《一元一次不等式和一元一次不等式组》综合测试题(三)
- 格式:doc
- 大小:204.50 KB
- 文档页数:3
冀教版七年级数学下册第十章《一元一次不等式和一元一次不等式组》单元测试卷含答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b ,若a >b ,则下列结论正确的是( )A.a -5<b -5B.2+a <2+bC.3a <3bD.3a >3b2.下列列出的不等关系中,正确的是( )A.m 与4的差是负数,可表示为m −4<0B.x 不大于3可表示为x <3C.a 是负数可表示为a >0D.x 与2的和是非负数可表示为x +2>03.如果a >b ,下列各式中不正确的是( )A.a −3>b −3B.22b a −<− C.−2a <−2b D.−2+a <−2+b4.若m >n ,则下列不等式中成立的是( )A.m +a <n +bB.ma <nbC.ma 2>na 2D.a −m <a −n5.不等式22123x x +−≥的解集为( ) A.x ≥8B.x ≤8C.x <8D.x ≤ 6.不等式组35,215x x +⎧⎨−⎩≥<的解集在数轴上表示为( ) 7.若4与某数的7倍的和不小于6与该数的5倍的差,则该数的取值范围是( )A.x ≥ B .x ≤ C.x ≥− D.x ≤− 8.不等式17-3x >2的正整数解的个数是( )A.2B.3C.4D.59.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若+410x ⎡⎤⎢⎥⎣⎦=5,则x 的取值可以是( ) A.40 B.45 C.51 D.5610.已知不等式组⎪⎩⎪⎨⎧≥≥−ax x ,1212的解集是x ≥2,则( )A.a <2B.a =2C.a >2D.a ≤28716161616二、填空题(每小题3分,共24分)11.已知a >b ,用“>”号或“<”号连接:a +3________b +3,b −a _________0.12.已知a <b <0,把-a ,b ,0用“>”号连接成____________________.13.若a >b ,且c 为有理数,则ac 2______bc 2.14.若a <b ,那么−2a +9_____−2b +9(填“>”“<”或“=”).15.若不等式组841,x x x m +<−⎧⎨>⎩的解集是x >3,则m 的取值范围是 . 16.不等式组⎪⎩⎪⎨⎧≥−<−43121x x ,的解集是_________________.17.学校举行百科知识竞赛,共有20道题,规定每答对一题记10分,答错或放弃记−4 分.九年级一班代表队的得分目标为不低于88分,则这个队至少要答对_____道题才能达到目标要求.18.某班男、女同学分别参加植树活动,要求男、女同学各植8行树,男同学植的树比女同学植的树多,如果每行都比预定的多植一棵树,那么男、女同学植树的数目都超过100棵;如果每行都比预定的少植一棵树,那么男、女同学植树的数目都达不到100棵,这样原来预定男同学植树______棵,女同学植树______棵.三、解答题(共46分)19.(6分)求不等式03.002.003.0255.014.0x x x −≤−−−的非负整数解.20. (6分)若关于x 的方程2x −3m =2m −4x +4的解不小于3187m −−,求m 的最小值.21. (6分)若不等式组⎩⎨⎧>−+<+−05302b a x b a x ,的解集为1<x <6,求a 、b 的值.22. (6分)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求住宿生有多少人,安排住宿的房间有多少间.23.(8分)(2013·山东临沂中考)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A 、B 两种型号的学习用品共1 000件,已知A 型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26 000元,则购买A 、B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28 000元,则最多购买B 型学习用品多少件?24.(8分)(2013·山东东营中考)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.25.(8分)某服装销售店到生产厂家选购A 、B 两种品牌的服装,若购进A 品牌服装3套,B 品牌服装4套,共需600元;若购进A 品牌服装2套,B 品牌服装3套,共需425元.(1)求A 、B 两种品牌的服装每套进价分别为多少元?(2)若A 品牌服装每套售价为130元,B 品牌服装每套售价为100元,根据市场的需求,现决定购进B 品牌服装数量比A 品牌服装数量的2倍还多3套.如果购进B 品牌服装数量不多于39套,这样服装全部售出后,就能使获利总额不少于1 355元,问共有几种进货方案?如何进货?(注:利润=售价-进价)参考答案:1.A 解析:不等式的解集为3>x .故选A.2.A 解析:A 正确; x 不大于3可表示为x ≤3,故B 错误;a 是负数可表示为a <0,故C 错误;x 与2的和是非负数可表示为x +2≥0,故D 错误.3.D 解析:由不等式的基本性质1,得a −3>b −3,故A 正确;由不等式的基本性质3,得22b a −<−,故B 正确;由不等式的基本性质3,得−2a <−2b ,故C 正确;由不等式的基本性质1,得−2+a >−2+b ,故D 不正确.4.D 解析:A.不等式两边加的数不同,错误;B.不等式两边乘的数不同,错误;C.当a =0时,ma 2=na 2,故C 错误;D.由不等式的基本性质1和3知,D 正确.5.B 解析:不等式31222−≥+x x 两边同乘6,得3(2+x )≥2(2x −1),即6+3x ≥ 4x −2,所以x ≤8.6. C 解析:在数轴上表示不等式的解集时,大于向右画,小于向左画,有等号的用实心圆点,无等号的用空心圆圈.解不等式x +3≥5得x ≥2,在数轴上表示为实心圆点,方向向右;解不等式2x -1<5得x <3,在数轴上表示为空心圆圈,方向向左.故选C.7.A 解析:设该数为x ,由题意得4+7x ≥6−5x ,解得x ≥,故选A. 8.C 解析:解不等式17-3x >2,得x <5,所以不等式17-3x >2的正整数解为1,2,3,4,共4个.9.C 解析:∵ +410x ⎡⎤⎢⎥⎣⎦=5,∴ 5≤+410x <6,∴ 50≤x +4<60,即46≤x <56,只有C 项符合题意. 10.B 解析:由.232121212≥≥−≥−x x x ,所以,得又由不等式组⎪⎩⎪⎨⎧≥≥−ax x ,1212的解集是x ≥2,知a =2.11.> < 解析:由不等式的基本性质1,得a +3>b +3,0=a −a >b −a ,即b −a <0.12.−a >0>b 解析:因为a <b <0,所以−a >0,所以−a >0>b .13.≥ 解析:因为任何数的平方一定大于或等于0,所以c 2≥0.所以当c 2>0时,ac 2>bc 2 ;当c 2=0时,ac 2=bc 2.所以若a >b ,则ac 2≥bc 2.14.> 解析:因为a <b ,所以−2a >−2b ,所以−2a +9>−2b +9.15. m ≤3 解析:解不等式组可得结果3,,x x m >⎧⎨>⎩因为不等式组的解集是x >3,所以结合数轴,根据“同大取大”原则,不难看出m 的取值范围为m ≤3.16. −2<x ≤−1 解析:由121<−x ,得2−>x ;.143−≤≥−x x ,得由所以 −2<x ≤−1.17.12 解析:设九年级一班代表队至少要答对x 道题才能达到目标要求.由题意得10x −4(20−x )≥88,10x −80+4x ≥88,14x ≥168,得x ≥12.所以这个队至少要答对12道题才能达到目标要求.18.104 96 解析:设原来预定每行植x 棵树. 由题意,得⎩⎨⎧<−>+,,100)1(8100)1(8x x 解得11.5<x <13.5. 因为x 为整数,所以x 为12,13.因为男同学植的树比女同学植的树多,所以男同学每行植13棵树,女同学每行植12棵树.所以原来预定男同学植13×8=104(棵)树,女同学植12×8=96(棵)树.19.解:原不等式可化为.323255104x x x −≤−−− 去分母,得6(4x -10)-15(5-x)≤10(3-2x).去括号,得24x -60-75+15x ≤30-20x .移项,得24x +15x +20x ≤30+60+75.合并同类项,得59x ≤165.16把系数化为1,得x ≤59165. 所以原不等式的非负整数解是0,1,2. 20.解:关于x 的方程2x −3m =2m −4x +4的解为645+=m x . 