人教版2018-2019学年度第二学期二年级数学期中试题
- 格式:docx
- 大小:79.27 KB
- 文档页数:2
元江第四小学二年级2018——2019学年期中复习试卷一、填空。
1、54÷6=9,读作:(),被除数是(),除数是(),商是()。
2、32÷8=(),表示把()平均分成()份,每份是()。
还可以表示()里面有()个()。
3、正方形是()图形;钟摆的运动是();打开水龙头,水龙头的运动是()。
4、15里面有()个5,8的3倍是(),67比32多(),6个7是()。
5、在52-20÷4这道题中,既有()法,又有()法,要先算()法,再算()法,结果是()。
6、在一道算式中,除数和商都是7,被除数是()。
二、把下面每一组算式合并成一个综合算式。
(1)32+18=50 (2)6×4=24 (3)55-8=47 50-16=34 24÷3=8 47-15=62(4)72-18=54 (5)4+5=9 (6)42÷6=7 54÷9=6 9×7=63 7×4=28(7)18÷9=2 (8)88-56=32 (9)7+2=972-2=70 32÷8=4 6×9=54 三、解决问题。
1、图书阅览室里上午有53人,中午走了24人,下午又来了38人,阅览室里有多少人?2、二(1)班共有65本图书,上午借出14本,下午又借出16本,还剩多少本?3、一年级和二年级一共领了80棵树苗,一年级种了25棵,二年级种了37棵,剩下多少棵没有种?4、育才书店进了80本《十万个为什么》,上周卖了25本,这周卖了38本。
还剩多少本?5、一场篮球赛分上半场和下半场。
二(1)班总分42分,二(2)班总分38分,下半场两个班的得分一样多。
上半场二(1)班得了24分。
上半场二(2)班得了多少分?6、小明坐16路公交车回家要坐三站,第一站坐了15分钟,第二站坐了9分钟,第三站坐了9分钟。
他回家一共花了多少分钟?7、松鼠妈妈采了23个松果,松鼠爸爸采了29个松果,小松鼠吃了8个,还剩几个?8、小明有35元钱,买一个魔方用了3元,剩下多少钱?如果用剩下的钱买8元一个的笔袋,可以买几个?9、二(7)要挖总长60米的水沟。
小学二年级上册数学期中检测卷时间:60分钟满分:100分一、我会填。
(每空1分,共28分)1.把口诀补充完整五六()四四()三()十八()三得九四()二十二四()2.3个6相加,用加法算式表示是(),改写成乘法算(),读作()。
3.15÷5=3读作()除数是(),被除数是(),用口诀()计算。
4.比直角大的角叫做(),比直角小的角叫做()。
正方形的四个角都是(直)角。
5.同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有()名同学。
6.在括号里填上合适的数。
5+5+5=()×()7+7+6=()×()+61+1+1+1+1+1=()×()6×4=()+()+()+()二、我会选。
(将正确答案的字母填在括号里)每题2分,共10分)1.下面哪句口诀只能写出一个乘法算式?()A.三五十五B.四四十六C.三四十二2角的两边()越大,角就越大。
A.长度B.张口C.顶点3.6×<35,方框里最大能填()A.6B.5C.44.45加上32再减去15的结果是()A.92B.82C.625.下面的图形从上面看到的是().三、我会画,按要求画角,已经给出了顶点和一条边。
(共3分)锐角直角钝角四、我会算。
(1题10分,2题9分,3题10分,共29分)1.算一算5×2=6×4=5÷5=3×6=5×4=10÷2=2×6=47-28=8÷4=36÷6=2.用你喜欢的方法计算。
15+36-2482-45-3292-(57-34)3看图列式计算。
(1)算式:☐×☐=☐(个)或☐×☐=☐(个)口诀:_________(2)☐О☐О☐=☐(只)五、他们看到的房子各是什么样子的?连一连。
(6分)六、我会解决问题(每题4分,共24分)1.一共有多少名同学?2.爸爸带了100元,买了下面两种物品,还剩多少元?3.小白兔收白菜,每个筐里放5棵白菜,需要几个筐?4.(1)买6个杯子要用多少元?(2)玲玲买了6支钢笔花了36元,1支钢笔要多少元?(3)英英有15元,她买文具盒,可以买多少个?答案:一、1.三十、十六、六、三、五、得八。
城关小学2018-2019学年二年级下学期数学模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)一个数除以8,余数最大是()。
A.6B.7C.8D.9【答案】B【考点】余数和除数的关系【解析】【解答】解:一个数除以8,余数最大是7。
故答案为:B。
【分析】一个数除以8,那么除数是8,因为余数要比除数小,所以余数最大是8-1=7。
2.(2分)5元6角等于()。
