光伏逆变电源系统的设计(1)
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
光伏发电系统中逆变器方案的设计随着可再生能源的不断发展和应用,光伏发电系统已成为一种重要的清洁能源发电方式。
而光伏发电系统中的逆变器作为转换直流电能为交流电能的关键设备,在系统设计中起着至关重要的作用。
本文将从光伏发电系统逆变器的基本原理、设计要求和技术方案等几个方面展开,探讨光伏发电系统中逆变器方案的设计。
一、光伏发电系统逆变器的基本原理光伏发电系统中的太阳能电池板将太阳能转换成直流电能,而交流电力系统则需求交流电能,因此就须要借助逆变器将光伏发电的直流电能转化为电能输出。
逆变器的作用是通过改变电压、频率和相位,将直流电转换为交流电。
逆变器的工作原理主要包括开关元件的控制和功率电子器件的转换过程。
二、光伏发电系统逆变器的设计要求1.效率高:光伏发电系统逆变器的效率对系统的发电量和经济性影响较大,因此要求逆变器的效率尽可能高。
2.稳定性好:光伏发电系统在日常运行中会受到日照、温度等环境因素的影响,因此逆变器需要具有良好的稳定性,能够适应不同的工作环境。
3.可靠性高:作为光伏发电系统的核心部件之一,逆变器的可靠性对系统的发电效率和稳定性至关重要。
4.通信便捷:逆变器需要实时监测光伏发电系统的工作状态、数据参数等信息,并与其他设备进行通信,以实现对系统的有效监控和管理。
三、光伏发电系统中逆变器的技术方案1. 多级逆变器技术方案:多级逆变器是一种将直流电能分阶段进行逆变的技术方案,能够有效降低开关器件的损耗,提高系统的整体效率。
在光伏发电系统中采用多级逆变器技术方案,可以有效提高系统的功率密度和可靠性,从而实现更好的发电效果。
2. 智能控制技术方案:智能控制技术方案是指通过先进的控制算法和通信技术,实现对逆变器的精准控制和实时监测。
通过智能控制技术,可以对光伏发电系统的运行状态进行精准调节,提高系统的稳定性和效率。
3. 模块化设计技术方案:模块化设计技术方案是指将逆变器设计为多个功能模块组成的结构,可以根据实际需要进行灵活组合和扩展。
100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。
3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。
百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。
百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。
在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。
该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。
2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。
分布式光伏发电系统的并网型逆变器设计与控制摘要:随着可再生能源的快速发展,分布式光伏发电系统成为了一个受到广泛关注的领域。
在分布式光伏发电系统中,逆变器的设计与控制是关键的环节之一。
本文将介绍分布式光伏发电系统的基本原理,然后重点讨论并网型逆变器的设计与控制方法。
同时,将探讨当前存在的一些问题,并提出可能的解决方案。
1. 引言分布式光伏发电系统是一种将太阳能转化为电能的系统。
该系统将太阳能电池板转化的直流电能通过逆变器转化为交流电能,并输入到电网中。
逆变器是实现这一转换的核心设备之一。
并网型逆变器允许光伏发电系统与电网之间的双向电能流动。
当光伏发电系统产生的电能超过负载需求时,多余的电能将被输送到电网中,从而实现电能的共享与利用。
然而,为了确保安全稳定地将电能输送到电网中,逆变器的设计与控制变得尤为重要。
2. 分布式光伏发电系统的基本原理分布式光伏发电系统主要由太阳能电池板、逆变器、电网和负载组成。
太阳能电池板将太阳能转化为直流电能,逆变器将直流电能转化为交流电能,然后输入到电网中,最后供给负载使用。