根据题意,得3187645m m −−≥+. 去分母,得4(5m +4)≥21−8(1−m ).去括号,得20m +16≥21−8+8m .移项,合并同类项,得12m ≥−3.系数化为1,得41−≥m . 所以当41−≥m 时,原方程的解不小于3187m −−.所以m 的最小值为41−. 21.解:原不等式组可化为⎩⎨⎧+−>−<.532b a x b a x ,因为它的解为1<x <6,所以⎩⎨⎧=+−=−,,15362b a b a 解得⎪⎪⎩⎪⎪⎨⎧==.720731b a , 22.解:设安排住宿的房间有x 间,则学生有(4x +20)人,根据题意,得{4x +20−8(x −1)≥1,4x +20−8(x −1)≤7,解得5.25≤x ≤6.75. 又因为x 只能取正整数,所以x =6.当x =6时,4x +20=44(人).答:住宿生有44人,安排住宿的房间有6间.23.分析:(1)根据“购买A 型学习用品的件数+购买B 型学习用品的件数=1 000”和“购买A 型学习用品的费用+购买B 型学习用品的费用=26 000元”列方程或列方程组求解;(2)利用“购买A 型学习用品的费用+购买B 型学习用品的费用≤28 000元”列不等式进行 解答.解:(1)设购买A 型学习用品x 件,则购买B 型学习用品(1 000-x )件.根据题意,得20x +30(1 000-x )=26 000.解方程,得x =400,则1 000-x =1 000-400=600.答:购买A 型学习用品400件,购买B 型学习用品600件.(2)设购买B 型学习用品x 件,则购买A 型学习用品(1 000-x )件.根据题意,得20(1 000-x )+30x ≤28 000.解不等式,得x ≤800.答:最多购买B 型学习用品800件.点拨:(1)第一问也可列二元一次方程组进行求解;(2)第二问注意抓住关键词语列不等式,如“不超过”应为“≤”.24.分析:(1)设电脑、电子白板的价格分别为x 万元、y 万元,根据等量关系:1台电脑的费用+2台电子白板的费用=3.5万元,2台电脑的费用+1台电子白板的费用=2.5万元,列方程组即可.(2)设购进电脑a 台,则购进电子白板(30-a )台,然后根据题目中的不等关系列不等式组解答.解:(1)设每台电脑x 万元,每台电子白板y 万元.根据题意,得2=3.5,2+=.5,x y x y +⎧⎨⎩2解得=0.5,=.5.x y ⎧⎨⎩1 答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a 台,则购进电子白板(30-a )台,则0.5+1.5(30-)28,0.5+.5(30-),a a a a ⎧⎨⎩≥1≤30 解得15≤a ≤17,即a =15,16,17.故共有三种方案:方案一:购进电脑15台,电子白板15台,总费用为0.5×15+1.5×15=30(万元); 方案二:购进电脑16台,电子白板14台,总费用为0.5×16+1.5×14=29(万元); 方案三:购进电脑17台,电子白板13台,总费用为0.5×17+1.5×13=28(万元). 所以方案三费用最低.点拨:(1)列方程组或不等式组解应用题的关键是找出题目中存在的等量关系或不等关系.(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解.25.解:(1)设A 品牌的服装每套进价为x 元,B 品牌的服装每套进价为y 元.依题意,得⎩⎨⎧=+=+,,4253260043y x y x 解得⎩⎨⎧==.75100y x , 答:A 品牌的服装每套进价为100元,B 品牌的服装每套进价为75元.(2)设购进A 品牌服装m 套.依题意,得⎩⎨⎧≥++≤+,,1355)32(25303932m m m 解得16≤m ≤18. 因为m 取整数,所以m 可取16、17、18,即共有3种进货方案.具体如下:①A 品牌服装16套,B 品牌服装35套;②A 品牌服装17套,B 品牌服装37套;③A 品牌服装18套,B 品牌服装39套.。
一元一次不等式(组)求字母系数综合练习1.若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;32.不等式ax>b的解集是x<.则a的取值范围是.3.若a≠0.则不等式ax>b的解集是.4.若关于x的不等式组的解集为﹣1<x<1.那么代数式ab 的值是.5.若a>b>0.关于x的不等式组的解集是.6.不等式组的解集为x>2.则a的取值范围是.7.若不等式组的解集是空集.则a的取值范围是.8.不等式组的解集是0<x<2.则a+b的值等于.9.如果不等式组的解集是0≤x<1.那么a+b的值为.10.如果不等式组的解集是0≤x≤1.那么a+b的值为.11.若不等式组的解集是0≤x<1.则代数式a﹣b的值是.12.若不等式组的解集是﹣1<x<1.则2a+b的值为.13.如果不等式组的解集是0≤x≤1.那么a+b的值为.14.如果不等式组的解集是0≤x<1.那么a+b的值为.15.已知a>b>0.不等式组的解集是.16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.17.已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.19.若不等式组:的解集是5<x<22.求a.b的值.20.如果不等式组的解集是1<x<2.求:a+b的值21.若不等式组的解集是﹣1<x<1.求(a+b)2012的值.22.若不等式组的解集是0≤x<1.求a、b的值.23.已知不等式组的解集为﹣1<x<1.求a、b的值.24.若不等式组的解集为1<x<3.求a+b的值.25.若不等式组的解集为1<x<2.求a.b的值.26.若不等式组的解集为1<x<6.求a.b的值.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.28.已知不等式组的解集是3<x<a+2.求a的取值范围.29.如果不等式组的解集是x>4.求a的取值范围.一元一次不等式(组)求字母系数综合练习一.选择题(共1小题)1.(2015•伊春模拟)若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;3解答:解:∵不等式组的解集是2<x<3.∴a=2.b=3.故选:D.点评:本题考查了一元一次不等式组的解集.解题的关键是:正确理解不等式组的解集的表示.2.(2009春•天长市期末)不等式ax>b的解集是x<.则a的取值范围是a<0 .考点:不等式的解集.专题:计算题.分析:不等式的两边同时除以一个数.不等号的方向改变.则这个数为负数.解答:解:∵ax>b的解集是x<.方程两边除以a时不等号的方向发生了变化.∴a<0.故答案为a<0.点评:本题考查了不等式的性质:不等式两边同乘以(或除以)同一个负数.不等号的方向改变.3.若a≠0.则不等式ax>b的解集是x>或x<.考点:解一元一次不等式.专题:计算题.分析:不等式ax>b的解集即是求x的取值范围.因为x等于0时不等式ax>b不成立.所以x的解集是x>或x<.解答:解:∵a≠0.∴当a>0时.不等式ax>b的解集是:x>;当a<0时.不等式ax>b的解集是:x<;所以.不等式的解为x>或x<.点评:解不等式依据不等式的基本性质.在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.4.(2009春•北京期中)若关于x的不等式组的解集为﹣1<x<1.那么代数式ab的值是15 .考点:解一元一次不等式组.专题:计算题.分析:先用字母a、b表示出不等式组的解集为<x<.然后再根据已知解集是﹣1<x<1.对应得到相等关系=﹣1.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:解不等式组的可得解集为<x<.因为不等式组的解集为﹣1<x<1.所以=﹣1.=1.解得a=5.b=3代入ab=3×5=15.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值.同样也是利用口诀求解.注意:当符号方向不同.数字相同时(如:x>a.x<a).没有交集也是无解但是要注意当两数相等时.在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).5.若a>b>0.关于x的不等式组的解集是<x<.考点:不等式的解集.分析:先解答组成不等式组的两个不等式的解集.然后再取两个不等式的解集的交集.即为不等式组的解集.解答:解:①∵a>b>0.∴由不等式ax>b的两边同时除以a.得x>;②∵a>b>0.∴由不等式bx<a的两边同时除以b.得x<;综合①②.故原不等式组的解集为:<x<.故答案是:<x<.点评:解答本题的难点是:不等式的两边同时除以小于0的数时.不等号的方向要发生改变.6.