间传输的是基带信号,而光纤直放站是从基站的射频输出口耦合出射频信号转换为光信号在光纤中传输,然后远端再转为射频放大!射频拉远单元(RRU)分为4 个大模块:中频模块、收发信机模块、功放和滤波模块。
数字中频模块用于光传输的调制解调、数字上下变频、A/D 转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放和滤波模块,将射频信号通过天线口发射出去。
PSU是电源模块第二代分布式基站(基带光纤)是由RRU和BBU组成。
RRU主要完成对射频信号的滤波、信号放大和上下变频处理,并采用数字中频技术来实现从中频模拟信号到基带数字信号的转换。
BBU采用TD-SCDMA系统特有的智能天线和联合检测实现对基带信号的解调和扩频。
RRU和BBU各自独立安装、分开放置,通过光接口相连接,形成分布式基站。
在华为的一篇关于RRU的文章里又有也就是说通过CPRI接口送到RRU的信号是已经经过扩频的数据,然后在RRU端加入不扩频的同步码,再经IQ滤波,信号放大,调制再发射出去的是吗?而同步码也是通过CPRI 接口给RRU的是吗?BBU提供基带信号,经过CPRI协议传到RRU,然后经过数字中频处理,把基带信号扳到中频频律上,这个过程中涉及载波成型,NCO配置等等,当然为了指标会引入cfr,dpd等的实现,可以用fpga实现,也可以用asic实现,成本上有区别。
然后会有一个本振单元,若干收发信单元,他们共同把中频信号调制到射频去,链路预算的时候要设计好他们的参数,当然功放还要慢慢调。
直放站的定义直放站的作用及组成:直放站主要用于基站信号过弱的地区,作中继站用,通过直放站放大基站信号,再传向更远更广的地区,扩大了网络覆盖范围。
直放站是一个双向传输的双工放大器,一路是接收基站信号经放大后发射传向移动台,一路是接收移动台信号经放大后发射传向基地台;因此直放站的组成主要是接收机、发射机、天线。
直放站属于同频放大设备,是指在无线通信传输过程中起到信号增强的一种无线电发射中转设备。
直放站的基本功能:直放站的基本功能就是一个射频信号功率增强器。
直放站在下行链路中,由施主天线现有的覆盖区域中拾取信号,通过带通滤波器对带通外的信号进行极好的隔离,将滤波的信号经功放放大后再次发射到待覆盖区域。
在上行链接路径中,覆盖区域内的移动台手机的信号以同样的工作方式由上行放大链路处理后发射到相应基站,从而达到基地站与手机的信号传递。
直放站的使用:直放站是一种中继产品,衡量直放站好坏的指标主要有,智能化程度(如远程监控等)、低IP3(无委规定小于-36dBm)、低噪声系数(NF)、整机可靠性、良好的技术服务等。
使用直放站作为实现“小容量、大覆盖”目标的必要手段之一,主要是由于使用直放站1、是在不增加基站数量的前提下保证网络覆盖;2、二是其造价远远低于有同样效果的微蜂窝系统。
直放站是解决通信网络延伸覆盖能力的一种优选方案。
它与基站相比有结构简单、投资较少和安装方便等优点,可广泛用于难于覆盖的盲区和弱区,如商场、宾馆、机场、码头、车站、体育馆、娱乐厅、地铁、隧道、高速公路、海岛等各种场所,提高通信质量,解决掉话等问题。
直放站的种类与类型移动通信直放站的种类,1、从传输信号分有GSM直放站和CDMA直放站;2、从安装场所来分有室外型机和室内型机;3、从传输带宽来分有宽带直放站和选频(选信道)直放站;4、从传输方式来分有直放式直放站、光纤传输直放站和移频传输直放站。
移动通信直放站的类型1、GSM移动通信直放站:GSM移动通信直放站是解决基站覆盖而存在信号盲区的一种方式。
先说下干放站和直放站,二者都是信号放大器。
