对数与对数运算
- 格式:pdf
- 大小:279.24 KB
- 文档页数:4
对数运算与对数函数在数学的广袤世界里,对数运算与对数函数就像隐藏在迷雾中的神秘宝藏,等待着我们去探索和发现。
它们不仅是数学理论中的重要组成部分,更在实际生活和科学研究中有着广泛而深刻的应用。
让我们先从对数运算说起。
对数运算其实就是一种数学运算方式,它是指数运算的逆运算。
想象一下,如果有一个等式 a^b = N,那么对数运算就是要找出 b 的值,我们记为logₐN = b。
比如说,2³= 8,那么 log₂8 = 3。
这就像是在解一个谜题,已知结果和底数,要找出指数。
为什么要有对数运算呢?这是因为在很多实际问题中,直接处理指数形式的数量关系可能会非常困难,但通过对数运算,就能将复杂的问题简单化。
例如,在测量声音强度时,我们使用的单位是分贝(dB),而分贝的计算就涉及到对数运算。
再来说说对数的一些基本性质。
首先是对数的乘法法则:logₐ(MN) =logₐM +logₐN。
这意味着,如果要计算两个数的乘积的对数,就可以转化为这两个数的对数的和。
同样,还有除法法则:logₐ(M/N) =logₐM logₐN。
而对数函数则是基于对数运算构建起来的一类函数。
常见的对数函数形式为 y =logₐx,其中 a 被称为底数,且 a > 0 且a ≠ 1。
当 a > 1时,对数函数是单调递增的;当 0 < a < 1 时,对数函数是单调递减的。
对数函数的图像具有一些独特的特征。
以底数 a > 1 为例,函数图像经过点(1, 0),并且逐渐向右上方延伸,越来越陡峭。
而当 0 < a <1 时,图像经过点(1, 0),逐渐向右下方延伸,变得越来越平缓。
对数函数在解决实际问题中发挥着巨大的作用。
比如在金融学中,计算复利增长;在物理学中,描述某些自然现象的变化规律;在计算机科学中,分析算法的时间复杂度等等。
举个简单的例子,假设你在银行存了一笔钱,年利率为 r,经过 t年后,本金和利息的总和 A 与初始本金 P 之间的关系可以表示为 A =P(1 + r)^t。
对数运算与对数函数已知底数和指数求幂的运算称为指数运算.如求23=?那么当已知底数和幂,求指数的 运算则称为对数运算.指数运算与对数运算互为逆运算.【对数运算的相关问题】1.定义. 若a b =N(a>0且a ≠1,N >0),则称b 是以a 为底N 的对数.记作b=log a N ,其中a 叫做底数,N 叫做真数.2指数式与对数式的互化如图1.10—1所示.②互换规则:底数不变,指数 与对数互换,幂与真数互换. 3.对数恒等式:①. ②.证明:①设log a N=b (1),则a b =N (2),将(1)代入(2)得. ②设a b =N(3),则b=log a N(4),将(3)代入(4)得.此结论说明任何一个实数b 都可以用一个对数表示.说明:为什么零与负数无对数?为什么要求指数、对数的底数 a >0且a ≠1?由a b =N ,N >0说明b=log a N 中的真数必须大于0.∴ 零与负数无对数. 又∵ 由1b=1知b 的取值是无法确定的,再如在实数范围内是无意义的.故底数a >0且a ≠1.例1.化简下列各式:(1). (2).解: (1)原式=31×=3×6=18. (2)原式=.4.对数运算性质 如果 (1).(2)=.(3).5.换底公式及推论 ①换底公式:.②推论1:.a b =N b=log a N ⇔ 指数式← →对数式 底数指数 对数 幂 真数 ①.指数式与对数式 的互化. 图1.10—1③推论2:.例2.已知f(x)是R上以2为周期的奇函数,当x∈[0,1]时f(x)=2x,求f(log0.523)的值. 解:∵f(x)是R上以2为周期的奇函数,∴f(log0.523)=f()=f(-log223)=-f(log223-4)= -f(),又∵当x∈[0,1]时f(x)=2x,∴f(log0.523)= .例3.求值.(1).(2)lg52++lg5lg20+lg22.解:(1)法1.原式=lo()=lo2= lo()3=3.法2.原式=(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+lg22=2(lg2+lg5)+(lg2+lg5)2=3.例4.(1)已知log189=a,18b=5. 求log3645.(2)若26a=33b=62c..求证:3ab-2ac=bc.(3)若.求的值.解:(1)法1.由log189=a,得a=log18又由18b=5,得b=log185, ∴log3645=法2. log189=a,得,再由b=log185=∴log3645=(2)设26a=33b=62c.