(2009春•榕江县校级期末)不等式组的解集为x>2.则a的取值范围是a≤2.考点:解一元一次不等式组.专题:计算题.分析:求解规律是:大大取较大.小小取较小.大小小大中间找.大大小小无解.解答:解:因为不等式组的解集为x>2.所以a≤2.点评:本题考查了不等式组解集表示.注意.这里的a可以等于2的.7.(2012春•城区校级期末)若不等式组的解集是空集.则a的取值范围是a≤1.考点:不等式的解集.分析:根据不等式组解集是空集.可得出a的取值范围.解答:解:∵不等式组解集是空集.∴a≤1.故答案为:≤1.点评:本题考查了不等式的解集.注意掌握“大大取大.小小取小.大小中间找.大大小小找不到”.8.不等式组的解集是0<x<2.则a+b的值等于 1 .考点:解一元一次不等式组.专题:计算题.分析:先求得不等式组中两个不等式的解集.由已知条件求出a.b的值即可.解答:解:解第一个不等式得.x<.解第二个不等式得.x>4﹣2a.∵不等式组的解集是0<x<2.∴4﹣2a=0.=2.解得a=2.b=﹣1.∴a+b=1故答案为1.点评:本题考查了一元一次不等式组的解法.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).9.(2009•烟台)如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题;压轴题.分析:先用含有a、b的代数式把每个不等式的解集表示出来.然后根据已告知的解集.进行比对.得到两个方程.解方程求出a、b.解答:解:由得:x≥4﹣2a由2x﹣b<3得:故原不等式组的解集为:4﹣2a≤又因为0≤x<1所以有:4﹣2a=0.解得:a=2.b=﹣1于是a+b=1.故答案为:1.点评:本题既考查不等式的解法.又考查学生如何逆用不等式组的解集构造关于a、b的方程.从而求得a、b.10.如果不等式组的解集是0≤x≤1.那么a+b的值为﹣3 .考点:解一元一次不等式组.专题:计算题.分析:由题意分别解出不等式组中的两个不等式.由题意不等式的解集为0≤x≤1.再根据求不等式组解集的口诀:大小小大中间找.用a.b表示出不等式的解集.再由不等式解集是0≤x≤1.代入求出a.b的值.解答:解:由a﹣得.2a﹣x≤﹣4.∴x≥2a+4.由2x﹣b≤3得.2x≤b+3.∴x≤.∵不等式组的解集是0≤x≤1.∴2a+4=0..解得a=﹣2.b=﹣1.∴a+b=﹣3.点评:主要考查了一元一次不等式组解集的求法.将不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解)逆用.已知不等式解集反过来求a.b的值.11.(2011•成华区二模)若不等式组的解集是0≤x<1.则代数式a﹣b的值是 3 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集.再根据已知解集与求出的解集是同一个解集.列式求出a、b的值.然后代入代数式进行计算即可得解.解答:解:.解不等式①得.x≥4﹣2a.解不等式②得.a<+.∴不等式组的解集为4﹣2a≤x<+.∵不等式组的解集是0≤x<1.∴4﹣2a=0.+=1.解得a=2.b=﹣1.a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.点评:本题主要考查了一元一次不等式组解集的求法.根据所求不等式组的解集与已知解集是同一个解集列出关于a、b的等式是解题的关键.12.(2012春•新罗区校级月考)若不等式组的解集是﹣1<x<1.则2a+b 的值为0 .考点:解一元一次不等式组.分析:求出不等式组的解集.根据已知得出3+2b=﹣1.=1.求出a b的值代入即可.解答:解:∵解不等式①得:x<.解不等式②得:x>3+2b.∴不等式组的解集为:3+2b<x<.∵不等式组的解集是﹣1<x<1.∴3+2b=﹣1.=1.∴b=﹣2.a=1.∴2a+b=2×1﹣2=0.故答案为:0.点评:本题考查了一元一次不等式组.解一元一次方程的应用.关键是能求出3+2b=﹣1.=1.13.(2014春•金坛市校级月考)如果不等式组的解集是0≤x≤1.那么a+b 的值为 1 .考点:解一元一次不等式组.分析:先用字母a、b表示出不等式组的解集为4﹣2a≤x<.然后再根据已知解集是0≤x≤1.对应得到相等关系4﹣2a=0.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:∵不等式组的解集为4﹣2a≤x<.是0≤x≤1.∴4﹣2a=0.=1.解得:a=2.b=﹣1.∴a+b=1.故答案为:1.点评:本题主要考查了一元一次不等式组解集的求法.其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).14.如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题.分析:先分别解两个不等式得到x≥4﹣2a和x<.再利用不等式组的解集是0≤x<1得到4﹣2a=0.=1.解方程求出a和b的值.然后计算a+b.解答:解:.解①得x≥4﹣2a.解②得x<.而不等式组的解集是0≤x<1.所以4﹣2a=0.=1.解得a=2.b=﹣1.所以a+b=2﹣1=1.故答案为1.点评:本题考查了解一元一次不等式组:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.已知a>b>0.不等式组的解集是﹣a<x<﹣b .考点:不等式的解集.专题:计算题.分析:由原题可知﹣a<﹣b<0.根据“小大大小中间找”原则求不等式组的解即可.解答:解:∵a>b>0.∴﹣a<﹣b<0.不等式组的解集是﹣a<x<﹣b.点评:求不等式的解集须遵循以下原则:同大取较大.同小取较小.小大大小中间找.大大小小解不了.三.解答题(共14小题)16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.考点:不等式的性质.分析:根据不等式的性质3.可得答案.解答:解:由不等式(a﹣2)x>b的解集是x<.得a﹣2<0.解得a<2.点评:本题考查了不等式的性质.不等式的两边都乘以或除以同一个负数.不等号的方向改变.17.(2014•硚口区一模)已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:先根据一次函数图象上点的坐标特征得到6+b=7.解得b=1.然后解不等式3x+1≤0即可.解答:解:∵一次函数y=3x+b图象过点A(2.7).∴6+b=7.解得b=1.∴一次函数解析式为y=3x+1.解不等式3x+1≤0得x≤﹣.即不等式kx+2≤0的解集为x≤﹣.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看.就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.考点:解一元一次不等式组.分析:先把a当作已知条件表示出不等式组的解集.再与已知解集相比较即可得出a的值.解答:解:.由①得.x≥.由②得.x>2.∵不等式组的解集是x>2.∴≤2.解得a≤2.∵a是自然数.∴a=0或a=1或a=2.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.若不等式组:的解集是5<x<22.求a.b的值.考点:解一元一次不等式组.专题:计算题.分析:先用字母a.b表示出不等式组的解集(6b﹣5a)<x<(3a+7b).然后再根据已知解集是5<x<22.对应得到相等关系联立成方程组.求出a.b的值.解答:解:原不等式组可化为依题意得(6b﹣5a)<x<(3a+7b).由题意知:5<x<22.∴解得.点评:主要考查了一元一次不等式组的解定义.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母a.b的值.再代入所求代数式中即可求解.20.(2014秋•万州区校级期末)如果不等式组的解集是1<x<2.求:a+b 的值考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集是1<x<2.可以求出a、b的值.解答:解:(3分)∵1<x<2∴(4分)∴(5分)∴=(6分)点评:本题是反向考查不等式组的解集.也就是在已知不等式组解集的情况下确定不等式中字母的取值范围.21.(2012春•启东市校级期末)若不等式组的解集是﹣1<x<1.求(a+b)2012的值.考点:解一元一次不等式组.分析:分别解出每个不等式的解集.得到不等式组的解集.再根据不等式组解集的唯一性求出a、b的值.从而得到(a+b)2012的值.解答:解:.由①得.x>a+2;由②得.x<;不等式的解集为a+2<x<.由于不等式解集是﹣1<x<1.可见a+2=﹣1.=1.解得.a=﹣3;b=2.