最优公交线路选择模型
- 格式:pdf
- 大小:327.73 KB
- 文档页数:27
公交运营优化方案一、前言公交是城市公共交通系统中重要的组成部分,对于缓解城市交通压力、提高出行效率、改善城市环境等方面都有着重要的作用。
然而,目前我国公交运营中依然存在着一些问题,例如车辆运行效率低、服务质量不高、运营成本高等。
因此,对公交运营进行优化,提高公交运营效率和服务质量,已成为当前的紧迫需求。
本文将从公交运营的各个环节着手,提出一系列的优化方案,包括线路规划、运营管理、车辆运营、服务质量等方面的优化措施,以期为提高公交运营效率和服务质量提供参考和指导。
二、线路规划优化方案1. 采取综合交通枢纽模式在进行线路规划时,应该采取综合交通枢纽模式,充分结合地铁、轨道交通、公交和出租车等多种交通方式,将不同交通方式有机结合起来,形成一个覆盖面广、换乘方便的综合交通网络,以满足市民不同出行需求。
同时,要注重将公交线路与地铁、轨道交通站点相衔接,提高换乘效率。
2. 合理设置线路长度和站点间距在进行线路规划时,应根据城市的人口密度、用地结构、交通需求等因素,合理设置公交线路的长度和站点间距,注重线路的连续性和服务性。
避免出现线路长度过长、站点间距过远,导致乘客出行不便的情况。
3. 实施动态调整线路方案随着城市的发展和人口分布的变化,公交线路的规划也需要不断调整和完善。
因此,应建立健全的线路调整机制,根据实际情况对线路进行动态调整,保证线路与城市发展的适应性和灵活性。
三、运营管理优化方案1. 加强公交运营信息化建设通过建设公交运营信息化系统,实现对公交车辆和线路的实时监控和管理,以提高公交运营的精准度和效率。
同时,可以利用大数据技术分析乘客出行数据,为线路规划和调整提供科学依据。
2. 推行公交优先政策在城市道路规划和建设中,应考虑到公交车辆的运行需求,优先保障公交车辆的通行权利。
通过设置公交专用道、提供公交优先信号等措施,减少公交车辆的行车阻碍,提高公交运营效率。
3. 完善公交站点设施优化公交站点的设置和布局,提高站点的空间利用率,合理规划站点位置和间距,为乘客提供舒适、便捷的候车环境。
TransCAD把GIS 和交通模型的功能组合成一个单独的平台,以提供其他软件无法与之匹敌的各种功能· TransCAD可用于任何交通模式,任何地理比例尺寸,和任何细节程度。
TransCAD的特点是易学易用,其主要技术特点是:菜单驱动、直观明了的用户界面一整套建模技术和方法全面的二次开发和脚本宏语言支持.NET构建于自主开发的强大的交通地理信息系统平台之上,同时支持几乎所有的其他地理信息系统容易从其他规划软件转换互联网查询和发布功能TransCAD是唯一的一个把GIS与需求模型及物流功能完全组合的软件包。
把GIS作为规划和物流软件包的一个组成部分是有充分理由的:首先,GIS使模型更为准确。
网络距离和出行时间是基于路网的实际形状和路口的正确表达。
此外,用网络你能定义复杂的道路属性,如卡车禁行处,路口延迟,单行道和施工区。
其次,整个建模过程更有效率。
数据准备更方便,数据库和可视化功能使错误在造成问题前就被发现。
如今,TransCAD已经广泛地被用于建立大规模的城市交通模型。
再者,GIS本身就是优势。
在TransCAD中,针对不同地理表面,不同的模型公式可以很容易地被推导并运用。
同样,TransCAD所具备的衡量地区便利性的功能也为用户所急需。
TransCAD提供了最多的交通流量预测方法这包括标准的四阶段模型及其变型,快速反应模型(QRM),离散预测模型和微观仿真(Step2模型)。
它不仅支持所有的最常用的模型方法,还结合了大量前沿研究人员提供的最新方法。
用户想在需求预测和交通规划中作的事情,几乎都不用自己编程,用TransCAD中预设的程序和方法便可方便地实现。
你已经作了很多项目,应该知道建模的难度,尤其是建立好的模型有更大的难度。
TransCAD之所以提供众多的模型,就是让更多的用户几乎都能从中找到他们需要的东西。
这不仅可以节省成本,而且适用于有时间、人员编制或技术力量限制的情况。
TransCAD不能说是“包罗万象”,但肯定是同类产品中提供模型和功能最多的一个软件。