A. 5个1元和6个1角B. 5个6角C. 5个1元【答案】A【考点】货币单位及其换算【解析】3.(2分)一个图形对折后,如果折痕两边的图形(),这个图形就是一个轴对称图形。
A. 完全相同B. 大小相等C. 完全重合D. 形状相同【答案】C【考点】轴对称【解析】【解答】解:一个图形对折后,如果折痕两边的图形完全重合,这个图形就是一个轴对称图形。
故答案为:C【分析】注意“完全重合”与大小相同、形状相同的区别。
4.(2分)三(1)班女生10人,男生是女生的5倍,则这个班级共有()人A. 50B. 40C. 60【答案】C【考点】100以内数乘法与加减法的混合运算【解析】【解答】解:10×5=50(人),10+50=60(人)。
故答案为:C。
【分析】用女生人数乘5即可求出男生人数,把男生人数和女生人数相加就是总人数。
5.(2分)下列现象是旋转现象的是()。
A.把书从书包里拿出来B.转动汽车方向盘C.擦玻璃D.火车在铁轨上行驶【答案】B【考点】旋转与旋转现象【解析】【解答】解:B项是旋转现象,A、C、D项都是平移现象。
故答案为:B。
【分析】旋转这种运动现象就是图形或物体围绕某一点或轴进行圆周运动,据此作答即可。
6.(2分)23÷5=4······()A. 1B. 2C. 3D. 4【答案】A【考点】用2~6的乘法口诀求商【解析】【分析】四五二十根据这句口诀得到23-20=3。
人教版2019版二年级数学下学期期中考试试题 (附答案)班级:_________ 姓名:_________ 学号:_________(试卷60分钟,满分为100分,卷面分为5分)试卷满分为100分,卷面书写有下列情况,在100分基础上酌情扣1-5分:1.书写字迹潦草,答卷不整洁扣2分。
2.使用修正纸、涂改液、透明胶等纠错扣1分。
3.不规范纠错,乱涂乱画扣2分。
一、按要求填空(本题共计12分)1、我会填空。
1、40个十是( );10个百是( )。
2、782<□81 □里可以填( )。
3、573中的“3”表示3个( );306中的“3”表示3个( )。
2、想一想,填一填。
1、(1)5乘3写成算式是(),积是(),再加25得()。
(2)2×6表示()个()相加,或()个()相加,用口诀()计算。
2、(1)★★★ ★★★ □○□=□,表示把()平均分成()份,每份是()。
(2)▲▲▲▲ □○□=□,表示()里有()个()。
3、(填单位)教室地面长8(),叔叔身高1()80()。
二、计算题(本题共计10分)1、想一想,算一算。
2、直接写出得数。
28÷7= 5×7= 43-26= 63÷9= 27+36= 32+18= 42÷6= 48÷8=三、列竖式计算(本题共计6分)1、用竖式计算,带“★”的要验算。
55÷6=★296+315= 708-547+265=478+356=★800-525= 928-679-175=四、选一选(本题共计12分)1、有15个苹果,小明吃了5个,还有几个?列式为()。
A、15÷3B、15 ÷5C、15-52、2406中的4表示()。
A、4个百B、4个十C、4个一3、一块橡皮厚12( )。
A、米B、分米C、厘米D、毫米4、个文具盒9元钱,平平有50元钱,最多能买()。
A、6个B、5个C、4个5、按☆△□□☆△□□☆△□□的规律,第26个图形是()。
2018-2019学年度二年级数学第二学期期末质量监测一、填一填(每空一分,共28分)1.5218里面有()个千、()个百、()个十和()个一。
2.一个数由7个千,3个百,6个一组成,这个数写作(),读作()。
3.用4,6,0,2组成的最大的四位数是(),组成的最小四位数是()。
4.小狗比小猫重,但是比小猪轻,小猫比小兔重,它们中()最重,()最轻。
5.30个)个6.爸爸在笔直的马路上开车,车体向前行是()现象,车轮的运动是()现象。
5=8……最大是(),这时是()。
8.36÷(3×3),应先算()法,再算()法。
9.一个西瓜重5(),一个苹果重25()。
10.从45里连续减去5,减()次还剩5。
11.按规律填一填。
(1)697,698,699,(),();(2)2200,2100,2000,(),()。
12.括号里最大能填几?()×7<36 9×()<4073>8×()7()5<784二、我是小法官。
(对的打“√”,错的打“×”)5分1.3050读作三千零五。
()2.1千克铁比1千克棉花重。
()3.最小的三位数与最小的四位数相差900。
()4.6×6÷9与87+24-9的运算顺序是一样的。
()5.把15块饼干分成3份,每份一定是5。
()三、我会选。
(将正确答案的序号填在括号里)(10分)1.用一堆小方块拼最多能拼成6个,还剩3个小方块,这堆小方块共有()个。