则(a+b)2012=(﹣3+2)2012=1.点评:本题考查了一元一次不等式组的解集.知道不等式组的唯一性是解题的关键.22.(2012春•丰县校级月考)若不等式组的解集是0≤x<1.求a、b的值.考点:不等式的解集.专题:计算题.分析:将a与b看做已知数.表示出不等式组的解集.根据已知解集即可求出a与b的值.解答:解:.由①得:x≥4﹣2a.由②得:x<(b+3).则不等式组的解集为4﹣2a≤x<(b+3).∴4﹣2a=0.(b+3)=1.解得:a=2.b=﹣1.点评:此题考查了不等式的解集.熟练掌握不等式组取解集的方法是解本题的关键.23.已知不等式组的解集为﹣1<x<1.求a、b的值.考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集为﹣1<x<1.可以求出a、b的值.解答:解:由得.∵﹣1<x<1.∴=1.3+2b=﹣1.解得.a=1.b=﹣2.点评:本题考查了解一元一次不等式组.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母m.n的值.再代入所求代数式中即可求解.24.若不等式组的解集为1<x<3.求a+b的值.考点:解一元一次不等式组.分析:先求出每个不等式的解集.再求出不等式组的解集.即可得出关于a、b的方程.求出即可.解答:解:∵解不等式①得:x>a+6.解不等式②得:x<b﹣2.∴不等式组的解集是a+6<x<b﹣2.∵不等式组的解集为1<x<3.∴a+6=1.b﹣2=3.解得:a=﹣5.b=5.∴a+b=0.点评:本题考查了解一元一次不等式组.一元一次方程的应用.解此题的关键是得出关于a、b的方程.25.(2014春•颍上县校级月考)若不等式组的解集为1<x<2.求a.b的值.考点:解一元一次不等式组.分析:根据已知不等式组的解集得出方程组.求出方程组的解即可.解答:解:∵不等式组的解集为1<x<2.∴a+b=2.a﹣b=1.即.解方程组得:a=1.5.b=0.5.点评:本题考查了解一元一次不等式组合解二元一次方程组的应用.解此题的关键是能根据题意得出关于a、b的方程组.26.若不等式组的解集为1<x<6.求a.b的值.考点:解一元一次不等式组.分析:先把a、b当作已知把x的取值范围用a、b表示出来.再与已知解集相比较得到关于a、b的二元一次方程组.再用加减消元法或代入消元法求出a、b的值.解答:解:原不等式组可化为.∵它的解为1<x<6.∴.解得.点评:本题考查的是解一元一次不等式组及二元一次方程组.根据题意得到关于a、b的二元一次方程组是解答此题的关键.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集.然后求出其公共解集.最后根据其整数解来求a、b的取值范围.解答:解:由原不等式组.得.解得 a﹣3<x<1+b.∵关于x的一元一次不等式组的整数解是0和1.∴a﹣3=﹣1.1+b=2.解得 a=2.b=1.点评:本题考查了一元一次不等式组的整数解.解决此类问题的关键在于正确解得不等式组或不等式的解集.然后再根据题目中对于解集的限制得到下一步所需要的条件.再根据得到的条件进而求得不等式组的整数解.28.已知不等式组的解集是3<x<a+2.求a的取值范围.考点:解一元一次不等式组.专题:计算题.分析:解第一个不等式得到a﹣1<x<a+2.由于等式组的解集为3<x<a+2.根据不等式解集的确定方法得到a﹣1≤3且a+2≤5.然后解关于a的不等式组即可.解答:解:.解①得a﹣1<x<a+2.∵不等式组的解集为3<x<a+2.∴a﹣1≤3且a+2≤5.∴a≤3.点评:本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.29.如果不等式组的解集是x>4.求a的取值范围.考点:解一元一次不等式组.分析:分别求出各不等式的解集.再根据不等式的解集是x>4求出a的取值范围即可.解答:解:.由①得.x>4.∵不等式组的解集是x>4.∴a≤4.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。
一、选择题1.不等式组123x x -≤⎧⎨-<⎩的解集是( ) A .1x ≥-B .1x <-C .15x -≤<D .1x ≤-或5x < 2.不等式组211x x ≥-⎧⎨>-⎩的解集是( ) A .1x >- B .12x >- C .21x ≥- D .112x -<≤- 3.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 4.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 5.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤6.如图,已知直线11y k x m =+与x 轴交于点()30A -,,和直线22y k x n =+交于点()1,2P -,则关于x 的不等式210k x n k x m +>+>的解集是()A .3x >-B .10x -<<C .31x -<<-D .2x <7.下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若a >b ,则1+a >b ﹣18.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种 9.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D .10.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2二、填空题13.关于x 的不等式组3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m 的取值范围是_____.14.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______. 15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________ .17.不等式组112 251 xx⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.18.若关于x的不等式组31123124xx x a+⎧->⎪⎪⎨+-⎪-<⎪⎩有4个整数解,那么a的取值范围是_____.19.不等式组()2231117232x xx x⎧+>-⎪⎨-≤-⎪⎩的解为_____.20.不等式组20,360xx->⎧⎨+<⎩的解集是____________.三、解答题21.(1)解不等式:1213xx+≤+并把解集表示在数轴上.(2)若关于x的不等式组22x a+>的解为1x>-,求a的值.22.解下列一元一次不等式组.23253xxx+≤⎧⎪+⎨>⎪⎩23.如图,ABC中,8,6AC BC AB===,现有两点,M N分别从点A点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运度为每秒2个单位长度,当点M到达B点时,,M N同时停止运动,设运动时间为t秒.(1)当03t≤≤时,AM=,AN=;(用含t的代数式表示)(2)当点,M N在边BC上运动时,是否存在某个时刻,使得12AMN ABCS S=△△成立,若成立,请求出此时点M运动的时间;若不成立请说明理由.(3)当点,M N在同一直线上运动时,求运动时间t的取值范围.24.(1)解方程组:432 20 x yx y+=⎧⎨+=⎩(2)解不等式组:3(2)21 1124x xx x-<-⎧⎪⎨-≥-⎪⎩25.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲乙进价(元/件)1435售价(元/件)2043、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.26.解不等式:431132x x+-->,并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到答案.【详解】解:∵123xx-≤⎧⎨-<⎩,∴15x x ≥-⎧⎨<⎩, ∴15x -≤<;故选:C .【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法进行解题. 2.C解析:C【分析】先求出2x≥-1的解集,再确定不等式组的解集即可.【详解】解:211x x ≥-⎧⎨>-⎩①② 解不等式①得,21x ≥-, 解不等式②得,x>-1, ∴不等式组的解集为:21x ≥-故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 3.