湖南省株洲县五中2014-2015 学年高一上学期期末模拟数学试题 Word版含答案
- 格式:doc
- 大小:1.13 MB
- 文档页数:5
湖南省株洲市2014年中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014?株洲I )下列各数中,绝对值最大的数是()A . - 3 B. - 2 C. 0 D. 1考点:绝对值;有理数大小比较分析:根据绝对值是实数轴上的点到原点的距离,可得答案. 解答:J 1 1解:|一 3|>|一 2|>> |0|, 故选:A.点评::本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2. (3分)(2014?株洲)x 取下列各数中的哪个数时,二次根式 3有意义( )A . - 2B. 0C. 2D. 4考点: 分析: 解答:解:依题意,得x - 3 的,解得,x 浮.观察选项,只有 D 符合题意. 故选:D.点评:考查了二次根式的意义和性质.概念:式子 Va (a 的)叫二次根式.性质:二次根式 中的被开方数必须是非负数,否则二次根式无意义.3. (3分)(2014?株洲I )下列说法错误的是( )A .必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 数据5、2、- 3、0的极差是8 D .如果某种游戏活动的中奖率为40%,那么参加这种活动 10次必有4次中奖考点:概率的意义;算术平均数;极差;随机事件 分析:A .根据必然事件和概率的意义判断即可;B. 根据平均数的秋乏判断即可;C. 求出极差判断即可;D. 根据概率的意义判断即可.解答:解:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概 率为1,本项正确;1 +94-2+3B. 数据1、2、2、3的平均数是」";5。
=2,本项正确;C. 这些数据的极差为 5-(- 3) =8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可二次根式有意义的条件. 二次根式的被开方数是非负数.能不中奖,故本说法错误,点评:本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.4. (3分)(2014?株洲I)已知反比例函数y=的图象经过点(2, 3),那么下列四个点中,也在这个函数图象上的是()A . (— 6, 1) B. (1, 6) C. (2, —3) D. (3, - 2)考点:反比例函数图象上点的坐标特征.分析:先根据点(2, 3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断. 解答:解:•.•反比例函数y=的图象经过点(2, 3),k=2 X3=6,A、I,( - 6)X= - 6走,.•.此点不在反比例函数图象上;B、1冷=6, 此点在反比例函数图象上;C> -•• 2>^ ( - 3) =- 6走,...此点不在反比例函数图象上;D、•.•3X(-2) =- 6走,...此点不在反比例函数图象上. 故选B.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中答此题的关键.考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案. 解答:解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图, 形是俯视图.C. 6k=xy的特点是解从上面看得到的图6. (3分)(2014?株洲)一元一次不等式组我+1>0%M Q的解集中,整数解的个数是(5. (3分)(2014冰洲)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是(兀一次不等式组的整数解.考点:分析:先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.解答:解:’•,解不等式2x+1 > 0得:x > _ ,解不等式x - 5的得:x司,不等式组的解集是-v x^5,整数解为0, 1, 2, 3, 4, 5,共6个,故选C.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.7. (3分)(2014?株洲)已知四边形ABCD是平行四边形,再从① AB=BC,②/ ABC=90 °,③AC=BD ,④AC ± BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A .选①② B.选②③ C.选①③ D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.8. (3分)(2014?株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位••依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,贝U向右走1个单位;当n被3除,余数为2时,贝U向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A .(66, 34) B.(67, 33) C.(100, 33) D.(99, 34)考点:坐标确定位置;规律型: :点的坐标.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,••• 100^3=33 余1 ,走完第100步,为第34个循环组的第1步,所处位置的横坐标为33 >3+1=100,纵坐标为33 >1=33,..•棋子所处位置的坐标是(100, 33).故选C.点评:本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题(共8小题,每小题3分,满分24分)9. (3 分)(2014?株洲)计算:2m2?m8= 2m'° .