A.27B.45C.512.一个足球48元,一个篮球45元,李老师拿100元买了一个足球和一个篮球,应找回多少元?列式正确的是()。
A.100-(48-45)B.100-(48+45)C.100-48+453.678最接近()。
A.800B.600C.7004.......,那么第35个图形是()。
A. B. C.5.图形可以由下面的图形()旋转得到。
2018-2019年人教版小学二年级下册期中测试卷(二 年 级 数 学)一、填空题。
(27分)1、4个3是( ),12里面有( )个4。
2,有21根小棒,每3根摆一个△,可以摆( )个△。
3、8的4倍是( ),64是8的( )倍。
4、( )里最大能填几?( )×8<45 5×( )<36 3×( )<25 5、在里填上“+”“-”“×”或“=”2=63=3 6=36 6、写出分针从12旋转到下面各个位置所经过的时间。
9、9、风扇转动是( )现象,推拉抽屉( t ì)是( )现象。
10、每个小朋友一双筷子,12根筷子能分给( )个小朋友。
二、判断题。
(10分)1、两个因数都是9,积是18。
( )2、平移现象改变原物体的大小。
( )3、8÷2=4读作:8除2等于4。
( )4、把18个★分成9份,每份有2个★。
( )5、把12个梨分成2份,每份一定有6个。
( )三、选择题。
(8分)1、有18个同学,3人一组,能分几组?意思是( )①、18里面有几个3 ②、3个6是多少? ③、把18平均分成3份 2、27÷□=9,□里应该填( )。
①、5 ②、4 ③、33、下列算式中,不能用乘法口诀“三八二十四”来计算的是( ) ①、3×8 ②、24÷3 ③、24÷4 ④、24÷84、下列不是轴对称图形的是( )四、看图列式。
(4分)算式:五、计算。
(16分)1、直接写出得数(8分)16÷2= 48÷6= 45÷5= 56÷8= 3×8÷8= 4×9÷6= 9×8+15= 8×7-32= 2、列式计算。
(8分)(1)被除数是40,除数是8,商是几? (2)把56平均分成7份,每份是几?(3分)(3)72里面有几个9?(4)81连续减去几个9后,结果是0?六、下面是二(2)班同学喜欢看的课外书情况统计表。
ABCD第4题图第6题图天水市藉口中学2018—2019学年度九年级期中考试卷数学试题A 卷(满分100分)一、选择题(共10小题,每小题4分,共40分) 1()A .BC D .2 2.函数9-=x y 中自变量x 的取值范围是( )A .x > 0B .x ≥0C .x >9D .x ≥93.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择 ( )A .甲B .乙C .丙D .丁4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为 ( )A .60°B .50°C .45°D .30°5.已知1-=x 是一元二次方程012=++mx x 的一个根,那么m 的值是( )A .0B .1C .2D .-26.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若60AD ∠=︒B ,则CD ∠B 的度数为( ) A .40︒ B .50︒ C .60︒ D .70︒7.如图,每个大正方形均由边长为1的小正方形组成,则下列图中的三角形与△ABC 相似的是 ( )81a =-,则a 的取值范围是( )A .a >1B .a <1C .a ≥1D .a ≤19.如图,在Rt △ABC 中,∠C=900,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cos α的值为 ( )A .53 B .54 C .34 D .3410.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③b+2a<0;④ abc>0 . 其中所有正确结论的序号是 ( )A .③④BC .②③ D第9题图 第13题图 第18题图二、填空题(共8小题,每小题4分,共32分)11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35 800 000个,将35 800 000用科学记数法表示为______ . 12.分解因式:x 2-9=______.13.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是14.已知方程 221211x x x x +-=+,设21x y x +=,则用换元法得到的方程为 ; 15.方程1352(5)(2)x x ax x x x +++=----有增根x=2,则a=16.如图,圆锥的底面半径为1,母线长为3,则这个圆锥的侧面积是 .(结果保留π) 17.若a 2-3a +1=0,则221a a+= 18.如图,二次函数342+-=x x y 的图象交x 轴于A .B 两点,交y 轴于点C ,则△ABC 的面积等于。