第47卷第3期2021年3月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGYVol. 47 No.3Mar. 2021响应动态需求的灵活型公交路径优化调度模型孙继洋1,2,黄建玲3,陈艳艳1,魏攀一1,2,贾建林1,宋程程1收稿日期:2019-10-18基金项目:国家重点研发计划资助项目(2017YFC0803903,2016YFE0206800)作者简介:孙继洋(1980—),男,高级工程师,主要从事智能交通大数据方面研究,E-mail :cdyan@ bjut. edu. cn(1.北京工业大学北京市交通工程重点实验室,北京100124; 2.交通运输部公路科学研究院,北京100088;3.北京市交通信息中心,北京100161)摘要:为解决灵活公交乘客需求差异性大、实时变化性大的问题,提出一种考虑乘客动态需求的灵活公交路径优化调度模型.在已知乘客预约需求量、车辆载客容量、车队规模等条件下,根据乘客需求动态变化特征对接驳行程 时间进行实时迭代更新,将车辆的运营成本(车辆行驶时间)和乘客的时间成本(乘客上车前等待车辆的时间、实际到达时间与期望到达时间之间的差值)最小化作为目标,构建了考虑乘客动态需求的灵活型公交路径优化调度模 型,并采用基于引力模型的启发式算法进行求解.最后,通过实例分析验证了模型和算法的可行性.结果表明:对 随机产生的15个需求点的102个出行需求,全部服务完成所需车辆为17~21辆,平均每辆车的旅行时间为24. 59min,100组数据的求解时间均在25. 00 s 以内,计算耗时平均为12. 04 s.可见该优化模型能够在实时调整接驳规划时间的前提下,更大程度满足乘客动态需求,有效减小规划路径的误差,缩短行车距离和乘客出行时间,相比忽略接驳行程时间变化的灵活公交调度模型结果更优.关键词:交通工程;城市交通;路径优化;启发式算法;灵活型公交;动态需求中图分类号:U121 文献标志码:A 文章编号:0254 -0037(2021)03 -0269 - 11doi : 10.11936/bjutxb2019100011Flexible Bus Route Optimal Scheduling Model in Responseto Dynamic DemandSUN Jiyang 1,2 , HUANG Jianling 3, CHEN Yanyan 1 , WEI Panyi 1,2 , JIA Jianlin 1 , SONG Chengcheng 1(1. Beijing Key Laboratory of Traffic Engineering , Beijing University of Technology , Beijing 100124, China ;2. Research Institute of Highway , the Ministry of Transport , Beijing 100088, China ;3. Beijing Transportation Information Center , Beijing 100161, China )Abstract : To solve the problem that the demand of flexible bus passengers varies significantly and thedemand of flexible bus passengers varies significantly in real time , a flexible bus route optimization scheduling model considering the dynamic demand of passengers was proposed. Under the conditions ofknown passenger reservation demand , vehicle passenger capacity and the team known condition such as size , according to the dynamic changes of passenger demand for real-time iterative update shuttle traveltime , the operating costs of the vehicle ( vehicle ) and time cost for passengers before ( the passengers waiting time of the vehicle , the actual time of arrival and the difference in value between expected time of arrival) minimization as the target , was established considering the passenger dynamic demand