=k>0,则6a=log2k,∴6log k2,同理,3log k 3,2log k 6,∴(3)由说明:(1)第一题的解法2更具有一般性.其一般方法是将底数、真数、幂都分解成质因数幂的形式,以其中一个质因数3为底,求出以另两个质因数2和5为真数的对数,再将所求式都换成以3为底的对数,化简即可.对于此题我们也可以都转换为以2或5为底,同样可行.读者不妨试试.(2)在利用对数的运算性质进行变形时,要注意从左到右会使真数的取值范围缩小,而从右到左则会使真数的取值范围扩大.因此,在变形时要注意保持其等价性, 如上述(3).想一想①:1.设a 、b 同号,且a 2-2ab -9b 2=0,求lg(a 2+ab -6b 2)-lg(a 2+4ab+15b 2)的值.2.化简(1) (lg2)3+(lg5)3+3lg2•lg5. (2)(log 25+log 4)(log 52+log 25).3.若a ,b ,c 是不为1的正数,a x =b y =c z 且 1x +1y +1z=0. 求证: abc=1.【对数函数的图像及性质】1.定义:形如y=log a x(a>0且a≠1)的函数叫做对数函数.其中x 是自变量,函数的定义域是{x|x >0,x ∈R},值域为R.请问,下列函数中哪些是对数函数:(1)y=log 2(x+1);(2)y=2log 3x ; (3)y=log 4x+1;; (4)y=log 4x 2; (5)y=log x x .; (6)y=log (2a -1)x(a>)答案:只有(6)是对数函数.2.对数函数与指数函数的关系:它们互为反函数,其图像关于直线y=x 对称.3.图像与性质列表a>1 0<a<1图像定义域 x ∈(0,+∞) 值 域 y ∈(-∞,+∞) 性 质(1)过定点(1,0)(2)对称性,既不是中心对称图形,也不是轴对称图形.(3)单调性 (0,+∞)是增函数. (0,+∞)是减函数.说明:1.函数y=log a x 与函数y=lo的图像关于x 轴对称,且a 的值越大图像越靠近x 轴(越陡).2.在同一直角坐标系中若给出了多条对数函数的图像,确定其底数大小时,可作直线y=1, 其底数大小从左向右依次增大.y xyo1xo 1例5.求证:函数f(x)=log a x(0<a<1),在(0,+∞)上是减函数.证明:设任意的x 1,x 2∈(0,+∞),且x 1<x 2.∵ f(x 1)-f(x 2)=log a , 又∵0<x 1<x 2, ∴,由0<a<1,知f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).由定义知函数f(x)=log a x(0<a<1),在(0,+∞)上是减函数.例6.对于函数f(x)=lo (x 2-2ax+3),解答下述问题:(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围;(3)若函数在[-1,+∞)内有意义,求实数a 的取值范围; (4)若函数的定义域为(-∞,1)(3,+∞),求实数a 的值;解:(1)由已知x 2-2ax+3>0对任意的x ∈R 恒成立,令u(x)= x 2-2ax+3,则函数y=f(x)的图像恒在x 轴的上方,∴ < 0,.(2)若函数y=f(x)的值域为R ,则u(x)= x 2-2ax+3必须取遍所有的正数,由于u(x)=x 2-2ax+3轴至少有一个交点. ∴≥0,(3)由函数在内有意义, ∴ u (x)=x 2-2ax+3>0对任意的 x ∈恒成立,即u (x)=x 2-的图像在上恒在x 轴的上方. 如图1.11—2.∴.(4)若函数的定义域为,即不等式x 2-2ax+3>0的解为 ∴u(x)= x 2-2ax+3的两个零点为1和3,由韦达定理知a=2.想一想②:1.函数y=log a (x+2)+3必过定点 .2.若函数f(x)=ln(a x -a -x )(a>1),当x ∈(1,+∞)时,f(x)>0恒成立,求实数a 的取值范围.4.对数函数单调性的应用①比较大小例7.(1)比较大小:①log 316与4log 52; ②lo与lo; ③0.42,log 20.6,20.75.(2)已知f(x)=1+log x 3,g(x)=2log x 2,(x 0且x ≠1),比较f(x)与g(x)的大小. 解:(1)① ∵ log 316>log 39=2,而4log 52=log 524=log 516<log 525=2. ∴ log 316>4log 52. ②∵ lo > lo,lo< lo=1, ∴ lo> lo. 或 由lo=log 23>log 22=1,lo =log 32<log 33=1,∴ lo> lo.