人教版2018-2019二年级数学下册期中测试卷二年级数学下册试卷时间:60分钟一、填空。
(每题1分,共25分))。
商是(,) 除数是(,) 被除数是(,口诀:(),) (4=÷24、1 2、推窗户是()现象,摩天轮的转动是()现象。
3、根据口诀“六七四十二”写出两道乘法算式和两道除法算式()()()()4、从45里连续减去5,减()次还剩5。
5、32个苹果,有两只小袋鼠,它们每天要吃8个苹果,可以吃()天,列式:()。
6、一捆小棒,摆□ ,正好摆6,正好摆()个。
7、23加25的和除以8的商是(),列式:()。
8、将下列算式填在合适的()里。
35÷7 42÷6 7×7 72÷8 36÷6 ()>( ) > ( ) >( ) >( )9、比较大小。
3×6○6×3 18-6 ○18÷6 5×5 ○5+5二、判断下面的话对吗?对的打“√”,错的打“×”。
(每题2分,共10分) 1、生活中的平移现象有:拉抽屉、动车行驶、风车旋转。
() 2、把15个苹果放在3个盘子里,这叫平均分。
() 3、21÷7=3与3×7=21,所用的口诀是一样的。
() 4、30-15÷5=15÷5=3。
( )5、长方形和正方形都有4条对称轴。
()三、选择题。
将合适的答案填在()里。
(每题2分,共6分)1、下面()图形是由平移得到的。
A2、3个4加上5,正确列式为()。
A 、3+4+5B 、3×4+5C 、3×(4+5) 3、把算式33-29=4 ,4×5=20,改写成一道综合算式是()。
A 、33-29×5=20 B 、5×33-29=20 C 、(33-29)×5=20 四、计算。
1、直接写得数。
2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
人教版2018-2019学年度第二学期二年级数学期中试题 一、填一填。
(每空13分)
1.36÷4=9,读作( ),表示把36平均分成( )份,每份是( ),还可以表示36里面有( )个4。
2.35÷7=5中,( )是被除数,( )是除数,( )是商。
3.把6×4=24改写成两道除法算式是( )和( )。
4.计算81÷9时,运用的口诀是( )。
5.摆一个正方形要用4根同样长的小棒,摆5个这样不相连的正方形要用( )根小棒,有32根小棒可以摆( )个这样不相连的正方形。
6.买一个木偶要30元,付5元一张的人民币要( )张。
二、判断。
(对的画“√”,错的画“×”)(8)
1.用“正”统计五月份的天气情况,一个“正”代表一天。
( )
2.计算24÷6=□时,用的口诀是六七四十二。
( )
3.36个桃子分给9个小朋友,每个小朋友分4个。
( )
4.求18里面有几个6。
列式为:18÷3=6。
( ) 三、选一选。
(10)
1.被除数是8的算式是( )。
A.16÷8=2
B.24÷3=8
C.8÷2=4 2.自来水向下流的现象是( )。
A.平移现象 B.旋转现象 C.以上都不对 3.从54里连续减去9,减( )次后结果等于0。
A.45
B.6
C.9
4.根据七七四十九这句口诀可以写( )道算式。
A.2 B.3 C.4
5.下列图案中是轴对称图形的是( )
A B C 四、我会算。
1、直接写得数(10)
54÷9=54+6= 8÷8=64-8=80-(23+17)= 24÷8= 28÷4= 5×7= 4×9÷6= 64÷8÷4= 2、脱式计算(12)
16+7×9 83-26+43
96-42÷7 64÷8÷2
3、在()里填上“>”“<”“=”(10分) 75-19()56 3×8()6×7 7÷7()7-7 63÷7×6()64÷8×7 14÷2×6()5×5+17
4、在()里填上“+、-、×或÷”(5分)
32()4=8 6()6=0 24()6=30 5()3=20()5
五、列式计算:(12分)
(1)27里面有几个3?
(2)除数是4,被除数是24,商是多少?(3)把30平均分成6份,每份是多少?
六、看图列式计算。
(10分)
七、解决问题。
(每小题
6分共30
分)
1.小朋友们要做54朵红花,已经做好了38朵,剩下的要分给4个小朋友做,平均每人要做多少朵?
2.王老师准备买文具盒作为奖品发给7个同学。
你认为他该怎样买?
3.商店中某些生活用品的售价如图。
( 1 )买5副手套和1双鞋要花多少钱?
(2)小强有54元钱,买了1顶帽子,他剩下的钱可以买几双袜子? (3)你还能提出什么数学问题并解答。