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.4.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②, 解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.6.C解析:C【分析】所求不等式的解集就是满足“x 轴上方直线2y 在直线1y 上边”的x 的取值范围,即图中点A 、P 的横坐标之间的范围.【详解】解:由题意可知,满足条件的x 的值在A 与P 之间,∵A 点坐标为(-3,0),P 点坐标为(-1,2),所以所求不等式的解集为:-3<x< -1故选C .【点睛】本题考查一次函数图象的应用,熟练掌握一次函数间的交点坐标及一次函数与坐标轴的交点坐标的意义是解题关键.7.C解析:C【分析】根据不等式的性质,可得答案.【详解】解:A 、两边都加c 不等号的方向不变,故A 不符合题意;B 、两边都减c 不等号的方向不变,故B 不符合题意;C 、c =0时,ac 2=bc 2,故C 符合题意;D 、a >b ,则1+a >b +1>b ﹣1,故D 不符合题意;故选C .【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.8.C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.9.A解析:A【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C、根据不等式的性质2,不等式的两边乘以13,可得33a b>,故C成立;D、根据不等式的性质3,不等式的两边乘以(-1),可得-a<-b,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数解析:4 23m-<≤-【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题 解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法. 17.【分析】先解不等式组再求整数解的最大值【详解】解不等式①得解不等式②得故不等式组的解集是所以整数解是:-101最大是1故答案为【点睛】考核知识点:求不等式组的最大整数值解不等式组是关键解析:1x =【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >- 故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键. 18.【分析】不等式组整理后根据4个整数解确定出a 的范围即可【详解】解:不等式组整理得:解得:1<x <-a-2由不等式组有4个整数解得到整数解为2345∴5<-a-2≤6解得:-8≤a <-7故答案为:-8解析:87a -≤<-【分析】不等式组整理后,根据4个整数解确定出a 的范围即可.【详解】解:不等式组整理得:12x x a -⎩-⎧⎨><, 解得:1<x <-a-2,由不等式组有4个整数解,得到整数解为2,3,4,5,∴5<-a-2≤6,解得:-8≤a <-7,故答案为:-8≤a<-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x<5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:() 2231 131722x xx x⎧+>-⎪⎨-≤-⎪⎩①②解不等式①得,x<5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.20.【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集【详解】解:由①得:x<0由②得:x<-2不等式组的解集为:x<-2【点睛】本题考查了解一元解析:2x<-【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:20 360xx->⎧⎨+<⎩①②由①得:x<0,由②得:x<-2,不等式组的解集为:x<-2.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)4x ≤,画图见解析;(2)4a =【分析】(1)先求出不等式的解集,再根据不等式的解集表示在数轴上即可;(2)先求出不等式的解集,再根据不等式解集列出关于a 的方程即可求解.【详解】(1)1213x x +≤+,解得:4x ≤;(2)解不等式得:22a x ->∵1x >-,∴212a -=- 解得:4a =【点睛】本题考查解不等式,用数轴表示解集,根据不等式解集求参数,解题的关键是熟练掌握解不等式的方法. 22.1x ≤【分析】先求出不等式的解集,再求出不等式组的解集即可.【详解】解:23253x x x +≤⎧⎪⎨+>⎪⎩①② 由①得1x ≤,由②得5x <,所以原不等式组的解是1x ≤.【点睛】本题考查了解一元一次不等式组,不等式的解等知识点,求出不等式或不等式组的解集是解此题关键.23.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论; (2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上, 881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABCS S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.24.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意得:180681240x y x y +=⎧⎨+=⎩. 解得:10080x y =⎧⎨=⎩. 答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a 件,则乙种商品购进(180)a -件.根据题意得1435(180)504068(180)1314a a a a +-<⎧⎨+-≥⎩解不等式组得6063a <. a 为非负整数,a ∴取61,62,63180a ∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【点睛】本题考查了二元一次方程组的应用及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.26.57x <;数轴见解析 【分析】根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.。
一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞ 2.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞3.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .64.已知0,0,23x y x y >>+=,则1421x y++的最小值是( ) A .3B .94 C .4615D .95.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤7.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .108.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .219.若,b R,,a a b ∈≠且则下列式子:(1)22a 32b ab +>,(2)553223a b b a a b +>+,(3)2252(2)a b a b ++≥-,(4)2b aa b+>.其中恒成立的个数是 A .1个 B .2个C .3个D .4个10.若过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是( )A .4B .5C .6D .811.若两个正实数,x y 满足112x y+=,且不等式2x y m m +<-有解,则实数m 的取值范围是( ) A .()1,2- B .()4,1- C .()(),12,-∞-+∞D .()(),14,-∞-+∞12.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <二、填空题13.已知a 、b 都是正数,且0a b ab +-=,则1911b a b +--的最小值是__________.14.≤对任意0,0x y >>恒成立,则a 的最小值是_______.15.