type flexible bus route optimization scheduling model , and USES the heuristic algorithm based on gravitymodel. Finally , the feasibility of the model and algorithm was verified by an example. The analysis results show that for the 102 travel demands of 15 randomly generated demand points , the number ofvehicles needed to complete all the services is 17 - 21 , the average travel time of each vehicle is 24. 59270北京工业大学学报2021年minutes,the solution time of100sets of data is all within25.00seconds,and the average calculation time is12.04seconds.It can be seen that under the premise of real-time adjustment of connection planning time,this optimization model can satisfy the dynamic demand of passengers to a greater extent,effectively reduce the error of the planning path,shorten the driving distance and passenger travel time,and achieve better results than the flexible bus scheduling model that ignores the change of connection travel time.Key words:traffic engineering;urban traffic;route optimization;heuristic algorithms;flexible bus;dynamic demand城市公交线路优化调度是提高公交运行效率、降低乘客出行和公交运营成本的主要手段.一个好的公交调度系统能够根据乘客的出行需求,快速优化调整线路运营方案,提高线路服务率,减少运行时间,降低乘客出行时间成本[1-»传统公交路径优化方法主要是通过长期的经验观察或IC卡数据统计分析,对部分线路进行延长、缩短、增删、调整走向等优化,优先满足大客流站点的乘客需求,这类方法主要适用于固定线路的公交路径优化,线路调整周期较长[4-7].灵活型公交的出现,为线路的动态优化调整提供了可能[7-10],目前国内外学者均开展了相关研究.其中,Quadrifoglio等[11-12]通过对灵活公交系统关键参数的分析,建立了公交系统运行效率参数优化调整模型,并针对其前期建立的系统线路设计和调度问题,进行了仿真验证分析,对模型进行了参数修正.付晓等[13]利用超级网络同时模拟用户的活动与出行行为,并根据用户出行行为特征建立了公交路径选择模型.Koffman[14]提出了基于多目标需求的城市公交智能调度算法;Tsubouchi[15]提出了 利用最小生成树寻优公交路径最优算法;熊杰[16]通过对区域内潜在公交用户需求的分析,建立了接驳轨道交通的公交线路优化模型;Li等[17]、Chen 等[18]通过对乘客预期等待时间和线路上客概率的推导,建立了超路径的公交运输路径调整模型;潘述亮[19]重点考虑了长时预约对灵活公交线路调整的影响,并提出了优化调度方法;郭晓俊[20]重点考虑了短时预约对灵活公交线路调整的影响,并提出了优化调度方法.这些研究虽然都是根据乘客的预约需求建立的灵活型公交路径优化算法,但其前提条件均是乘客需提前发出预约或假设乘客需求已知,相对即时预约来说均属于“静态需求”.然而,在乘客出行过程中,往往会根据出行需要发出短时预约或即时预约,灵活型公交需要根据乘客的“动态需求”,计算因动态需求变化导致的车辆接驳行程时间变化,即时调整线路实现路径的动态优化.鉴于此,考虑到乘客需求的动态变化以及由于需求变化导致的车辆接驳行程时间变化,本文提出了一种基于乘客动态需求的灵活公交路径优化调度方法.