光伏发电系统的工作过程如下:1) 太阳能电池板将太阳光转化为直流电能。
2) 逆变器将直流电能转化为交流电能。
3) 交流电能通过变压器升压之后,输入到电网中。
4) 电网将电能供给给负载使用。
3. 并网型逆变器的设计由于并网型逆变器需要将直流电能转化为交流电能并输入到电网中,因此其设计需要满足以下要求:1) 高效性:逆变器的转换效率应尽可能高,以最大程度地减少能源损耗。
2) 可靠性:逆变器需要具备稳定、可靠的运行能力,以确保电能的安全输送。
3) 控制性能:逆变器需要具备灵活、精确的控制能力,以应对电能输出的要求。
4. 并网型逆变器的控制并网型逆变器的控制包括全局控制和局部控制两个方面。
全局控制主要是通过监测电网的运行状态和负载需求来控制逆变器的电能输出,以实现对电网功率的调节。
局部控制主要是通过反馈控制回路来调整逆变器的输出特性,以保持稳定的输出电压和频率。
家用太阳能—光伏发电逆变装置设计摘要近几年来,世界上越来越多的国家发展并重视“阳光计划”。
因使用和发掘太阳能探索充足的绿色能源、为经济进步注入新能量的诉求在不断增加,为此,光伏发技术在各个领域里发挥作用。
随着新能源的出现,中国光伏发电系统的进步也将拥有更好的实验环境。
我国西部地区地域广阔,仍然存在着大量少电或无电的地区,但是因为其独特的地理环境,阳光照射时间长,每日辐射量大,得天独厚的优势为光伏发电技术在此运用提供了良好的条件。
独立式光伏发电系统结构简单,成本低廉,工作稳定可靠,能够有效的解决无电或少电地区的供电问题。
把太阳能蓄电池生成的直流电或蓄电池传出的直流电转化成负载必备的交流电,逆变器在光伏发电系统里处于核心位置,其性能对光伏系统的应用具有很大影响。
本研究使用了“推挽电路+高频升压+全桥逆变”的部署方式,因使用了高频步骤真正地削减了系统里的滤波线路,削减电感、电容的数目和削减电感、电容应用值,不仅节约成本,而且减少系统损耗、缩小了系统的体积、提高了系统的效率。
系统硬件包含了推挽升价步骤和全桥逆变步骤。
在前者当中使用的是推挽线路,对应的变压器铁芯属于双向磁化,能够切实地防止高频变压器磁偏饱和的情况,在一样铁芯尺寸的条件下,和正激励式的线路对比而言,推挽升压线路的输出功率更高,此外也提升了系统的可靠性与动态响应速度。
依靠SG3525芯片对推挽线路实施35KHz PWM操控。
在工频逆变部分,这次设计使用单项纯正弦波逆变器的特备芯片EG8010对全桥电路实施SPWM控制,保证系统传出充足、稳压、稳频、失真较小的高水平正弦波。
最终,依靠MATLAB打造系统仿真模型,对设计的计划进行可行性试验和解析。
线依靠MATLAB对部分模块实施建模与仿真,获得对应的信息,实现预估目标;然后依靠MATLAB对有关部分的线路实现相连,打造总体的系统仿真模型,实施联调仿真,依据得到的数据能够发现,预定目标达成。
关键词:光伏电源;推挽电路;逆变电路;SPWM控制第1章前言在现在的能源构成里,全球所用的能源包含了石油、天然气等一般的化石燃料。
太阳能光伏并网逆变器的设计原理框图————————————————————————————————作者:————————————————————————————————日期:太阳能光伏并网逆变器的设计原理框图随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。
光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。
在光伏并网系统中,并网逆变器是核心部分.目前并网型系统的研究主要集中于DC—DC和DC-AC两级能量变换的结构。
DC—DC 变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC—AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。
其中DC—AC是系统的关键设计.太阳能光伏并网系统结构图如图1所示.本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器.前级用于最大功率追踪,后级实现对并网电流的控制。