考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数藉的乘法进行计算即可.解答:解:2m2?m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数藉的乘法的应用,主要考查学生的计算能力.10. (3分)(2014?株洲)据教育部统计,参加2014年全国高等学校招生考试的考生约为69390000人,用科学记数法表示9390000是9.39刈0 .考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为a>10n的形式,其中1<|a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值> 1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将9390000用科学记数法表示为:9.39刈06.故答案为:9.39刈06.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为aN0n的形式,其中1^a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.11. (3分)(2014?株洲I)如图,点A、B、C都在圆O上,如果/ AOB+ / ACB=84 °,那么/ ACB的大小是28° .考点:圆周角定理.分析:根据圆周角定理即可推出Z AOB=2 / ACB,再代入/ AOB+ / ACB=84。
湖南省2014-2015学年高一上学期期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)已知空间两条直线a、b没有公共点,则a和b()A.一定是异面直线B.一定是平行直线C.不可能是平行直线D.不可能是相交直线2.(3分)正方体ABCD﹣A1B1C1D1中,与棱AB异面的棱有()A.2条B.4条C.6条D.8条3.(3分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④4.(3分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=05.(3分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0B.﹣8 C.2D.106.(3分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为()A.x+y﹣2=0 B.x+y﹣4=0 C.x﹣y+4=0 D.x﹣y+2=07.(3分)设m、n是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α∥β,m⊥α,n∥β⇒m⊥nC.α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β8.(3分)在正方体ABCD﹣A1B1C1D1中,AA1=a,E、F分别是BC、DC的中点,则AD1与EF所成的角的大小为()A.30°B.45°C.60°D.90°9.(3分)两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切10.(3分)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6B.4C.5D.1二、填空题(共5小题,每小题4分,共20分)11.(4分)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.12.(4分)过点(﹣6,4),且与直线x+2y+3=0平行的直线方程是.13.(4分)过点P(2,3),并且在两轴上的截距相等的直线方程为.14.(4分)直线x﹣y+1=0上一点P的横坐标是3,若该直线绕点P逆时针旋转90°得直线l,则直线l的方程是.15.(4分)如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.三、解答题(共5小题,8+8+10+12+12)16.(8分)一个几何体的三视图如图所示,其中主视图中△ABC是边长为2的正三角形,俯视图为正六边形,求该几何体的体积.17.(8分)如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)平面PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.18.(10分)如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF 沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A′C;(2)求三棱锥F﹣A′BC的体积.19.(12分)求半径为4,与圆x2+y2﹣4x﹣2y﹣4=0相切,且和直线y=0相切的圆的方程.20.(12分)已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.湖南省2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知空间两条直线a、b没有公共点,则a和b()A.一定是异面直线B.一定是平行直线C.不可能是平行直线D.不可能是相交直线考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:应该知道平行直线、异面直线没有公共点,从而a,b可能异面,可能平行,而相交时有一个公共点,显然不会相交.解答:解:a和b没有公共点,可能是平行,也可能是异面,但一定不相交.故选:D.点评:考查平行直线、异面直线,以及相交直线的概念,以及对这几种直线的认识,以及对空间两直线位置关系的掌握.2.(3分)正方体ABCD﹣A1B1C1D1中,与棱AB异面的棱有()A.2条B.4条C.6条D.8条考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:画出正方体ABCD﹣A1B1C1D1,从图形上找出与棱AB异面的棱即可得到与AB异面的棱的条数.