③∵ 0<0.42=0.16<1,log 20.6<0,而20.75>1. ∴ log 20.6<0.42<20.75.yx o-1 · 图1.10—2yxo-1 ·(2)∵f(x)-g(x)=1+log x3-2log x2=log x.①当0<x<1时,0<<1,∴f(x)>g(x).②当1<x≤时,0<<1,∴f(x)≤g(x). ③当x>时,>1,∴f(x)>g(x).综上所述知,当0<x<1或x>时,f(x)>g(x).当1<x≤时,f(x)≤g(x).(当且仅当x=时取等号).②求函数的值域或最值例8.(1)已知2lo.求函数y=的最值.(2)求函数f(x)=lo g2(x-1)+g2(p-x)的值域.解:(1)由2lo,.又∵y=(log2x-1)(log2x-2)=log22x-3log2x+2,∴y min=(x=);y max=2(x=8).(2)此函数的定义域由给定.由于函数的定义域不能为空集,∴,(1)当1,即时,上单调递减,∴,值域为.(2)当1<,即p>3时,值域为.(3)当,即p<-1时,不满足p>1.综上所述知,当时,值域为;当p>3时,值域为.③讨论函数的单调性例9.(1)若函数f(x)=log a(2-ax)在区间[0,1]上单减,则a∈( ).A.(1,2).B.(0,1).C.(0,2).D.[2,+∞).(2)求函数y=log2(x2-x-2)的单减区间.解:(1)令f(x)=log a u,u=2-ax>0,∵函数f(x)=log a(2-ax)在区间[0,1]上单减,且a>0, ∴u=2-ax是x的减函数,则f(x)=log a u是u的增函数,∴ a>1.又∵f(x)=log a(2-ax)在区间[0,1]有意义,∴故应选A.(2)令y=log2u,u= x2-x-2>0,∵y=log2u是u的增函数,∴当u= x2-x-2>0单减时,函数y=log2(x2-x-2)的单减. 故函数y=log2(x2-x-2)的单减区间为(-∞,-1).④解不等式例10.(1)若log a<1,则实数a的取值范围是.(2)设a>0且a≠1,解不等式解:(1)原不等式可化为log a<log a a,当a>1时,当0<a<1时,综上所述知a∈(0,)∪(1,+∞).(2)令log a x=t,则得当0<a<1时,由指数函数的单调性,有4-t2<1-2t , t2-2t-3>0, (t+1)(t-3)>0, t<-1,或t>3,从而log a x<-1或log a x>3,解得x>或x<a3.当a>1时,则有4-t2>1-2t, t2-2t-3<0,(t+1)(t-3)<0, -1<t<3.从而 -1<log a x<3,解得<x<a3.综上所述知,当0<a<1时,x∈当a>1时,x∈(). 想一想③:1.若log a >1,求实数a 的取值范围.2.函数f(x)=log 0.5|x 2+2x -3|的单增区间是( ).3.解不等式log (x+1)(x 2-x -2)>1.【与图像、方程有关的综合问题】例11.(1)若定义在R 上的偶函数f(x)满足:f(x)=f(x+2),且当x ∈[0,1]时,f(x)=x.则函数y=f(x)-log 3|x|的零点个数为( ).A.4.B.3.C.2.D.1. (2)若方程x+log 2x=5与x+2x =5的根分别为,则=( ). (3)对于函数f(x)=log 2(x -1),当x 1,x 2均大于1时,你能得出[f(x 1)+f(x 2)].解:(1)∵ 当x ∈[0,1]时,f(x)=x ,又y=f(x)是定义在R 上 的偶函数,且周期为2,故可得函数y=f(x)的图像, 如图1.10—3所示.由于函数y=f(x)-log 3|x|的零点即为 函数y=f(x)与y=log 3|x|图像交点的横坐标,结合图 像易知两图像有四个不同的交点.故应选A.(2)由x+log 2x=5得log 2x=5-x.再由x+2x =5得2x=5-x.在同一直角坐标系中同时作出函数y=log 2x 、y=2x、 y=5-x 的图像,如图1.10—4.其中为函数y=log 2x与y=5-x 的图像交点的横坐标;为函数y=2x与y=5-x的图像交点的横坐标.由于函数y=log 2x 与y=2x、的图像都关于直线y=x 对称,易求得 =5. (3)作出函数的图像,如图1.10—5所示.对于任意的x 1、x 2由梯形中位线的性质,结合图像易知想一想④:1.方程log 2(x+4)=3x 的根的个数为( ).2.不等式log 2(-x)<x+1的解集为( ).3.类比上例(3),对于f(x)=3x 你能得出怎样的结论.