高等数学第一章第5-8节
- 格式:ppt
- 大小:1.47 MB
- 文档页数:55
高等数学1教材章节高等数学1教材是大多数高校数学专业的入门教材,它包含了许多重要的章节,每个章节都对应着数学领域的不同知识和技巧。
下面将介绍一些常见的高等数学1教材章节,以帮助读者更好地理解和学习这门学科。
第一章:函数与极限第一章主要介绍了函数与极限的基本概念和性质。
首先,我们了解了函数的定义和分类,包括代数函数、三角函数、指数函数等。
接着,介绍了函数的性质,如奇偶性、周期性等。
在函数的基础上,引入了极限的概念,包括函数的极限和数列的极限。
通过学习本章,读者将对函数与极限有一个初步的了解。
第二章:导数与微分第二章重点讲解了导数与微分的概念和应用。
首先,介绍了导数的定义与性质,包括导数的几何意义和算法等。
接着,学习了函数的微分和微分中值定理,以及应用导数解题的方法,如切线与法线方程、最优化问题等。
此外,还介绍了几个重要的导数公式,如和差商法则、乘积法则、商法则等。
通过学习本章,读者将掌握导数与微分的概念和基本应用。
第三章:积分与不定积分第三章主要介绍了积分与不定积分的概念和基本原理。
首先,学习了不定积分的定义和性质,以及不定积分的基本公式和常用方法。
接着,引入了定积分的概念,包括定积分的性质和几何意义。
通过学习本章,读者将了解积分与微分的关系,以及积分与曲线的面积、体积等几何问题的求解方法。
第四章:常微分方程第四章介绍了常微分方程的基本概念和解法。
首先,学习了一阶常微分方程和二阶常微分方程的定义和分类,以及基本解及其性质。
接着,介绍了常系数线性微分方程的解法,包括齐次线性微分方程和非齐次线性微分方程。
此外,还讨论了常微分方程的应用,如生物学、物理学、经济学等领域。
通过学习本章,读者将能够熟练应用常微分方程解决实际问题。
第五章:多元函数微分学第五章主要介绍了多元函数微分学的基本概念和技巧。
首先,学习了多元函数的极限和连续性的概念和性质。
接着,引入了多元函数的偏导数和全微分的定义和计算方法。
通过学习本章,读者将能够掌握多元函数微分学的基本思想和解题方法,为进一步学习进阶数学课程打下坚实的基础。
- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。
2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。
(即使实际问题故意义的取值范围)。
如时光、长度、分量必须大等于0 。
❖对于数学式子表达的函数,如果给出了取值范围就不必再求。
否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。
1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。
高等数学教材第一章高等数学是大学生必修的一门重要课程,它是建立在中学数学基础之上,对于培养学生的数学思维和解决问题的能力起着重要作用。
本文将对高等数学教材的第一章进行详细介绍,包括内容概述、重要概念、知识点总结等方面。
第一章:函数与极限1.1 函数的概念与性质函数是数学中常见的一种关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素。
在第一章中,我们先介绍了函数的定义和表示方法,重点掌握函数的定义域、值域和图像的概念。
另外,我们还学习了一些常见的函数,如一次函数、二次函数、指数函数等,并深入研究了它们的性质和图像特点。
1.2 极限的概念与性质极限是高等数学中的重要概念,它描述了函数在某个点或无穷远处的趋势。
在本章中,我们首先引入了点的邻域和函数极限的定义,并学习了函数极限的性质。
同时,我们还介绍了一些常见的极限计算方法,如利用夹逼定理、洛必达法则等来求解极限问题。
1.3 连续与间断在第一章的最后一节,我们研究了函数的连续性和间断点的概念。
通过对函数连续性的讨论,我们可以判断函数在某个点的连续性,并进一步研究函数的间断点类型,如可去间断点、跳跃间断点和无穷间断点等。
了解函数的连续性和间断点的性质,对于我们后续学习函数的性质和应用有着重要的指导作用。
总结:高等数学教材的第一章主要介绍了函数与极限的基本概念和性质。
通过学习这一章的内容,我们不仅可以掌握函数的定义和表示方法,还能深入理解函数的图像特点和性质。
同时,研究函数的极限可以帮助我们了解函数在某一点的趋势,为后续的微积分学习打下基础。
此外,通过对函数连续性和间断点的讨论,我们可以判断函数的局部性质,并为函数的应用提供合理的数学理论依据。
高等数学教材的第一章为我们打开了数学的大门,为我们后续学习的深入和应用提供了坚实的基础。
第一章 函数与极限§1 函数 §2 初等函数 §3 数列的极限 §4 函数的极限 §5 无穷小与无穷大 §6 极限运算法则 §7 极限存在准则 两个重要极限 §8 无穷小的比较 §9 函数的连续性与间断 §10连续函数的运算与性质第一节 函数一、实数与区间 二、领域 三、函数的概念 四、函数的特性一、实数与区间1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.∀ a , b ∈ , 且a < b.a∈ M, a∉ M, A = { a1 , a 2 , , a n }有限集{ x a < x < b} 称为开区间, 记作 (a , b )o a x b { x a ≤ x ≤ b} 称为闭区间, 记作 [a , b] o aM = { x x所具有的特征 } 无限集数集分类: N----自然数集 Q----有理数集 数集间的关系: Z----整数集 R----实数集N ⊂ Z, Z ⊂ Q, Q ⊂ R.bx{ x a ≤ x < b} 称为半开区间, 记作 [a , b ) { x a < x ≤ b} 称为半开区间, 记作 (a , b] [a ,+∞ ) = { x a ≤ x } ( −∞ , b ) = { x x < b}o a o x x二、邻域有限区间常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母 a, b, c 等表示常量, 用字母 x, y, t 等表示变量. 例三、函数的概念圆内接正多边形的周长设a与δ是两个实数 , 且δ > 0.数集{ x x − a < δ }称为点 a的δ邻域 ,点a叫做这邻域的中心 , δ 叫做这邻域的半径 .b ( −∞ , +∞ ) = { x −∞ < x < +∞ } =U δ (a ) = { x a − δ < x < a + δ }. δ δ无限区间区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度.a a−δ a+δ o x 点a的去心δ 邻域 , 记作U δ0 (a ), 或 U (a , δ ).π S n = 2 nr sin n n = 3 ,4 ,5 ,S3S4S5圆内接正n 边形S6Oπ nr)Uδ (a ) = { x 0 < x − a < δ }.o定义:设 x 和 y 是两个变量, D 是给定的数集,如果对于每个数 x ∈ D , 变量 y 按照一定法则总函数的两要素: 定义域与对应法则.有唯一的数值和它对应,则称 y 是 x 的函数, 记作因变量x ((D对应法则fx0 )f ( x0 )y = f ( x)自变量数集D叫做这个函数的定义域 自变量Wy)因变量看右图: 如果自变量在定义域 内任取一个数值时,对应 的函数值总是只有一个, 这种函数叫做单值函数, 否则叫做多值函数.y分段函数:在自变量的不同变化范围中, 对应法则用不同的Wy⋅ ( x, y)x式子来表示的函数。
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。