在已知车辆载客容量、车队规模等条件下,根据乘客需求动态变化特征对接驳行程时间实时迭代更新,将车辆运营成本和乘客出行成本最小化作为主要目标,建立了考虑乘客动态需求的灵活型公交路径优化调度模型.1问题描述与建模1.1问题描述在传统的固定型接驳公交运营中,公交线路规划设计与车辆运营调度是2个独立的过程,一般在线路规划设计完成之后制定车辆运营调度方案,调度方案在相当长一段时间内不发生变化.这就造成了线路设计和车辆调度之间脱节,两者不能有效衔接的问题,且线路设计和车辆调度无法根据乘客需求进行及时调整•但高效的接驳公交系统,应能够根据乘客的实际需求及时调整运营线路,并根据线路和乘客需求实时动态调整车辆调度方案.灵活型公交是一种以需求为基础的交通系统,它能根据乘客发出的需求,以最短路线服务最多乘客为目标,动态调整运营线路,并在线路调整同时,融合分析沿线乘客需求数量、车辆载客容量等因素,实时调整车辆调度方案,最大程度地满足更多乘客需求,解决传统固定型接驳公交的乘客需求与线路规划、车辆调度脱节的问题.本文提出的响应动态需求的灵活公交路径优化调度模型,将乘客即时需求作为公交路径动态优化调整的依据之一,根据乘客出行需求点位、需求量和需求时间,对公交路径和行车方案进行实时优化和调度.为使得本文所建立的模型更合理、得当,本文综合考虑乘客需求、运营成本等各方面的因素,进行如下灵活型公交路径优化模型假设、参数选取和建模.1.2模型假设对灵活型公交路径优化模型的建立提出如下假设,其中1)、2)为动态假设,3)~6)为静态假设.第3期孙继洋,等:响应动态需求的灵活型公交路径优化调度模型2711)每个站点的乘客预约需求量动态变化.2)车辆站点之间的行程时间动态变化.3)每个站点的位置均已知.4)预约后,每个乘客拟到达目标站点的时间已知.5)乘客到站上车的服务时间为常数.6)接驳车辆的载客容量已知.1.3模型参数按照上述模型假设,对各模型变量进行定义,如表1所示.表1模型参数Table1Medol parameter变量定义及说明参数类型Z优化路径的总时间成本因变量H乘客需求站点集合常量D目标站点集合常量K接驳运营车辆集合常量R乘客需求集合常量d”乘客需求r的目标站点d决策变量T t目标站的第t个发车时刻决策变量N乘客需求总量决策变量P r乘客需求r的上车站点p决策变量T”乘客需求r的期望发车时刻决策变量C j站点i和j之间的旅行时间决策变量V接驳车队规模决策变量Q k接驳车辆k的载客容量决策变量M足够大的一个常数常量X kt t时刻时车辆k将需求r接驳至乘客期望的站点,X,”为1;否则为0决策变量如车辆k选择(i,j)路段作为途经路径时,匕*为1;否则为0决策变量a 车辆行驶至需求r所在公交站点的时间决策变量乘客需求r到达目标站的时间决策变量车辆行驶至需求s所在站点的时间决策变量决定车辆k的运行线路不出现闭环U ik 的变量.如果接驳车辆离开站点i,则-=0;如果接驳车辆到达站点则4=1决定车辆k的运行线路不出现闭环辅助变量U k的变量.如果接驳车辆离开站点j,则乞=0;如果接驳车辆到达站点j,则U k=1辅助变量1.4模型表述按照上述模型假设和变量设置情况,采用非线性规划形式对灵活型公交路径优化模型进行表述,即Z=min I移移移c£k+移a+i e H U D j e H U D A e K reR移移移(S-e”)](1)r e R k e K t式(1)为灵活型公交路径优化模型表述的目标方程,由3个部分之和组成,取其最小化值:1)所有车辆的行驶时间,以降低运营成本;2)每个乘客在需求点等候车辆抵达的时间之和,以减少乘客的总出行时间;3)每个乘客等待车辆的实际到达时间与期望到达时间的差值之和,以减少乘客的总出行时间.移移Y jk逸1,VieH(2)j e H U D keK移移Y jk臆V,VieH(3)j e H U D keK约束式(2)(3)表示在任意一个乘客需求点,保证车辆进行服务,且车辆数在1与V之间.移移如臆V,V j e D(4)i e H k e K约束式(4)表示参与服务的车辆总数不超过V辆.移忌-移乙逸0,VieH,keK(5)j e H U D p e H约束式(5)表示对任意一个需求点,任一参与服务的车辆均有到达和离开的过程.4-匕+IHI X Y j臆IHI-1,Vi',eHUD,keK(6)约束式(6)保证了系统规划路径的单向性,即不能产生往返回路.移移如逸1,VkeK(7)i e H j e D移移Y jk臆0,VkeK(8)i e H j e D约束式(7)(8)表示参与服务的任意一辆车必须将乘客运送至目标站点.移移X rkt臆Q k,VkeK(9)r e R t e T约束式(9)保证车辆不能超载运输.