干放器主要应用室分系统中,当信号功率过小,不能满足覆盖要求时,可以用干线放大器来放大信号功率;直放站属于同频放大设备,是指在无线通信传输过程中起到信号增强的一种无线电发射中转设备。
直放站的基本功能就是一个射频信号功率增强器,主要是放大基站信号,延伸基站覆盖区域。
直放站也可以通过无线方式接入,干放只能通过有线方式接入
拉远站多用于3G,爱立信有这种射频拉远的设备,其原理如下:
将射频或者中频、基带信号经过电光转换模块耦合为光信号,并在光纤中传输-是模拟光通信的一种方式;光信号到达目的后经过光电转换模块转换为光电流(电信号),如果是射频可以进行滤波、放大馈入天线;如果是中频和基带可能就麻烦一点,要把他们转成射频,再滤波、放大。
这种方法公用同一个cell—ID,故称之为拉远。
具体体现为基带信令处理和射频是分开的,主要是因为站址不好选择了,还有就是很多人注意辐射的影响了,所以它们分开做,显得比较隐蔽。
延伸系统和拉远系统的比较:
以延伸系统常见的直放站为例(非光线直放站)与3G RRU比较
1、直放站没有容量,拉远是可以带容量的系统。
2、直放站会对施主基站造成干扰,而拉远站则是本站的一个扇区,不会产生干扰。
3、直放站有效距离有限,拉远站的有效距离在40公里以内。
4、直放站的故障率是在17%左右,拉远站目前的故障率在3%左右。
5、直放站容易自激,拉远站涉及不到该问题。
6、直放站在断电掉站重起后不易起站,拉远站则不会有此种情况。
OscarDon的答案
第二代移动通信系统基站设备的典型设计方案是将接收天线、发射天线安装在室外,将射频收发信机安装在室内,射频收发信机与接收天线、发射天线间用低损耗的射频电缆连接。
这就是所谓射频拉远技术。
第三代移动通信系统结合射频拉远技术,诞生了新型信号传输设备RRU,通过光纤传输基带信号。
同样,数字光纤直放站也可通过光纤传送基带信号,两者既有区别,又有联系。
一、RRU工作原理及应用
射频拉远单元RRU(Remote Radio Unit)带来了一种新型的分布式网络覆盖模式,它将大容量宏蜂窝基站集中放置在可获得的中心机房内,基带部分集中处理,采用光纤将基站中的射频模块拉到远端射频单元,分置于网络规划所确定的站点上,从而节省了常规解决方案所需要的大量机房;同时通过采用大容量宏基站支持大量的光纤拉远,可实现容量与覆盖之间的转化。
RRU的工作原理是:基带信号下行经变频、滤波,经过射频滤波、经线性功率放大器后通过发送滤波传至天馈。
上行将收到的移动终端上行信号进滤波、低噪声放大、进一步的射频小信号放大滤波和下变频,然后完成模数转换和数字中频处理等。
系统框图如(图1)所示。
RRU同基站接口的连接接口有两种:CPRI(Common Public Radio Interface 通用公共射频接口)及OBASI(Open Base Station Architecture Initiative 开放式基站架构)。
其中,CPRI组织成员包括:爱立信、华为、NEC、北电、西门子。
OBSAI 组织成员包括:诺基亚、中兴、LGE、三星、Hyundai。
RRU同RNC连接图如(图2)所示。
信号覆盖方式上,RRU可通过同频不同扰码方式,从NodeB引出。
也可通过同频不同扰码方式,从RNC引出。
这两种覆盖方式都是常规的方式,除此之外,对于3扇区,但配有多余信道板以及多余基带处理设备的基站可以利用基带池共享技术,将多余的基带处理设备设为第4小区,如图3所示。
图中SC为扰码I/Q射频调制解调,SCH为同步码。
二、数字光纤直放站原理及应用
数字光纤直放站不同于以往的模拟光纤直放站,它将RF信号经变频处理变为中频数字信号,再通过光纤拉远进行传输。