解答:解:如图,与棱AB异面的棱有:A1D1,B1C1,DD1,CC1;∴共4条.故选B.点评:考查异面直线的概念,能够判断空间两直线是否异面,能画出正方体的直观图.3.(3分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用线线关系以及线面平行、线面垂直的性质对四个命题分析解答.解答:解:由平行线的传递性可以判断①正确;在空间,垂直于同一条直线的两条直线,可能平行、相交或者异面.故②错误;平行于同一个平面的两条直线的位置关系有:平行、相交、异面.故③错误;垂直于同一个平面的两条直线是平行的;故④正确;故选:C.点评:本题考查了线线关系,线面关系的判断;关键是熟练运用相关的公里或者定理.4.(3分)过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0考点:直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系.专题:计算题.分析:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过定点坐标,由点斜式得所求直线方程.解答:解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.点评:本题考查直线垂直与斜率的相互关系,注意斜率不存在的特殊情况.5.(3分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0B.﹣8 C.2D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2,m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.6.(3分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为()A.x+y﹣2=0 B.x+y﹣4=0 C.x﹣y+4=0 D.x﹣y+2=0考点:圆的切线方程.专题:计算题.分析:本题考查的知识点为圆的切线方程.(1)我们可设出直线的点斜式方程,联立直线和圆的方程,根据一元二次方程根与图象交点间的关系,得到对应的方程有且只有一个实根,即△=0,求出k值后,进而求出直线方程.(2)由于点在圆上,我们也可以切线的性质定理,即此时切线与过切点的半径垂直,进行求出切线的方程.解答:解:法一:x2+y2﹣4x=0y=kx﹣k+⇒x2﹣4x+(kx﹣k+)2=0.该二次方程应有两相等实根,即△=0,解得k=.∴y﹣=(x﹣1),即x﹣y+2=0.法二:∵点(1,)在圆x2+y2﹣4x=0上,∴点P为切点,从而圆心与P的连线应与切线垂直.又∵圆心为(2,0),∴•k=﹣1.解得k=,∴切线方程为x﹣y+2=0.故选D点评:求过一定点的圆的切线方程,首先必须判断这点是否在圆上.若在圆上,则该点为切点,若点P (x0,y0)在圆(x﹣a)2+(y﹣b)2=r2(r>0)上,则过点P的切线方程为(x﹣a)(x0﹣a)+(y﹣b)(y0﹣b)=r2(r>0);若在圆外,切线应有两条.一般用“圆心到切线的距离等于半径长”来解较为简单.若求出的斜率只有一个,应找出过这一点与x轴垂直的另一条切线.7.(3分)设m、n是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α∥β,m⊥α,n∥β⇒m⊥nC.α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β考点:空间中直线与平面之间的位置关系.分析:本题考查的知识点是空间中直线与平面之间位置关系的判定,我们要根据空间中线面关系的判定及性质定理对四个结论逐一进行判断.若m⊥α,n⊂β,m⊥n时,α、β可能平行,也可能相交,不一定垂直;若α⊥β,m⊥α,n∥β时,m与n可能平行、相交或异面,不一定垂直,α⊥β,α∩β=m时,与线面垂直的判定定理比较缺少条件n⊂α,则n⊥β不一定成立.解答:解:设m、n是两条不同的直线,α、β是两个不同的平面,则:m⊥α,n⊂β,m⊥n时,α、β可能平行,也可能相交,不一定垂直,故A不正确α∥β,m⊥α,n∥β时,m与n一定垂直,故B正确α⊥β,m⊥α,n∥β时,m与n可能平行、相交或异面,不一定垂直,故C错误α⊥β,α∩β=m时,若n⊥m,n⊂α,则n⊥β,但题目中无条件n⊂α,故D也不一定成立,故选B.点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a⊂α,b⊄α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄α,a⊄,a∥α⇒ a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.8.(3分)在正方体ABCD﹣A1B1C1D1中,AA1=a,E、F分别是BC、DC的中点,则AD1与EF所成的角的大小为()A.30°B.45°C.60°D.90°考点:异面直线及其所成的角.专题:空间角.分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出AD1与EF所成的角的大小.解答:解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(a,0,0),D1(0,0,a),E(),F(0,,0),=(﹣a,0,a),=(,﹣,0),设AD1与EF所成的角为θ,cosθ=|cos<>|===,∴θ=60°.∴AD1与EF所成的角的大小为60°.故选:C.点评:本题考查异面直线所成角的求法,是基础题,解题时要注意线线、线面、面面间的位置关系和性质的合理运用,注意向量法的合理运用.9.(3分)两圆x2+y2=9和x2+y2﹣8x+6y+9=0的位置关系是()A.相离B.相交C.内切D.外切考点:圆与圆的位置关系及其判定.专题:综合题.分析:分别由两圆的方程找出两圆心坐标和两个半径R和r,然后利用两点间的距离公式求出两圆心的距离d,比较d与R﹣r及d与R+r的大小,即可得到两圆的位置关系.