习题1.101.若log 2[]= log 3[]= log 5[]=0,则x 、y 、z 的大小关系是( ).A.z<x<y.B.x<y<z.C.y<z<x.D.z<y<x. 2.若y= -log 2(x 2-ax -a)在区间()上是增函数,则实数a 的取值范围是( ). A.[2-2,2]. B.[ 2-2,2). C.( 2-2,2]. D.( 2-2,2).3.已知函数y =lo (ax 2+2x +1)的值域为R ,则实数a 的取值范围( ). A.a>1.B.0≤a<1.C.0<a<1.D.0≤a ≤1.xy o图1.10—455xyo 1 2 3 -2 -3 -1图1.10—3xy ox 1x 22)()(21x f x f +221x x +f(x 2f(x 1))2(21x xf +4.函数y=(lo x)2-lo x2+5在2≤x≤4时的值域为.5.已知lg2=a,lg3=b,将用a ,b表示为.6.已知函数f(x)=log2(x2-2)的定义域为[a,b],值域为[1,log214],求ab的值.7.已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?8.设0<x<1,a>0且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小.9.已知函数f(x)=log a(a-a x)(a>1).求函数的定义域和值域.10.在对数函数y=log2x的图像上(如图1.10—6),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.11.设a,b,c分别是方程2x= 的实数根,则有( ).A.a<b<c.B.c<b<a.C.b<a<c.D.c<a<b.12.设a=log54,b=(log53)2,c=log45. 则( ).A.a<c<b.B.b<c<a. C,a<b<c. D.b<a<c.13.函数f(x)=ln(x-)的图像只可能是( ).14.已知函数f(x)=则函数y=f(1-x)的大致图像是( ).【参考答案】想一想①:1. -.2.(1)1.(2)3.略想一想②:1.(-1,3).2.由已知函数f(x)=ln(a x-a-x)(a>1),当x∈(1,+∞)时是增函数,∴ x∈(1,+∞)时,f(x)>0恒成立,只需f(1)≥0即可. 由ln(a-a-1) ≥0, a-a-1≥1,解得a.想一想③:1. ().2.(-∞,-3),[-1,1).3.x∈(3,+∞).想一想④:图1.10—6。
1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。
即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。
自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。
3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。
⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。
特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。
(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。
(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。
对数与对数函数一、相关知识点1.对数的定义:如果()1,0≠>=a a N a x 且,那么数x 叫做以a 为底,N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数。
2.几种常见对数(1)()1,0≠>a a 且①01log =a ; ②1log =a a ; ③N a Na =log ; ④N a N a =log .(两个对数恒等式) (2)对数的重要公式:①换底公式:()0,1,log log log >=N b a b aN aNb均为大于零且不等于;②abba log 1log =,推广:da d c cb b a log log log log =⋅⋅. (3)对数的运算法则:如果0,0,1,0>>≠>N M a a 且,那么 ①()Na M a MN aloglog log += ; ②NaM a N Malog log log -=; ③()R n n MaM a n∈=log log ;④b a b a mnnm log log = . 3.反函数,只需了解:指数函数xa y =与对数函数xa y log =互为反函数,它们的图象关于直线x y =对称。