其具体工作原理是:近端机将从NodeB接收到的基站下行信号通过耦合,下变频处理,到基带变为I/Q信号或低中频信号,这种信号经ADC变换到数字信号后按一定帧格式打包成串行数据,再经光纤发送到远端机。
远端机经基带处理单元解帧,恢复I/Q或低中频信号,这种信号经DAC变换到模拟信号,再上变频到射频,经发射子系统发射出去;远端机将接收到的移动终端上行信号通过上述逆过程,上送至基站接收端。
近端机完成对基站信号的获取和发送,远端机完成对移动终端机信号的获取和发送,近端机与远端机之间的接口为CPRI,数字传送采用以太网的标准光纤收发器。
系统框图如(图4)所示。
数字光纤直放站对信号覆盖的方式,同以往模拟直放站类似,可通过光纤直连一拖一(一个近端加一个远端)使用,也可通过光分路器进行一拖多(一个近端加多个远端)覆盖使用。
如(图5)所示。
三、RRU同数字光纤直放站的分析比较
RRU同数字光纤直放站都可利用现有成熟的以太网数字光纤传输技术传输基带信号,并共同遵守标准的CPRI和OBSAI接口。
使用中可实现RRU和数字光纤直放站的远端机的互相替换。
两者均可作为室内分布系统的信号源,选用哪一种取决于宏基站的载频数量和该室内业务量需求。
如果宏基站载频多、容量很富裕,用数字光纤直放站拉远更合适,同时可减少扇区扰码。
如果该室内业务量需求较大应选用RRU作信号源。
如果业务量需求很大,如大型写字楼、会展中心等,应考虑数字光纤直放站、RRU和宏基站的联合组网。
在覆盖距离上,两者均可作为基站拉远系统供用,数字光纤直放站用作载波池拉远,RRU可用作基带池拉远。
载波池拉远距离取决于小区覆盖半径和光在光纤上的传输速度,数字信号在光纤中传播,其动态范围也较模拟信号大,这样就可以实现远端机更大的信号覆盖;同时,数字信号不随光信号的衰减而衰减,因此其传输(拉远)距离也进一步增加了。
经计算,最远可达40km以上,用作基带池拉远的RRU基本不受距离限制,可拉得更远。
在组网方式上,RRU作为拉远单元可单独使用,而数字光纤直放站由近端机和远端机组成,在实际应用时,近端机是一个,而远端机可以是一个或多个,组网上可并联也可串联,组网方式也可以多样化,如:菊花链形、环形、树形等等。
在扰码的使用上,数字光纤直放站射频信号的扰码总是同施主基站的扰码相同,数字光纤直放站也不增加基站信道板硬件容量和正交码容量,所以在扇区内大量采用并不会增加扰码。
射频拉远单元RRU是利用基站剩余的信道板和基带处理设备组成新的扇区,通过光纤系统拉到远处,有人称它为基带池技术,也有人叫它拉远的微蜂窝技术,总之,它具有硬件容量,并且拥有新的扰码和同步码。
由于RRU具有基站性能,在宏基站的扇区内大量采用必然会增加很多扰码和邻区列表,会发生导频污染,软切换增加。
如(图6)所示。
在网络优化时这是必须注意的问题。
在传输时延上,数字光纤直放站的传输时延比较大,因为存在两次变频过程。
而RRU 直接传送基带信号,时延不明显。
在底噪抬升上,数字光纤直放站仅采用ADC和DAC,此过程只可能引入更多的量化噪声,从而抬升上行噪声。
而RRU传输的为纯基带信号,可不用考虑底噪问题。
从成本上,采用RRU技术,可以节省常规建网方式中需要的大量机房,节约基带单元的投资。
RRU体积小,重量轻,可以应用于城区机房条件不理想或者机房匮乏的情况,但是应用前提是需要有光纤进行传输。
但在价格方面,RRU比直放站要贵1/3左右。
对于一拖一的系统,数字光纤直放站成本优势不明显,但一拖多,成本优势就比较明显了。
结语:
通过以上分析中可以看出,数字光纤直放站和RRU各自都有其优势,同为3G时代的新产品。
3G发牌在即,两者都列入重要手段统一网络规划,以达到预期的良好效果。