解答:解:把x2+y2﹣8x+6y+9=0化为(x﹣4)2+(y+3)2=16,又x2+y2=9,所以两圆心的坐标分别为:(4,﹣3)和(0,0),两半径分别为R=4和r=3,则两圆心之间的距离d==5,因为4﹣3<5<4+3即R﹣r<d<R+r,所以两圆的位置关系是相交.故选B.点评:此题考查学生掌握两圆的位置关系的判别方法,利用运用两点间的距离公式化简求值,是一道综合题.10.(3分)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6B.4C.5D.1考点:直线与圆的位置关系.分析:先求圆心到直线的距离,再减去半径即可.解答:解:圆的圆心坐标(0,0),到直线3x+4y﹣25=0的距离是,所以圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是5﹣1=4故选B.点评:本题考查直线和圆的位置关系,数形结合的思想,是基础题.二、填空题(共5小题,每小题4分,共20分)11.(4分)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.12.(4分)过点(﹣6,4),且与直线x+2y+3=0平行的直线方程是x+2y﹣2=0.考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:设与直线x+2y+3=0平行的直线方程为x+2y+c=0,把(﹣6,4)代入,能求出结果.解答:解:设与直线x+2y+3=0平行的直线方程为x+2y+c=0,把(﹣6,4)代入,得:﹣6+8+c=0,解得c=﹣2,∴过点(﹣6,4),且与直线x+2y+3=0平行的直线方程是x+2y﹣2=0.故答案为:x+2y﹣2=0.点评:本题考查直线方程的求法,是基础题,解题时要注意直线与直线平行的性质的合理运用.13.(4分)过点P(2,3),并且在两轴上的截距相等的直线方程为x+y﹣5=0,或3x﹣2y=0.考点:直线的截距式方程.专题:计算题.分析:分直线的截距不为0和为0两种情况,用待定系数法求直线方程即可.解答:解:若直线的截距不为0,可设为,把P(2,3)代入,得,,a=5,直线方程为x+y﹣5=0若直线的截距为0,可设为y=kx,把P(2,3)代入,得3=2k,k=,直线方程为3x﹣2y=0∴所求直线方程为x+y﹣5=0,或3x﹣2y=0故答案为x+y﹣5=0,或3x﹣2y=0点评:本题考查了直线方程的求法,属于直线方程中的基础题,应当掌握.14.(4分)直线x﹣y+1=0上一点P的横坐标是3,若该直线绕点P逆时针旋转90°得直线l,则直线l的方程是x+y﹣7=0.考点:两条直线垂直与倾斜角、斜率的关系.专题:计算题.分析:由题意得直线l过点(3,4),且与直线x﹣y+1=0垂直,利用点斜式求得直线l的方程.解答:解:由题意得直线l过点(3,4),且与直线x﹣y+1=0垂直,故直线l的斜率为﹣1,利用点斜式求得直线l的方程是y﹣4=﹣1(x﹣3),即x+y﹣7=0,故答案为x+y﹣7=0.点评:本题考查两直线垂直的性质,用点斜式直线方程.15.(4分)如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.考点:直线与圆的位置关系.专题:直线与圆.分析:设,的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法的方式,易得答案.解答:解:设,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得,可由勾股定理求得|OE|=1,于是可得到,即为的最大值.故答案为:点评:本题考查直线与圆的位置关系,数形结合是解决问题的关键,属中档题.三、解答题(共5小题,8+8+10+12+12)16.(8分)一个几何体的三视图如图所示,其中主视图中△ABC是边长为2的正三角形,俯视图为正六边形,求该几何体的体积.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:该几何体是正六棱锥,依据数据求解即可.解答:解:由三视图可知几何体是正六棱锥,底面边长为1,侧棱长为2,该几何体的体积:=.点评:本小题考查三视图求体积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.17.(8分)如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)平面PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(I)根据线面平行的判定定理证出即可;(II)根据面面垂直的判定定理证明即可.解答:证明:(I)∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE.∴PA∥平面BDE.(II)∵PO⊥底面ABCD,PO⊥BD,又∵AC⊥BD,且AC∩PO=O∴BD⊥平面PAC,而BD⊂平面BDE,∴平面PAC⊥平面BDE点评:本题考查了线面平行的判定定理,面面垂直的判定定理,是一道基础题.18.(10分)如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为A C、AB的中点,将△AEF 沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A′C;(2)求三棱锥F﹣A′BC的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)欲证EF⊥A'C,可先证EF⊥平面A'EC,根据直线与平面垂直的判定定理可知只需证EF⊥平面A'EC内两相交直线垂直,而EF⊥A'E,EF⊥EC,EC∩A‘E=E,满足定理条件;(2)先根据题意求出S△FBC,将求三棱锥F﹣A′BC的体积转化成求三棱锥A′﹣BCF的体积,再根据三棱锥的体积公式求解即可.