题型一:对数的化简和求值1.计算:(1)2110025lg 41lg ÷⎪⎭⎫ ⎝⎛-;(2)32log 2450lg 2lg 5lg +⋅+;(3)()232031027.0252lg 3.0lg 21000lg 8lg 27lg --⎪⎭⎫⎝⎛-⨯+-++-+;(4)()222lg 20lg 5lg 8lg 325lg +++. 2.已知()[]0lg log log 25=x ,求x 的值.3.已知0>a ,且1≠a ,m a =2log ,n a =3log ,求nm a +2的值能力提高:(1).设m ba==52,且211=+ba ,则=m ; (2).若632==b a ,求证:c b a 111=+题型二:(1)对数函数的基本性质题型一:基本性质1.函数()()223lg +-=x x f 恒过定点_______________________2.如果0log log 2121<<y x ,那么()(A)1<<x y ; (B)1<<y x ;(C)y x <<1; (D)x y <<1.3.已知()x x f a log =,()x x g b log =,()x x r c log =,()x x h d log =的图象如图所示则a ,b ,c ,d 的大小为A.b a d c <<<;B.a b d c <<<;C.b a c d <<<;D.d c b a <<<4.若函数()⎪⎩⎪⎨⎧<⎪⎭⎫⎝⎛+≥=)()(4214log 2x x f x x x f ,则⎪⎭⎫⎝⎛23f 的值是( ) A.21; B.1; C.23; D.2 5.若点()b a ,在x y lg =图像上,1≠a ,则下列点也在此图像上的是()A.⎪⎭⎫⎝⎛b a ,1;B. ()b a -1,10;C.⎪⎭⎫⎝⎛+1,10b a ; D.()b a 2,2. 6.函数()()13log 2+=xx f 的值域为7.为了得到函数103lg+=x y 的图像,只需把函数x y lg =的图像上所有的点( ) A.向左平移3个单位长度,再向上平移1个单位长度; B.向右平移3个单位长度,再向上平移1个单位长度; C.向左平移3个单位长度,再向下平移1个单位长度; D.向右平移3个单位长度,再向下平移1个单位长度.8.若函数()()()101≠>--=a a a a k x f xx且在R 上既是奇函数,又是减函数()()k x x g a +=log 的图象是( )9.对于函数()x f 定义域中任意的()2121,x x x x ≠,有如下结论: ①()()()2121x f x f x x f ⋅=+; ②()()()2121x f x f x x f +=⋅; ③()()02121>--x x x f x f ; ④()()222121x f x f x x f +<⎪⎭⎫ ⎝⎛+. 当()x x f lg =时,上述结论中正确结论的序号是. 能力提高:1.已知函数()22log 21+-=a y x 的值域是R ,求a 的取值范围.2.已知函数()()1log 22++=ax ax x f 的定义域为全体实数,求a 的取值范围.3.已知函数()()1log 22++=ax axx f 的值域域为全体实数,求a 的取值范围。
对数与对数运算基础知识扫描:1、概念:一般地,如果ba N =)1,0(≠>a a ,那么数b 叫做以a 为底 N 的对数. 记作 ,其中a 叫做对数的底数,N 叫做真数.2、重要公式:⑴负数与零没有对数; ⑵log 1________a =,log a a =⑶对数恒等式log __________________.a N a =n a na =log 3、对数的运算法则:如果 a >0,a ≠ 1,M >0, N >0 有:=)(log MN a ,=NMalog ,=n a M log .log a N n=nlog a N (n ∈R)知识点一 对数的概念 1、如果a 的b 次幂等于N : ,其中隐藏条件为a >0, a ≠1 N >0 2、常用对数:通常把常用对数10log N 简记为lg N 例如:5log 10简记作lg5;3、自然对数: 以e=2.71828……e 为底的对数叫自然对数,并把自然对数N e log 简记作N ln 例1、求使对数)5(log 2a b a -=-有意义的a 取值范围.例2、将下列指数式写成对数式,对数式写成指数式.