已知0x >,0y >,22x y +=,则223524x y x yxy+++的最小值为______.16.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 17.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.18.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____.19.已知方程210(0)x kx k ++=>有实根,则1k k+的最小值是______. 20.已知正实数x ,y 满足x +y =1,则1412x y +++的最小值为________ .三、解答题21.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.22.已知命题:p 实数x 满足28200x x --≤,命题:q 实数x 满足222(1)0(0)x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.23.已知集合{}2430A x x x =-+≤,B =______.若“x A ∈”是“x B ∈”的必要不充分条件,给出如下三个条件:①{}1x a x a -≤≤,②{}2x a x a ≤≤+,③{}3x ≤≤.请从中任选一个补充到横线上.若问题中的a 存在,求出a 的取值范围.24.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.25.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<.综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.3.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.B解析:B 【分析】由已知条件代入后凑出积为定值,再由基本不等式得最小值. 【详解】∵0,0,23x y x y >>+=,所以(2x+1)+y=4则()()421141141549=2152142142144x yx y x y x y x y ++++++=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++=+++ 当且仅当()42121x y x y +=+且214x y ++=即18,63x y ==时取等号, 则1421x y ++的最小值是94. 故选:B . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可,所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围.【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=,则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A. 【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.8.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.9.A解析:A 【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可. 详解:(1) 22a 32b ab +-=22322b a b ⎛⎫+- ⎪⎝⎭,当a=1,b=-2.时不等式不成立;(2)553223 a b b a a b +>+=()()()222a b a b a ab b -+++当a=1,b=-1时,不等式不成立;(3)()22522a b a b ++--()()22=a 210b -++≥恒成立.选项正确. (4) b aab +,2][2,)∈-∞-⋃+∞(,故不正确. 故答案为A.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10.B解析:B 【分析】先计算出两条动直线经过的定点,即A 和B ,注意到两条动直线相互垂直的特点,则有PA PB ⊥;再利用基本不等式放缩即可得出||||PA PB 的最大值.【详解】解:由题意可知,动直线0x my +=经过定点(0,0)A ,动直线30mx y m --+=即(1)30m x y --+=,经过点定点()1,3B ,注意到动直线0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有PA PB ⊥,222||||||10PA PB AB ∴+==.故22||||||||52PA PB PA PB +=(当且仅当||||PA PB ==时取“=” ) 故选:B . 【点睛】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB +是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.11.C解析:C 【解析】 正实数x ,y 满足112x y+=, 则()111112222224y x x y x y x y x y ⎛⎫+=++=+++=⎪⎝⎭, 当且仅当1,y x x y ==+取得最小值2. 由2x y m m +<-有解,可得22m m ->, 解得m >2或m <−1. 本题选择C 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.12.B解析:B 【分析】由题意利用不等式的性质逐一考查所给的四个选项中的结论是否正确即可.其中正确的命题可以用不等式的性质进行证明,错误的命题给出反例即可. 【详解】对于A ,若22ac bc >,则0c ≠,2222ac bc c c>,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确. 故选B. 【点睛】本题主要考查不等式的性质及其应用,属于中等题.二、填空题13.【分析】由可得出根据已知条件得出将代入所求代数式可得出利用基本不等式可求得的最小值【详解】所以由解得则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必 解析:15【分析】由0a b ab +-=可得出1b a b =-,根据已知条件得出1b >,将1b a b =-代入所求代数式可得出()19919111b b a b b +=-++---,利用基本不等式可求得1911ba b +--的最小值. 【详解】0a b ab +-=,所以,()1a b b -=-,1b a b ∴=-, 由010b a b b ⎧=>⎪-⎨⎪>⎩,解得1b >,则10b ->, 所以,()()919191919915111111b b b b a b b b b -++=+=-++≥=------, 当且仅当4b =时,等号成立, 因此,1911ba b +--的最小值为15. 故答案为:15. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】不等式变形为然后利用基本不等式求得的最大值可得的最小值【详解】原不等式可化为因为所以即时等号成立又所以时等号成立所以的最大值是即的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要【分析】不等式变形为a ≥的最大值,可得a 的最小值.【详解】原不等式可化为a ≥,因为222m n mn +≥,所以222222()2()m n m mn n m n +≥++=+,即m n +≤,m n =时等号成立.又0,0x y >>≤=x y =时等号成立.a ≥a【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】 由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值.【详解】原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.16.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.17.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此 解析:130【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可.【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130.