控制都是由DSP芯片TMS320F2812协调完成。
图1 光伏并网系统结构图逆变器的设计太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。
同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。
并且具有完善的并网保护功能,保证系统能够安全可靠地运行。
图2是并网逆变器的原理图。
图2 逆变器原理框图控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。
实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。
控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路.其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。
光伏电源的设计要求
光伏电源的设计要求包括以下几个方面:
1. 确定系统功率:根据负载的总功率确定所采用的逆变器的输出功率,并给逆变器留足充分余量。
2. 考虑负载匹配:离网型光伏发电系统要充分考虑各种负载与逆变器的匹配,特别是网内负载如果有诸如洗衣机、电冰箱、空调机等带有电机等电感性的负载就必须选择和配备正弦波或准正弦波的逆变器,以满足电感性负载对逆变器输出波形的需求。
3. 计算负载工作时间和用电量:以客户需求为依据来设计光伏阵列的容量和蓄电池的容量,达到既满足用户用电需求,又能控制总体投资成本的目的。
4. 考虑绝缘安全性能:绝缘阻抗监测即PV电源的输入电路对地、输出电路对地以及输入电路与输出电路间的绝缘电阻应不小于1MΩ,因此电源设计应包含绝缘阻抗侦测电路。
绝缘强度即PV电源的输入电路对地、输出电路对地以及输入电路对输出电路(隔离型)应承受50/60Hz的正弦交流电压1min,试验电压的有效值不同法规略有不同,但都要求电源设计应保证不击穿、不飞弧,并对漏电流大小有要求。
这些要求需要结合具体负载的实际情况进行设计,建议咨询相关领域的专家以获取更准确的信息。
半导体器件应用网/news/201535.html 光伏并网逆变器的设计【大比特导读】基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。
该设计模式具有电路简单、性能稳定、转换效率高等优点。
基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。
该设计模式具有电路简单、性能稳定、转换效率高等优点。
在能源日益紧张的今天,光伏发电技术越来越受到重视。
太阳能电池和风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。
1光伏逆变器的原理结构光伏并网逆变器的结构如图1所示,主要由前级DC/DC变换器和后级DC/AC逆变器构成。
其基本原理是通过高频变换技术将低压直流电变成高压直流电,然后通过工频逆变电路得到220V交流电。
这种结构具有电路简单、逆变电源空载损耗很小、输出功率大、逆变效率高、稳定性好、失真度小等优点。
图1光伏逆变器结构图逆变器主电路如图2所示。
DC/DC模块的控制使用SG3525芯片。
SG3525是双端输出式SPWM脉宽调制芯片,产生占空比可变的PWM波形用于驱动晶闸管的门极来控制晶闸管通断,从而达到控制输出波形的目的。
作为并网逆变器的关键模块,DC/AC模块具有更高的控制要求,本设计采用TI公司的TMS320F240作为主控芯片,用于采集电网同步信号、交流输入电压信号、调节IGBT门极驱动电路脉冲频率,通过基于DSP芯片的软件锁相环控制技术,完成对并网电流的频率、相位控制,使输出电压满足与电网电压的同频、同相关系。
滤波采用二阶带通滤波器,是有源滤波器的一种,用于传输有用频段的信号,抑制或衰减无用频段的信号。
其可以有效地滤除逆变后产生的高频干扰波形,使逆变后的电压波形达到并网的要求。
光伏并网微逆变器的设计
1 光伏并网微逆变器简介