(1)62554=; (2)73.531=m)( ; (3)416log 21-= ; (4)303.210ln =知识点二 对数的化简、求值 例3、求下列各式中的x 的值.(1)32log 64-=x ; (2)68log =x ; (3)x =100lg ; (4)x e =-2ln例4、计算.(1)27log 9; (2)81log 3; (3)125log 5; (4)()()32log 32-+例5、计算.(1) 18lg 7lg 37lg 214lg -+-; (2) 5lg 2lg )5(lg 2⋅+.例6、已知3010.02lg =,4771.03lg =, 求108lg ._____(01)a b c =>≠换底公式:log 且c log log 1a b b a ∙=log log m na a nN N m=⇔=N a b例7、计算. (1);25log 20lg 100+ (2) 3log 12.05+; (3)4log 16log 327.例8、已知 2log 3 = a , 3log 7 = b ,用b a ,表示42log 56.巩固练习一:一、选择题 1、25)(log 5a -(a ≠0)化简得结果是( ) A 、-aB 、a 2C 、|a |D 、a2、log 7[log 3(log 2x )]=0,则21-x 等于( )A 、31B 、321 C 、221 D 、3313、nn ++1log(n n -+1)等于( )A 、1B 、-1C 、2D 、-24、已知32a=,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a - 5、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 6、若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b 二、填空题8、若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________ 9、若lg2=a ,lg3=b ,则log 512=________ 11、若2log 2,log 3,m na a m n a+===___________________12、lg25+lg2lg50+(lg2)2= 三、解答题13、222522122(lg )lg lg (lg )lg +⋅+-+14、若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(ba ab ⋅的值。
2.2.1 对数与对数运算1.对数的概念(1)定义:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.释疑点在对数log a N中规定a>0,且a≠1,N>0的原因(1)若a<0,则N为某些数值时,x不存在,如式子(-3)x=4没有实数解,所以log(-3)4不存在,因此规定a不能小于0;(2)若a=0,且N≠0时,log a N不存在;N=0时,log a0有无数个值,不能确定,因此规定a ≠0,N≠0;(3)若a=1,且N≠1时,x不存在;而a=1,N=1时,x可以为任何实数,不能确定,因此规定a≠1;(4)由a x=N,a>0知N恒大于0.(2)(3)(4)当a>0,且a≠1时.如图所示:比如:43=64⇔3=log464;log525=2⇔52=25;以前无法解的方程2x=3,学习了对数后就可以解得x=log23.谈重点对指数与对数的互化关系的理解(1)由指数式a b=N可以写成log a N=b(a>0,且a ≠1),这是指数式与对数式互化的依据.从对数定义可知,对数式与指数式是同一种数量关系的两种不同表达形式.其关系如下表:(2)根据指数与对数的互化关系,可以得到恒等式log a Na N=.指数与对数的互化是解决指数式和对数式有关问题的有效手段.【例1-1】下列指数式与对数式的互化中,不正确的一组是( ) A.100=1与lg 1=0B.131273-=与271log3=13-C.log39=2与129=3D.log55=1与51=5 【例1-2【例1-3】求下列各式中(1)log2(log5x)=0;(2)log3(lg x)=1;(3)log x27=34;(4)x=log84.2.对数的运算性质(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:①log a(M·N)=log a M+log a N;②loga MN=log a M-log a N;③log a M n=n log a M(n∈R).