解答:解:(1)证明:在△ABC中,EF是等腰直角△ABC的中位线,∴EF⊥AC(2分)在四棱锥A'﹣BCEF中,EF⊥A'E,EF⊥EC,(4分)又EC∩A‘E=E∴EF⊥平面A'EC,(5分)又A'C⊂平面A'EC,∴EF⊥A'C(6分)(2)在直角梯形EFBC中,EC=2,BC=4,∴又∵A'O垂直平分EC,∴∴V=S△FBC•A′O==点评:本题主要考查了直线与平面垂直的判定,以及棱柱、棱锥、棱台的体积,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)求半径为4,与圆x2+y2﹣4x﹣2y﹣4=0相切,且和直线y=0相切的圆的方程.考点:圆的标准方程.专题:综合题;直线与圆.分析:利用待定系数法,求出圆心与半径,即可求出圆的方程.解答:解:由题意,设所求圆的方程为圆C:(x﹣a)2+(y﹣b)2=r2.圆C与直线y=0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a,﹣4).又已知圆x2+y2﹣4x﹣2y﹣4=0的圆心A的坐标为(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4﹣3=1.①当C1(a,4)时,有(a﹣2)2+(4﹣1)2=72或(a﹣2)2+(4﹣1)2=12(无解),故可得a=2±2.∴所求圆方程为(x﹣2﹣2)2+(y﹣4)2=42或(x﹣2+2)2+(y﹣4)2=42.②当C2(a,﹣4)时,(a﹣2)2+(﹣4﹣1)2=72或(a﹣2)2+(﹣4﹣1)2=12(无解),故a=2±2.∴所求圆的方程为(x﹣2﹣2)2+(y+4)2=42或(x﹣2+2)2+(y+4)2=42.点评:本题考查圆的方程,考查待定系数法,考查学生的计算能力,属于中档题.20.(12分)已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.考点:直线和圆的方程的应用;直线的一般式方程.专题:计算题;综合题.分析:(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;(3)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长.解答:解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y﹣2=(x﹣2),即x+2y﹣6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y﹣2=x﹣2,即x﹣y=0.圆心到直线l的距离为,圆的半径为3,弦AB的长为.点评:本题是基础题,考查直线与圆的位置关系,计算直线的斜率,点到直线的距离;直线与圆的特殊位置关系的应用是本题的关键.。
2014年湖南省普通高中学业水平考试数学试卷本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图是一个几何体的三视图,则该几何体为( )A .圆柱B .圆锥C .圆台D .球2.已知元素a ∈{0,1,2,3},且a ∉{0,1,2},则a 的值为( )A .0B .1C .2D .33.在区间[0,5]内任取一个实数,则此数大于3的概率为( )A .51B .52C .53D .544.某程序框图如图所示,若输入x 的值为1,则输出y 的值是( )A .2B .3C .4D .5 5.在ΔABC 中,若0=⋅AC AB ,则ΔABC 的形状是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 6.sin120︒的值为( )A .22B .-1C .23D .-227.如图,在正方体ABCD -A 1B 1C 1D 1中,直线BD 与A 1C 1的位置关系是( ) A .平行 B .相交 C .异面但不垂直 D . 异面且垂直 8.不等式(x +1)(x -2)≤0的解集为( )A .{x|-1≤x≤2}B . {x|-1<x<2}C . {x|x≥2或x≤-1}D . {x|x>2或x<-1}9.点P (m,1)不在不等式x+y-2<0表示的平面区域内,则实数m 的取值范围是( )A .m <1B .m≤1C .m≥1D .m >110.某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽搁了一些时间,下列函数的图像最能符合上述情况的是( )二、填空题:本大题共5小题,每小题4分,共20分. 11.样本数据-2,0,6,3,6的众数是____.12.在ΔABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知a=1,b=2,sinA=31,则sinB=___.13.已知a 是函数f(x)=2-log 2x 的零点,则实数a 的值为____.14.已知函数y=sin ωx(ω>0)在一个周期内的图像如图所示,则ω的值为__.15.如图1,在矩形ABCD 中,AB=2BC ,E 、F 分别是AB 、CD 的中点,现在沿EF把这个矩形折成一个直二面角A -EF -C(如图2),则在图2中直线AF 与平面EBCF 所成的角的大小为______.三、解答题:本大题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分6分)已知函数⎪⎩⎪⎨⎧∈∈=].,(,],,[,)(42420x xx x x f (1)画出函数f(x)的大致图像;(2)写出函数f(x)的最大值和单调递减区间。