光伏并网微逆变器(Grid-tied Micro Inverter)是一种用于开
放式光伏系统的新型变换器,可以准确地将由多路太阳能单元收集的
直流能量转换为平衡的交流电能,然后将其输入到电网或本地负载中。
本设计的微逆变器的目的是研发一种适用于开放式光伏系统,可以实
现最优性能、最低成本以及最短运行时间的设备。
2 微逆变器设计原理
微型逆变器的设计原理是利用其底层发电系统“多路太阳能细胞”(Multi-junction Solar Cells)以及每个太阳能细胞交流输出最优
性能的控制逻辑。
首先,每个太阳能细胞根据其能量来划分不同等级;然后,不同等级的太阳能细胞会产生不同的相位和功率;最后,对于
每个太阳能细胞的相位和功率,根据功率曲线分析及最优化算法,以
及直流母线输出功率最大化,从而使发电系统输出最大功率。
3 硬件要求
微型逆变器硬件系统包括控制器和变换器。
控制器通过调节DC母
线及太阳能单元输出电流来实现最优化的输出效果,而变换器则利用
半导体元件的高速PWM技术来输出 AC 脉冲信号,使得逆变器能够精
确通过调节脉冲宽度调控 AC 电压,而不受 AC 电压的范围限制。
4 其他考虑因素
在微逆变器的设计中,除了硬件设计外,还必须考虑应用场景周围环境因素,比如温度等,否则可能会对设备造成严重损害。
此外,对微型逆变器的设计还需要考虑其安全性问题,即放电防护及湿度防护等,确保微逆变器的安全工作。
5 结论
由于光伏并网微逆变器能够极大提高开放式光伏系统的性能以及效率,因此本设计的微型逆变器将成为未来光伏系统中不可或缺的组成部分。
0 引言
随着能源消费的增长、日益恶化的生态环境和人类环保意识的提高,世界各国都在积极寻找一种可持续发展且无污染的新能源。
太阳能作为一种高效无污染的绿色新能源,一种未来常规能源的替代品,尤其受到人们的重视。
太阳能的直接应用主要有光热转换、光电转换和光化学转换三种形式,光电转换(即光伏技术)是最有发展前途的一种。
1 系统的工作原理及其电路设计
光伏系统的总体框图如图1所示。
图1 系统的总体框图
由图1可知,整个系统包含充电和逆变两个主要环节。
太阳电池是本系统赖以工作的基础,它的效率直接决定系统的效率。
1.1 充电控制部分
1.1.1 太阳电池的工作特性
太阳电池作为光伏系统的基础,其工作特性,包括工作电压和电流与日照、太阳电池温度等有着密切的关系,图2、图3分别给出了太阳电池温度在25℃时,工作电压、电流和日照的关系曲线及太阳电池的输出功率和日照(S)、U之间的曲线。
从图2可以看出,曲线上任一点处的功率为P=UI,其值除和U、I有关外,还与日照(S)、太阳电池温度等有关。
由图3进一步可知,由于太阳电池的工作效率等于输出功率与投射到太阳电池面积上的功率之比,为了提高本系统的工作效率,必须尽可能地使太阳电池工作在最大功率点处,这样就可以以功率尽可能小的太阳电池获得最多的功率输出。
在图2和图3中,A、B、C、D、E点分别对应不同日照时的最大功率点。
图2 工作电压、电流和日照关系曲线
图3 输出功率和日照关系曲线
1.1.2 太阳电池的最大功率点跟踪(MPPT)
由图1可知,系统首先采用太阳电池阵列对蓄电池进行充电,以化学能的形式将太阳能储存在蓄电池中。
在这个过程中,通常采用自寻最优控制方式使太阳电池在最大功率点处工作。
整个控制过程可以分解成两个阶段进行:
1)确定出太阳电池工作在最大功率点时的输出电压值Uref;
2)改变太阳电池对蓄电池的充电电流使太阳电池的输出电压稳定在Uref。
这两个阶段是由控制电路通过检测太阳电池的输出电压和电流,采用逐次比较法来实现的。
1.2 逆变器设计
1.2.1 逆变电路设计
正弦波逆变环节采用单相全桥电路,用IGBT作逆变电路的功率器件。
IGBT 是电压控制型器件,它集功率MOSFET和双极型晶体管的优点于一体,具有驱动电路简单、电压和电流容量大、工作频率高、开关损耗低、安全工作区大、工作可
靠性高等优点。
逆变器将蓄电池输出的直流电压转换成频率为50Hz的SPWM波,再经过滤波电感和工频变压器将其转换为220V的标准正弦波电压,采用这种方式系统结构简单,并且能有效地抑制波形中的高次谐波成分。