谈重点对对数的运算性质的理解(1)对应每一条运算性质,都要注意只有当式子中所有的对数符号都有意义时,等式才成立,如log2[(-3)·(-5)]=log2(-3)+log2(-5)是错误的.(2)巧记对数的运算性质:①两个正数的积的对数等于这两个正数的对数的积;②两个正数的商的对数等于这两个正数的对数的差;③正数幂的对数等于幂指数乘以同一底数幂的底数的对数.(2)谈重点利用对数的定义将对数问题转化为指数问题,再利用幂的运算性质,进行转化变形,然后把它还原为对数问题.如“log a(MN)=log a M+log a N”的推导:设log a M=m,log a N=n,则a m=M,a n=N,于是MN=a m·a n=a m+n,因此log a(MN)=log a M+log a N=m+n.【例2-1】若a >0,且a ≠1,x >y >0,n ∈N *,则下列各式: ①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a (xy )=log a x ·log a y ;④log log log a a a x xy y=;⑤(log a x )n =log a x n ;⑥1log log a a x x=-;⑦log log a a x n=其中式子成立的个数为( )A .2B .3C .4D .5【例2-2】计算:(1)2log 122+log 123;(2)lg 500-lg 5;(3)已知lg 2=0.301 0,lg 3=0.477 1,求.析规律 对数的运算性质的作用 (1)利用对数的运算性质,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然,这种运算的互化可简化计算;(2)由于lg 2+lg 5=lg 10=1,所以lg 5=1-lg 2,这是在对数运算中经常用到的结论.3.换底公式(1)公式log a b =log log c c ba(a >0,且a ≠1;c >0,且c ≠1,b >0).(2)公式推导: 设log log c c b x a=,则log c b =x log c a =log c a x , ∴b =a x .∴x =log a b .∴log log c c ba=log a b .(3)公式的作用换底公式的作用在于把以a 为底的对数,换成了以c 为底的对数,特别有:lg log lg a NN a=,ln log ln a NN a=,利用它及常用对数表、自然对数表便可求任一个对数的值. (4)换底公式的三个推论:①log log m n a a nN N m=(a ,N >0,且a ≠1,m ≠0,m ,n ∈R );②log a b=1log b a (a ,b >0,且a ,b ≠1);③log a b ·log b c ·log c d =log a d (a ,b ,c >0,且a ,b ,c ≠1,d >0).证明:①log am N n=log log log log n a a a ma N n N n N a m m ==.②log ab =log 1log log b b b b a a=.③log a b ·log b c ·log c d =lg lg lg lg lg lg lg lg b c d da b c a⋅⋅==log a d . 【例3-1】82log 9log 3的值是( ) A .23 B .32 C .1 D .2【例3-2】若log 34·log 48·log 8m =log 416,则m 等于( )A .12B .9C .18D .274.对数定义中隐含条件的应用根据对数的定义,对数符号log a N 中实数a 和N 满足的条件是底数a 是不等于1的正实数,真数N 是正实数,即>0,>0,1,N a a ⎧⎪⎨⎪≠⎩因此讨论对数问题时,首先要注意对数的底数和真数满足的隐含条件.对数概念比较难理解,对数符号初学时不太好掌握,学习时要抓住对数与指数相互联系,深刻理解对数与指数之间的关系,将有助于掌握对数的概念.【例4-1】已知对数log (1-a )(a +2)有意义,则实数a 的取值范围是__________.【例4-2】若log (1-x )(1+x )2=1,则x =__________.5.对数的化简、求值问题应用对数的定义、有关性质及运算法则等可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然,这种运算的互化可简化计算过程,加快计算速度.(1)同底数的对数式的化简、求值 一是“拆”,将积、商的对数拆成对数的和、差.