移移X rkt=1,VreR(10)k e K t e T约束式(10)表示乘客发出需求后,只能被一辆车服务,不能同时被多辆车服务.移X skm-(1-X rkt)M臆0,Vr,seR,meT/{t}VkeK,VteT (11)272北京工业大学学报2021年约束式(11)表示一辆接驳车辆在单程接驳运送中,只能服务于一个目标站点的一个发车时刻.移移移X kt=N(⑵r沂 R k沂K i沂T约束式(12)表示所有接驳车辆实际服务的需求数量与预约的需求量相等.a+-a+抵严臆必,坌『异沂R,V"K(13)-a r-%+丫”肿MWM,V r,swR,V kwK(14)约束式(13)(14)表示当同一接驳车辆为相邻2个站点提供接驳服务时,后一个站点接受服务的时间应等于前一个站点接受服务的时间与两站点间行程时间之和.a r+%一a s+Y p肿MWM,Vr e R,Vk e K,V/'eD(15)a s一a r一%+岭亦MWM,V r沂R,V k沂K,Vj沂D(16)约束式(15)(16)表示接驳车辆到达目标站点的时间等于为最后一个需求点提供服务的时间与需求点与目标站点之间的行程时间之和.e,臆移移X ki T i,VreR(17)约束式(17)表示接驳车辆应在 目标站点车辆发车之前抵达目标站点.2模型求解本文提出的面向多目标站的灵活性公交路径优化调度问题,是一类典型的非确定性多项式问题都能在多项式时间复杂度内归约到的问题(non-deterministic polynomial hard,NP-hard).在问题规模较大时计算量和复杂程度会急速增加.因此,为了应对复杂问题的快速高效计算问题,通常采用可同时保证计算速度和计算精度的启发式算法进行求解.当在一定区域范围内,多个点位同时发出出行需求时,可看作同时存在的多个引力点.受点位间距离影响,不同点位之间引力大小各有不同,可对应理解为车辆在2个需求点间接驳运送的时间成本各不相同.因此,为使车辆能够快速在需求最多、距离最小的点位间进行接驳服务,受四阶段出行分布预测的引力模型启发,本文提出一种基于引力模型的启发式算法.总体思路是:首先基于引力模型生成较优的初始解,再利用路线间和路线内的优化算法分别改进路线,从而得到最终路线.详细步骤介绍如下.2.1乘客出行预约与需求分配首先,将乘客发出出行预约和进行需求服务分配分为以下4个步骤:步骤1乘客按其出行需求,进行预约出行.每个乘客将其出发站、目标站、期望到达目标站的时间等信息传输到出行预约平台.考虑到乘客需求和接驳车辆站点之间的行程时间的动态变化特征,预约平台的乘客需求和接驳车辆站点之间的行程时间每5min进行一次更新.步骤2出行预约平台根据每个乘客的目标站和期望到达目标站的时间,按照实际到达时间不晚于乘客期望值的原则,对所有乘客进行聚类.步骤3根据2.2,2.3节中路径生成结果,结合接驳车辆到达时间、平均行驶速度、乘客需求点的位置、各需求点乘客数量等因素,初步估算车辆到达的时间.步骤4将初步估计的接驳车辆到达各需求点的时间,发送给对应需求点的乘客,乘客根据接驳车辆到达时间的合理性,选择是否确定乘车.2.2基于引力模型的生成初始车辆路径解基于引力模型的计算方法,以起始需求点为已知站点,根据引力模型的原理遍历所有剩余需求点,查找与已知点之间引力最大的点,并将最新搜索到的站点作为新的已知点,继续遍历剩余需求点确定下一个与已知点之间引力最大的点,按此步骤逐步迭代,直到所有需求点均被查找到,从而可以生成可行的初始车辆路径解.定义两站点间的引力T(18)式中:N,为站点,的上车人数;c.为站点,和站点j 之间的车辆行驶时间.F,.的值越大,说明这2个站点的乘客数越多且旅行花费越小,需要优先服务,应该将站点j设为站点,的下一个站点.在已知车辆载客限定辆Q时,按如下步骤生成初始路径的解:步骤1确定车辆出发站点.初始k=1,从有乘客上车需求的站点中,随机抽取一个作为车辆k 的出发点.步骤2判断是否还有同类乘客未服务.若有,则跳至步骤3;否则,跳至步骤5.步骤3搜索下一站点.在包含同类乘客的上车站点中,找出与当前站点之间吸引力最大的站点第3期孙继洋,等:响应动态需求的灵活型公交路径优化调度模型273X,尝试将站点X加入路径选择链,计算车辆在加入该需求点后车上总人数,以及加入该需求点X后直接行驶至目标站点所需的时长.步骤4判断加入站点X后,车辆路线是否合理.若当前车辆服务的乘客数量未超过车载容量Q k,且到达目标站点的时间未超过乘客需求的时间,则以站点X为新的起点,跳至步骤3;否则,跳至步骤5.步骤5判断是否所有类别的乘客均被安排服务.若还有乘客未被安排服务,则调度下一辆车, k=k+1,跳至步骤1;否则,输出当前全部初始解,结束基于引力模型的初始解计算步骤.2.3基于站点均衡与交换的车辆路径优化介绍路线间和路线内的路径优化算法,使得路径质量和乘客服务水平进一步提升.