湖南省株洲市第二中学14—15学年上学期高一期末数学试题一、选择题(40分)1.sin(690)-︒的值为( )A B .12- C .12 D .2.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U C A B ⋂等于( )A.{}23,B.{}145,,C.{}45,D.{}15,3.若函数()21,1ln ,1x x f x x x ⎧+≤=⎨>⎩, 则()()f f e =( )(其中e 为自然对数的底数)A .1B .2C .eD .54.下列四组函数,表示同一函数的是( ).A .()f x =()g x x =B .()f x x =,()2x g x x =C .()f x =()g xD .()1f x x =+, ()1,11,1x x g x x x +≥-⎧=⎨--<-⎩5.关于空间两条直线a 、b 与平面α,下列命题正确的是A .若//,a b b α⊂,则//a αB .若//,a b αα⊂,则//a bC .//,//a b αα,则//a bD .若,,a b αα⊥⊥则//a b6.在空间直角坐标系中,点(1,3,5)P -关于XOY 面对称的点的坐标是A .(1,3,5)--B .(1,3,5)-C .(1,3,5)D .(1,3,5)--7.如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于 ( )A .45°B .60°C .90°D .120°8.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是A .344k -≤≤B .34k ≥或4k ≤-C .344k ≤≤D .344k -≤≤ 9.一个几何体的三视图如图所示,则该几何体的体积是( )A.1B.2C.31 D.34 10.圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M 、N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值A.4 B1 C.6- D二、填空题(20分)11.已知函数()f x 是定义在R 上的奇函数,当0>x 时,()2x f x =,则(2)f -= . 12.如图,一个水平放置的平面图形的斜二测直观图是一个等腰直角三角形,它的底角为45°,两腰长均为1,则这个平面图形的面积为 .13.已知扇形的周长是8cm ,圆心角为2 rad ,则扇形的弧长为cm .14.已知无论k 取任何实数,直线0)142()32()41(=-+--+k y k x k 必经过一定点,则该定点坐标为 .15.我们称满足下面条件的函数)(x f y =为“ζ函数”:存在一条与函数)(x f y =的图象正视图 侧视图 俯视图 第9题图有两个不同交点(设为),(),,(2211y x Q y x P )的直线,)(x f y =在221x x x +=处的切线与此直线平行.下列函数: ①xy 1= ②)0(2>=x x y ③21x y -= ④x y ln =, 其中为“ζ函数”的是 (将所有你认为正确的序号填在横线上)三、解答题(共6个大题,合计40分)16.(6分)设集合{}|280A x R x =∈-=,{}22|2(1)+0B x R x m x m =∈-+= (1)若4m =,求A B ⋃;(2)若B A ⊆,求实数m 的取值范围.17.(6分)已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x+的值; (2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.18(7分)如图所示的长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC19.(6分)已知ABC 的三个顶点的坐标为(1,1),(3,2),(5,4)A B C .(1)求边AB 上的高所在直线的方程;(2)若直线l 与AC 平行,且在x 轴上的截距比在y 轴上的截距大1,求直线l 与两条坐标轴围成的三角形的周长.20.(7分)已知点()1,3M ,直线:40l ax y -+=及圆0142:22=+--+y x y x C .(1)求过M 点的圆的切线方程;(2)若直线l 与圆C 相交于A ,B 两点,且弦AB 的长为32,求a 的值.21.(8分)已知函数()|2|2f x x a x x =-+,a R ∈.(1)若0a =,判断函数()y f x =的奇偶性,并加以证明;(2)若函数()f x 在R 上是增函数,求实数a 的取值范围;(3)若存在实数[]2,2,a ∈-使得关于x 的方程()(2)0f x tf a -=有三个不相等的实数根,求实数t 的取值范围.18.60°.19.(1)2140x y +-=(2)12720.(1)圆的切线方程为3=x 或0543=--y x ;(2)43-=a ; 21.(1)奇函数,(2)11a -≤≤,(3) 918t <<解析:(1)函数()y f x =为奇函数. 当0a =时,()||2f x x x x =+,x R ∈,∴()||2||2()f x x x x x x x f x -=---=--=- ∴函数()y f x =为奇函数;(2)22(22)(2)()(22)(2)x a x x a f x x a x x a ⎧+-≥=⎨-++<⎩,当2x a ≥时,()y f x =的对称轴为:1x a =-; 当2x a <时,()y f x =的对称轴为:1x a =+;∴当121a a a -≤≤+时,()y f x =在R 上是增函数,即11a -≤≤时,函数()y f x =在R 上是增函数;(3)方程()(2)0f x tf a -=的解即为方程()(2)f x tf a =的解.①当11a -≤≤时,函数()y f x =在R 上是增函数,∴关于x 的方程()(2)f x tf a =不可能有三个不相等的实数根;②当1a >时,即211a a a >+>-,∴()y f x =在(,1)a -∞+上单调增,在(1,2)a a +上单调减,在(2,)a +∞上单调增,∴当(2)(2)(1)f a tf a f a <<+时,关于x 的方程()(2)f x tf a =有三个不相等的实数根;即244(1)a t a a <⋅<+,∵1a >∴111(2)4t a a<<++.设11()(2)4h a a a=++,∵存在[]2,2,a ∈-使得关于x 的方程()(2)f x tf a =有三个不相等的实数根, ∴max 1()t h a <<,又可证11()(2)4h a a a=++在(1,2]上单调增 ∴max 9()8h a =∴918t <<; 12分 ③当1a <-时,即211a a a <-<+,∴()y f x =在(,2)a -∞上单调增,在(2,1)a a -上单调减,在(1,)a -+∞上单调增,。