如39log 5+log 35=log 39-log 35+log 35=log 39=2.二是“收”,将同底数的对数和、差合成积、商的对数.如,39log 5+log 35=39log 55⎛⎫⨯ ⎪⎝⎭=log 39=2.三是“拆”与“收”相结合.(2)不同底数的对数式的化简、求值常用方法是利用换底公式,转化为同底数的对数式,进而进行化简,化简后再将底数统一进行计算.也可以在方向还不清楚的情况下,统一将不同的底换为常用对数等,再进行化简、求值.对数式的化简、求值,要灵活运用对数的性质、运算性质、换底公式和一些常见的结论,如log a 1=0,log a a =1,a log a N =N ,lg 2+lg 5=1,log a b ·log b a =1等.【例5-1】化简求值:(1)4lg 2+3lg 5-1lg5;;(3)2log32-332log9+log38-5log35;(4)log2(1)+log2(1.【例5-2】计算:(log43+log83)(log32+log92)-.6.条件求值问题对于带有附加条件的与对数式有关的求值问题,如果附加条件比较复杂,则需先对其进行变形、化简,并充分利用其最简结果解决问题.例如:设x=log23,求332222x xx x----的值时,我们可由x=log23,求出2x=3,2-x=13,然后将它们代入332222x xx x----,可得33331322913122933x xx x--⎛⎫- ⎪-⎝⎭==--.【例6】已知3a=4b=36,求21a b+的值.析规律与对数式有关的求值问题的解决方法(1)注意指数式与对数式的互化,有些需要将对数式化为指数式,而有些需要将指数式化为对数式;(2)注意换底公式与对数的运算性质的应用,解题时应全方位、多角度地思考,注意已知条件和所求式子的前后照应.7.利用已知对数表示其他对数(1)换底公式的作用是将不同底的对数式转化成同底的对数式,将一般对数转化成自然对数或常用对数来运算.要注意换底公式的正用、逆用及变形应用.(2)用对数log a x和log b y等表示其他对数时,首先仔细观察a,b和所要表示的对数底数的关系,利用换底公式把所要表示的对数底数换为a,b.解决此类题目时,通常用到对数的运算性质和换底公式.对数的运算性质总结:如果a >0,且a ≠1,M >0,N >0,那么: log a (M ·N )=log a M +log a N ;log a MN=log a M -log a N ; log a M n =n log a M (n ∈R ).换底公式:log a b =log log c c ba(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)题目中有指数式和对数式时,要注意将指数式与对数式进行互化,统一成一种形式. 【例7-1】已知lg 2=a ,lg 3=b ,则log 36=( )A .a b a +B .a b b +C .a a b +D .b a b +【例7-2】已知log 189=a,18b =5,求log 3645(用a ,b 表示).8.与对数有关的方程的求解问题 关于对数的方程有三类:第一类是形如关于x 的方程log a f (x )=b ,通常将其化为指数式f (x )=a b ,这样解关于x 的方程f (x )=a b 即可,最后要注意验根.例如:解方程64152log 163x ⎛⎫-=- ⎪⎝⎭,将其化为指数式为23156416x --=,又223233164(4)416---===,则1511616x -=,所以x =1,经检验x =1是原方程的根.第二类是形如关于x 的方程log f (x )n =b ,通常将其化为指数式f b (x )=n ,这样解关于x 的方程f b (x )=n 即可,最后要注意验根.例如,解方程log (1-x )4=2,将其化为指数式为(1-x )2=4,解得x =3或x =-1,经检验x =3是增根,原方程的根是x =-1.第三类是形如关于x 的方程f (log a x )=0,通常利用换元法,设log a x =t ,转化为解方程f (t )=0得t =p 的值,再解方程log a x =p ,化为指数式则x =a p ,最后要注意验根.【例8-1】已知lg x +lg y =2lg(x -2y ),求xy的值.【例8-2】解方程lg 2x -lg x 2-3=0.9.对数运算的实际应用对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.【例9】抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)。