需要注意的是,算法的步骤1和步骤2均属于车辆路径间的优化,在步骤1和步骤2的路径优化算法执行过程中,可能会搜索出多组可行的路线解.若在搜索时仅保存当前最优的一组解,再执行步骤3,可能搜索到的最终路线结果并不是最优.所以,本算法会保存步骤1和步骤2寻找到的所有可行解组,并对每一组可行解执行步骤3,综合评价所有的路线解组的目标函数,以找到最终的最优解.步骤1首先对服务于目标站点和到达目标站点时间需求相同的车辆之间进行站点数量均衡.检查各接驳车辆是否存在服务需求点过多或过少的现象.如果有,则在确保车辆不超载的条件下,将需经过站点数量较多的车辆路线中的部分站点,转移给经过站点数量较少的车辆路线,并安排合理的站点顺序.步骤2尝试对服务于目标站点和到达目标站点时间需求相同的车辆之间进行路径优化.主要应用两路线间,交换两站点的方式,搜索更优的路线.在交换优化的过程中,保证车辆不超载和按时到达目标站点的需求.步骤3对每一辆车的路线进行内部优化.主要在同一车辆路线内,尝试交换两站点的顺序,评估目标函数值是否减少.若减少,则交换站点顺序;否则舍弃本次交换.在尝试一定次数之后,结束计算流程,生成最终路线结果.步骤4考虑到乘客需求的动态变化特征和站点之间旅行时间的变化特征,每5min进行一次各站点需求的采集和重新计算,重复以上步骤1至步骤3.经过如上4个步骤,可在保证乘客按照预期时间到达目标站点的前提下,使得路径调度模型的目标函数最优,全部服务时间缩短,每一辆车的路线更加合理,车辆的运行成本降低,乘客的等待时间减少,提升服务质量和效率.3案例分析3.1案例假设北京市回龙观地区是通勤人群居住密集区,高峰时段出行需求量大,不同工作性质和通勤距离的出行者出行时间差异较大,因此适合作为需求响应型灵活公交模型验算的案例.为了便于模型分析,本文对回龙观区域公交网络进行了抽象化提取,保留网络拓扑结构.根据实际情况下乘客的出行需求,假设一个乘客出行案例,采用上述模型对案例进行求解,验证本文所提模型的可用性.小型网络常变量的输入参数如表2所示,初始时刻每个站点的乘客需求如表3所示,初始时刻站与站之间的旅行耗时矩阵如表4所示,其中H为需求点,D为目标站.表2案例中的常变量Table2Constant variables in the case变量名称变量值需求点数量/个15目标站点数量/个3车辆额定载客量/人7车队规模/辆18期望到达站点时间/min30/40/50乘客到站上车服务时间/min0.53.2案例计算根据本文提出的计算模型和方法,对上述假设案例进行计算,获取各接驳车辆的行驶路线、接驳乘客的数量、每条路线对应的目标函数如表5所示.之后,随着乘客需求和站点之间旅行时间的动态变化,上述路径规划结果无法满足当前乘客需求和真实状况,需进行新的路径规划.此时,预约平台将汇总的第一个5min后新的乘客需求和接驳车辆站点之间的行程时间并进行更新,如表6所示,再次利用2.2节中所述的方法进行求解.之后,根据乘客需求和站点之间旅行时间的动态变化信息,预约平台汇总第2个5min后新的乘客需求,并更新接驳车辆站点之间的行程时间,如274北京工业大学学报2021年表3初始时刻各站点乘客需求(初始5min)Table3Quantity demanded at the demand point(the first5minutes)乘客出发站目标站期望到站乘客出发站目标站期望到站乘客出发站目标站期望到站编号时间/m in编号时间/m in编号时间/m in 111303112306113302115032125062135031150332230631350421303422506423305215035323065235063130363240663330731403732506733408413038423068433095130395230695330105140405240705340115150415250715350125150426230725350136130436240736330146140446250746340157130457230757330167150467250767350177150478230778330188130488240788340198140498250798350209140509240809340211014051102408110340221015052102508210350231114053112408311340241115054122308412330251213055122508512350261215056122508612350271313057132308713330281414058142408814340291414059152408915340301514060152409015340表7所示,再次利用2.2节中所述的方法进行求解.下,车辆行驶最终路径结果如图1所示,此时,15个以此类推,预约平台继续汇总之后每个5min的乘需求站点发出的102个预约需求全部得以满足(为客需求和更新接驳车辆站点之间的行程时间,并利便于识别,分别以D1、。