【点睛】 本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.18.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题19.【分析】先根据一元二次方程有解得再根据函数的单调性求解即可【详解】解:方程有实根解得又在上单调递增 的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值的问题根据条件求出k 的范围利用对勾函 解析:52【分析】先根据一元二次方程有解得2k ≥,再根据函数1y k k=+的单调性求解即可. 【详解】 解:方程210(0)x kx k ++=>有实根, 240k ∴-≥,解得2k ≥, 又1y k k=+在[)2+∞,上单调递增, ∴ 1k k +的最小值是15222+=, 故答案为:52. 【点睛】 本题主要考查了利用基本不等式求最值的问题,根据条件求出k 的范围,利用对勾函数在区间内的最值即可求出结果.20.【分析】由可得且则利用基本不等式可求出的最小值【详解】由可得且则(当且仅当即时取=)故的最小值为故答案为:【点睛】利本题考查基本不等式求最值注意用基本不等式求最值必须具备三个条件:①各项都是正数;② 解析:94【分析】由1x y +=,可得(1)(2)4x y +++=且10,20x y +>+>,则()()()112411411412412214142y x x y x y x y x y ⎛⎫⎛⎫+=+=+++⎡⎤ ⎪+ +⎪⎣⎦++++++⎝+⎭⎝+⎭+,利用基本不等式可求出1412x y +++的最小值. 【详解】由1x y +=,可得()()124x y +++=且10,20x y +>+>, 则()()114114124122x y x y y x ⎛⎫+=+⎡⎤ ⎪⎣⎦++++⎝+⎭++ ()11914541244412x y y x =+⎛⎛⎫ +++≥+= ⎪ ++⎝⎭⎝+,(当且仅当()24121x y x y =++++即12,33x y ==时取“=”). 故1412x y +++的最小值为94. 故答案为:94. 【点睛】利本题考查基本不等式求最值,注意用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件,属于中档题. 三、解答题21.无22.无23.无24.无25.无26.无。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。
一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。
第二章一元一次不等式(组)单元测试卷(三)一.选择题(共18小题)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.A.1个B.2个C.3个D.4个2.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若a<b,则﹣a>﹣bC.若﹣x<y,则x>﹣2y D.若﹣2x>a,则x>﹣a3.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.4.已知x=3是关于x的不等式3x﹣的一个解,求a的取值范围为()A.a>3 B.a<3 C.a<4 D.a>45.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3 D.不等式x>﹣2的解是x=﹣16.下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1D.2﹣x≤47.若不等式(a﹣3)x>2的解集是x<,则a的取值范围是()A.a≠3B.a>3 C.a<3 D.a≤38.使不等式2x﹣4≥0成立的最小整数是()A.﹣2 B.0 C.2 D.39.用不等式表示“y减去1不大于2”,正确的是()A.y﹣1<2 B.y﹣1>2 C.y﹣1≤2D.y﹣1≥210.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了()道题.A.13 B.14 C.15 D.1611.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0 B.x>1 C.x<1 D.x<012.如图,一次函数y1=kx+b的图象与直线y2=m相交于点P(﹣1,3),则关于x的不等式kx+b﹣m>0的解集为()A.x>3 B.x<﹣1 C.x>﹣1 D.x<313.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论中正确的个数是()①y2随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y2;④当x>3时,y1<y2.A.3 B.2 C.1 D.014.下列选项中是一元一次不等式组的是()A.B.C.D.15.已知[x]表示不小于x的最小整数,若(x)表示不大于x的最大整数,当x≥1时,[x]﹣(x)的值可能有()①0 ②1 ③2 ④﹣1A.1个B.2个C.3个D.4个16.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.017.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.若小朋友的人数为x,则列式正确的是()A.0≤5x+12﹣8(x﹣1)<8 B.0<5x+12﹣8(x﹣1)≤8C.1≤5x+12﹣8(x﹣1)<8 D.1<5x+12﹣8(x﹣1)≤818.现有57本书,计划分给各学习小组,如每组6本则有剩余,每组7本却不够分,则学习小组共有()A.7个B.8个C.9个D.10个二.填空题(共15小题)19.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完,”一次服用这种药的剂量范围为.20.若2a<2b,则a b.(填“>”或“=”或“<”)21.若关于x的不等式组无解,则a的取值范围.22.若关于x的不等式(2m﹣n)x+3m﹣4n<0的解集是x>,则关于x的不等式(m﹣4n)x+2m﹣3n<0的解集是.23.如图表示的是某一不等式的解集,这个不等式可以是.24.若>5是关于x的一元一次不等式,则m=.25.若不等式(a﹣4)≤4﹣a的解集在数轴上表示如图所示,则a的取值范围是.26.已知关于x的不等式x﹣a≥0只有3个负整数解,则a的取值范围是.27.根据数量“m的3倍与2的和大于1”,列不等式为.28.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是km.29.若直线l1:y1=k1x+b1经过点(0,2),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.30.写出一个无解的一元一次不等式组为.31.a的5倍与3的差不小于10,且不大于20(只列关系式).32.把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有本.33.按下面的程序计算,若开始输入的值x为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果=.若经过2次运算就停止,则x可以取的所有值是.三.解答题(共1小题)34.如图,直线y=kx+b经A(2,1)、B(﹣1,﹣2)两点.(1)求直线y=kx+b的表达式;(2)求不等式x>kx+b>﹣2的解集.参考答案与试题解析一.选择题(共18小题)1.【解答】解:不等式有①2>0;②4x+y≤1;⑤m﹣2.5>3.故选:C.2.【解答】解:A.若a>b,不等式两边同时加上3得:a+3>b+3,即A项正确,B.若a<b,不等式两边同时乘以﹣1得:﹣a>﹣b,即B项正确,C.若﹣x<y,不等式两边同时乘以﹣2得:x>﹣2y,即C项正确,D.若﹣2x>a,不等式两边同时乘以﹣得:x<﹣a,即D项错误,故选:D.3.【解答】解:由图示可看出,这个不等式组的解集是﹣5<x≤4.故选:D.4.【解答】解:由题意可知:9﹣>,∴a<4,故选:C.5.【解答】解:A.x=﹣3不是不等式x>﹣2的一个解,此选项错误;B.x=﹣1是不等式x>﹣2的一个解,此选项正确;C.不等式x>﹣2的解有无数个,此选项错误;D.不等式x>﹣2的解有无数个,此选项错误;故选:B.6.【解答】解:下列不等式中是一元一次不等式的是2﹣x≤4,故选:D.7.【解答】解:∵(a﹣3)x>2的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故选:C.8.【解答】解:2x﹣4≥0,2x≥4,x≥2,则使不等式2x﹣﹣4≥0成立的最小整数是2,故选:C.9.