2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
可能用到的原子量:H—1 Na—23 O—16 —35.5 Fe—56 Cu—64 第Ⅰ卷 选择题(共54分) 一.选择题(共18小题,每题只有一个选项符合题意,每小题3分,共54分) 1.下列物质与常用危险化学品的分类不对应的是A.KMnO4——氧化剂B.Na——遇湿易燃物品C.浓硫酸——易爆品D.OH——腐蚀品.下列图示的四种实验操作是常用的分离提纯的方法,其名称从左到右依次是 A.蒸发、蒸馏、过滤、萃取B.过滤、蒸馏、蒸发、萃取 C.过滤、蒸发、蒸馏、分液 D.萃取、蒸馏、蒸发、过滤 3.在水溶液里或熔融状态下能导电的化合物是电解质。
下列物质不属于电解质的是 A.Fe B.NaOH C.H2SO4 D.Na2SO4 .下列电离方程式正确的是A.CuCl2 Cu2+ +2Cl? B.Ba(OH)2Ba2++(OH)2? C.Al2(SO4)32A13++3SO42? D.HNO3H++NO3- 5.用NA表示阿伏加德罗常数,下列说法正确的是A.过氧化钠与水反应,每产生标准状况下1.12 L O2,转移NA个电子 .1个氢气分子的实际质量约1/NA)g C.1 mol Na 原子中约含有NA个电子.含NA个氧原子的氧气在标准状况下的体积约为22.4 L .取一小块钠,用滤纸去掉煤油,放在加热,下列实验现象的描述正确的是①金属钠先熔化 ②在空气中燃烧呈苍白色火焰且火花四溅 ③燃烧后得到白色固体④燃烧时有黄色火焰 ⑤燃烧后生成淡黄色固体A.①②⑤B.①④⑤C.①②③D.①②④.关于Na2CO3和NaHCO3性质的说法正确的是 A.水性:NaHCO3>Na2CO3B.热稳定性:NaHCO3>Na2CO3C.与盐酸反应的速率快慢:NaHCO3<Na2CO3 D. Na2CO3溶液中通入过量CO2,有晶体析出 8.下列物质空气污染物的是 A.SO2 B.CO2 C.NO2 D.NO 9.下列有关SO2说法的是A.SO2蓝色石蕊试纸先变红后褪色B.SO2沾有KMnO4溶液的滤纸褪色,证明了SO2C.SO2品红试纸褪色,证明了SO2的漂白性D.SO2沾有酚酞和NaOH溶液的滤纸褪色,证明了SO2.在下列变化中,按氮元素被还原、被氧化、既被氧化又被还原、既不被氧化又不被还原的顺序排列正确的是①大气通过闪电固氮②硝酸分解③实验室用氯化铵和消石制取氨气④二氧化氮溶于水中A.①②③④ B.②④①③ C.①③④② D.②①④③.已知某溶液中存在较多的,该溶液中还可能大量存在的离子组是 A.B. C.- D.+、SiO、Cl- .将过氧化钠投入到氯化亚铁溶液中,可观察到的现象是.只有气泡产生.生成灰绿色沉淀.生成白色沉淀.生成红褐色沉淀并有气泡产生.下列反应的离子方程式正确的是A.NaHCO3溶液与酸:CO32? + 2 H+=H2O + CO2↑B.硝酸银溶液与铜:Cu + Ag+=Cu2+ + Ag.向硝酸亚铁溶液中加入稀酸:Fe2++4H++NO3-=Fe3++NO↑+2H2O D.用醋酸除水垢:2CH3COOH + CaCO3=Ca2+ + 2CH3COO? + H2O + CO2↑.下列实验现象和结论相符的是 操作及现象结论A溶液中加入盐酸,产生使澄清石灰水变浑浊的无色无味气体溶液中一定含有CO32-B某溶液中加入硝酸银,产生白色沉淀溶液中一定含有Cl-C用洁净铂丝蘸取某溶液在火焰上灼烧,火焰呈黄色溶液中有Na+,无K+D向某溶液中先加KSCN无明显现象,再滴氯水溶液变红溶液中一定含有Fe2+.将32g铜与,叙述中的是 A..的体积为L C...下列除杂的方法的是A.除去N2中的少量O2:通过灼热的Cu粉,收集气体B.除去2中的少量HCl:通入饱和,干燥后收集气体C.除去Fe2O3固体中少量Al2O3:加入足量NaOH溶液,过滤D.除去KCl溶液中少量MgCl2:加入适量NaOH溶液,过滤.下列化学实验事实及其结论都正确的是 选项实验事实结论将SO通入含HClO的溶液中生成HHClO的酸性比H强铝箔在酒精灯火焰上加热熔化但不滴落铝箔表面氧化铝熔点高于铝SiO2可以和NaOH溶液及HF溶液反应SiO属于两性氧化D将SO通入溴水中溴水褪色SO具有漂白性.把含有氧化铁的铁丝投入足量的稀硫酸中,直到固体全部溶解。
2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。
在每个小题给出的四个选项中,只有一个正确的答案。
1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。
$\{x|x0\}$ D。
$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。
2 B。
$-\frac{2}{3}$ C。
1 D。
$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。
$(-\infty,-1)\cup (0,1)$ B。
$(-1,0)\cup (1,+\infty)$ C。
$(-\infty,-1)\cup (1,+\infty)$ D。
$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。
3 B。
2 C。
1 D。
05.已知函数$f(x)=\begin{cases}1/x。
& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。
$-\frac{11}{23}$ B。
$\frac{1}{23}$ C。
$\frac{11}{23}$ D。
$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。
将正确的答案写在题中横线上。
6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。
7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。