最佳公交线路的实时查询模型及算法摘要本文针对查询者的不同需求,为公交查询系统提供了最佳线路查询的模型与算法。
查询者的需求从换乘次数少、时间少和费用少三方面进行考虑。
故查询算法从换乘次数(从实际出发,换乘不超过两次)入手:对直通的任意两站点,可设计出较简单的最佳直通线路查询算法(直通算法)。
故对需要查询的两站点,算法先由线路、站点的原始数据判断此两站点是否直通,若是,便可通过直通算法进行查询。
不论是否存在直通线路,算法都考虑对换乘的情形进行查询。
考虑到城市公交系统中的站点基数较大,可行的换乘方案数也将较大,故查询算法根据所有可行的一、二换乘点必与起、止站点直通的原则,对可能成为给定两站点的换乘点的站点进行了筛选,得到相关站点集,较大的缩小了查询的范围。
得到相关站点集后,建立了反映站点集中任意两站点直通关系的连通矩阵,并通过矩阵乘法,较快地得出了所有可行的一次、二次换乘点。
考虑到所有可行的换乘点可能较多,特别是二次换乘的情形,故查询算法采用分支定界法以较高效率对最佳方案进行了最后的筛选。
在考虑地铁的公交系统时,本文从实际出发,对模型进行了一定的修改。
同时,本文考虑了引入站点之间的步行时间的情况,提出了线路选择的模型。
由于筛选算法、矩阵乘法和分支定界法的高效性,整个查询算法具有很高的效率,并能在换乘次数不超过两次的条件下,求得全局最优解,得出满足查询者不同需求的所有最佳方案。
并且,从系统设计的角度出发,整个系统需要预存的数据量很小,系统的实用性很强。
对给定的六对站点,采用本算法进行查询,在1.7GHZ的CPU环境下,平均运行时间为:1.27秒,最长运行时间为7.43秒,验证了算法的实时性。
同时,对每一对站点,得到了满足不同查询需求的所有最佳线路方案,验证了模型与算法的精确性。
关键词:最佳线路、实时、筛选算法、分支定界一、问题重述第29届奥运会将于今年8月在北京举行,届时有大量观众到现场观看比赛,其中大部分人将乘坐公共交通工具(包括公汽、地铁等)出行。
公交线路选乘优化模型摘要本文针对城市公交网络的特点,以最小换乘次数为第一目标,最小途经站数为第二目标,并综合考虑乘车费用、交通便利程度等其他因素。
对问题一建立了动态递归搜索模型,提出了广度优先算法,依此确定公交线路和换乘地点共同组成的最优路径,可使出行者快捷方便地获取公交线路信息及乘换地点,包括所经每一站点的所有公交线路;所得结果为:S3359→S1828换乘1次,经45个公汽站点,所花费的时间为101分钟; S1557→S0481,换乘2次,出行耗时106分钟,乘车费用为3元,共经32个公汽站点;S0971→S0485换乘1次,出行耗时128分钟,乘车费用为3元,共经由41个公汽站点;S0008→S0073换乘1次,最短耗时83分钟,乘车费用为2元,共经过26个公汽站点;S0148→S0485换乘2次,出行时间为106分钟,乘车花费为3元,共经由32个公汽站点;S0087→S3676换乘1次,出行时间为65分钟,路费为2元,共经过20个公汽站点。
对问题二建立了分类枚举筛选模型,分析了在最小换乘次数下的三类通行模式,最后求解出符合大多数人出行习惯的最优乘车路线;所得结果为:S3359→S1828换乘1次,经45个公汽站点,所花费的时间为101分钟; S1557→S0481换乘2次,出行耗时为106分钟,乘车费用为3元,共经32个公汽站点;S0971→S0485换乘1次,出行耗时为128分钟,乘车费用为3元,共经由41个公汽站点;S0008→S0073换乘1次最短耗时为83分钟,乘车费用为2元,共经过26个公汽站点;S0148→S0485换乘2次,出行时间106分钟,乘车花费为3元,共经由32个公汽站点;S0087→S3676地铁直达,耗时33分钟,费用为3元,经过的地铁站数为10站。
对问题三建立了拟蚁群搜索模型及蚁群内嵌局部搜索算法,此算法综合考虑了影响公交选乘的诸多因素,如出行者的人文需要等,有效地解决了任意两站点间的最优路径的选择问题,最后结合实际情况,对模型进一步优化,提出了人工神经网络弹性模型,为原模型提供了一个改进方向。