【解答】解:由题意可得:y﹣1≤2.故选:C.10.【解答】解:设小明答对x道题,则答错20﹣3﹣x=17﹣x道题.根据题意得:5x﹣2(17﹣x)>60即7x>94∴x>13.∵x≤20﹣3=17,∴13<x≤17.成绩超过60分,则小明至少答对了14道题.故选:B.11.【解答】解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.12.【解答】解:观察函数图象可知:当x<﹣1时,一次函数y1=kx+b的图象在y2=m的图象的上方,∴关于x的不等式x+b﹣m>0的解集是x<﹣1.故选:B.13.【解答】解:对于y2=x+a,y2随x的增大而增大,所以①错误;∵x=3时,y1=y2,∴3k+b=3+a,所以②正确;当x<3时,y1>y2;所以③错误;当x>3时,y1<y2;所以④正确.故选:B.14.【解答】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选:D.15.【解答】解:∵x≥1,当x为大于1的整数时,[x]﹣(x)=x﹣x=0,当x为大于1的小数时,则[x]﹣(x)=1;则[x]﹣(x)的值可能有两个,故选:B.16.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.17.【解答】解:根据小朋友的人数为x,根据题意可得:1≤5x+12﹣8(x﹣1)<8,故选:C.18.【解答】解:设学习小组共有x个,根据题意得6x<57<7x,解得8<x<9,而x为整数,所以x=9.即学习小组共有9个.故选:C.二.填空题(共15小题)19.【解答】解:由题意,每日用量120~180mg,分3~4次服完,则120÷3=40mg,120÷4=30mg,180÷3=60mg,180÷4=45mg,∴若每天服用3次,则所需剂量为40~60mg之间,若每天服用4次,则所需剂量为30~45mg之间,故一次服用这种药的剂量为30~60mg之间.20.【解答】解:∵2a<2b,不等式的两边同时除以2得:a<b,故答案为:<.21.【解答】解:∵关于x的不等式组无解,∴a≥3.故答案为:a≥3.22.【解答】解:∵不等式(2m﹣n)x+3m﹣4n<0的解集为x>,∴解不等式(2m﹣n)x+3m﹣4n<0得:x>,且2m﹣n<0,∴=,即n=m,2m﹣m<0,解得:m<0,n<0,∵(m﹣4n)x+2m﹣3n<0,∴(m﹣m)x<﹣2m+m,﹣mx<m,x<﹣,即不等式(m﹣4n)x+2m﹣3n>0的解集是x<﹣,故答案为:x<﹣.23.【解答】解:由图示可看出,从3出发向左画出的线且3处是空心圆,表示x<3.所以这个不等式x<324.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:025.【解答】解:由题意得a﹣4<0,解得:a<4,故答案为:a<4.26.【解答】解:∵关于x的一元一次不等式x﹣a≥0只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.27.【解答】解:由题意得:3m+2>1,故答案为:3m+2>1.28.【解答】解:设行驶xkm,∵油箱内剩余油量不低于油箱容量的,∴40﹣x≥40×.∴x≤350故该辆汽车最多行驶的路程是350km,故答案为:350.29.【解答】解:依题意得:直线l1:y1=k1x+b1经过点(0,2),(3,1),则.解得.故直线l1:y1=﹣x+2.所以,直线l2:y2=x﹣2.由k1x+b1>k2x+b2的得到:﹣x+2>x﹣2.解得x<6.故答案是:x<6.30.【解答】解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.31.【解答】解:依题意,得:.故答案为:.32.【解答】解:设共有x个小朋友,则共有(5x+9)本书,依题意,得:,解得:6<x<8.∵x为正整数,∴x=7,∴5x+9=44.故答案为:44.33.【解答】解:当x=2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x=2时,输出结果=11,若运算进行了2次才停止,则有,解得:<x≤4.5.∴x可以取的所有值是2或3或4,故答案为:11,2或3或4.三.解答题(共1小题)34.【解答】解:(1)∵直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,∴代入得:,解得:k=1,b=﹣1.∴直线y=kx+b的表达式为y=x﹣1;(2)由(1)得:x>x﹣1>﹣2,即,解得:﹣1<x<2.所以不等式x>kx+b>﹣2的解集为﹣1<x<2.11。
七年级《一元一次不等式和一元一次不等式组》综合测试题
一、选择题(每小题3分,共30分)
1、a 、b 、c 在数轴上的对应点的位置如图1所示,下列式子中正确的有( )
图1
○
1b+c>0,○2a+b>a+c ,○3bc>ac ,○4ab>ac A.1个; B.2个; C.3个; D.4个.
2、不等式2x -5≤0的正整数解有( )
A .1个;
B .2个;
C .3个;
D .0个.
3、如图2,能表示不等式组⎩
⎨⎧<-<12x x 解集的是 ( )
A .
B .
C .
D .
图2 4、如图3,不等式组240,1
0x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )
A .
B .
C .
D . 图3 5、不等式组⎩⎨⎧x -2≤0x +1>0 的解是( )
A 、x ≤2
B 、x ≥2
C 、-1<x ≤2
D 、x >-1
6、下面不等式组无解的是( )
A.⎩⎨⎧<+<-0201x x ;
B.⎩⎨⎧>+<-0201x x ;
C.⎩⎨⎧<+>-0201x x ;
D.⎩
⎨⎧>+>-0201x x . 7.不等式组20,30
x x ->⎧⎨-<⎩的解集是( )
A .x>2
B .x<3
C .2<x<3
D .无解
8、、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )
A 、3<x <5
B 、-3<x <5
C 、-5<x <3
D 、-5<x <-3
9、小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买钢笔( ).
A. 12支;
B. 13支;
C. 14支;
D. 15支.
10.不等式组2,3482x x x
⎧>-⎪⎨⎪-≤-⎩的最小整数解为( ) A .-1 B .0 C .1 D .4
二、填空题(每小题3分,共30分)
11、若a>b ,则2b _____2a --
. 12、如果
>0,那么xy__0.
13、不等式 5x -9≤3(x +1)的解集是______.
14、不等式组
的整数解为______.
15.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.、已知关于x 的不等式组⎩
⎨⎧>--≥-0a x 1x 25无解,则a 的取值范围是_____. 16、已知不等式4x -a ≤0的正整数解是1,2,则a 的取值范围是_________.
.17.若不等式组2,x x m
<⎧⎨>⎩有解,则m 的取值范围是______.
18.代数式213x +的值小于3且大于0,求x 的取值范围
三、解答题(每小题7分,共35分)
1、解不等式组⎪⎩
⎪⎨⎧>-≥--②① 32x -11-x )1(2)3(410x x ,并写出此不等式组的整数
2.(1)
()
432
12
1
3
x x
x
x
-<-
⎧
⎪
⎨+
+>
⎪
⎩
(2)
()
2 1.5
5261
x x
x x
≤+
⎧⎪
⎨
->-
⎪⎩
3求.不等式
1
25
2
x+
-≤-≤
的解集.
4.解不等式组(1)
2(2)4,(1)
1
0(2)
32
x x
x x
-≤-
⎧
⎪
+
⎨
-<
⎪⎩
(2)
3(1)7
25
1.
3
x x
x
x
--
⎧
⎪
⎨-
-<
⎪⎩
≤,①
②
5.当x取哪些整数时,不等式 2(x+2)<x+5与不等式3(x-2)+9>2x同时成立?
6.代数式21
3
x+
的值小于3且大于0,求x的取值范围.
7.某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.该校计划每月烧煤多少吨?
8.实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。
9某城市一种出租汽车起步价是10元行驶路程在5km以内都需10元车费),达到或超过5km后,每增加1km,1.2元(不足1km,加价1.2元;不足1km部分按1km计)。
现在某人乘这种出租车从甲地到乙地,支付17.2元,则从甲地到乙地路程最大可能是多少?。