2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。
XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。
$\{2\}$。
B。
$\{1,2\}$。
C。
$\{0,1,2\}$。
D。
$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。
$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。
2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。
利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。
3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。
$(1,+\infty)$。
B。
$[1,+\infty)$。
C。
$(0,+\infty)$。
D。
$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。
由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。
4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。
$y=-|x|$。
B。
$y=x$。
C。
$y=|x|$。
2014-2015 学年度第一学期湖南株洲县五中高一期末数学模
拟考试卷
班级 学号 姓名
一、选择题
1、已知全集U R =,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,
那么集合()
U A C B 等于( )
A 、{}|24x x -<≤
B 、{}|34x x x ≤≥或
C 、{}|21x x -<-≤
D 、{}|13x x -≤≤
2、如果1122log log 0x y <<,那么( )
A 、1y x <<
B 、1x y <<
C 、1x y <<
D 、1y x <<
3、若直线01=++y x 与直线01=-+y ax 互相平行,则a 的值等于( )
A 、1
B 、2
1 C 、-1 D 、
2 4、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 ( )
A 、1
B 、2
C 、3
D 、4
5、幂函数()y f x =的图象过点(4,2),则幂函数()y f x =的图象是( )
6、如图,一个空间几何体的正视图、侧视图、俯视图,它们是腰长为1的全等的等腰直角三角形,则这个几何体的体积为( )
A 、1
B 、21
C 、31
D 、6
1 7、设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是( )
A 、(-3,-3,0)
B 、(0,0,-3)
C 、(0,-3,-3)
D 、(0,0,3)
8、直线1y x =+与圆221x y +=的位置关系为( )
A 、相切
B 、相交但直线不过圆心
C 、直线过圆心
D 、相离
9、圆1C :422=+y x 和2C :22(3)(4)49x y -++=的位置关系是 ( )( )
A 、相交
B 、相离
C 、 内切
D 、外切
10、若0x 是方程1lg 0x x
-=的根,则0x 属于区间( ) A 、(]1,0 B 、(]10,1 C 、(]100,10 D 、),100
(+∞ 二、填空题
11、函数)21(,322≤≤-+-=x x x y 的值域是
12、若函数2()f x x x a =-+为偶函数,则实数a =
13、设函数()(21)f x a x b =-+在R 上是减函数,则a 的范围是
14、以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是
15、对于函数x x f lg )(=定义域中任意x 1,x 2(x 1≠x 2)有如下结论:①
)()()(2121x f x f x x f +=+
②)()()(2121x f x f x x f +=⋅③0)()(2121>--x x x f x f ④2
)()()2(2121x f x f x x f +<+上述结论中正确的序号是 。
三、解答题 16、(1)设函数 2
1()x f x x
+= ①判断函数的奇偶性;
②证明函数()f x 在(0,1)上是减函数。
(2)求不等式1472-->x x a a
(,0>a 且)1≠a 中x 的取值范围。
17、如图,在正方体1111D C B A ABCD -中,F E ,分别是CD BB ,1的中点。
(1)证明:F C AD 1⊥;
(2)求异面直线E A 1与F C 1所成的角的大小。
1A
18、已知△ABC 的顶点坐标分别是A (1,1)、B (4,1)、C (2,3)。
(1)求该三角形AC 边上的高所在的直线方程;
(2)求该三角形AC 边上的高的长度。
(3)求△ABC 外接圆的方程。
19.如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .
⑴ 求证: AQ ∥平面CEP ;
⑵ 求证:平面AEQ ⊥平面DEP ;
20、某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入
100元,已知总收益满足函数:⎪⎩⎪⎨⎧>≤≤-=,400,80000
,4000,21400)(2x x x x x R 其中x 是仪器的月产量。
(1)将利润表示为月产量的函数。
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)。
21.已知函数()()(10,)x x f x ln a b a b k N +=->>>∈,其定义域为(0,)+∞,()0
f x >的解集为(1,)+∞,且(3)4f ln =
(1)求k的值(2)求,a b的值.。