中国科学院分析化学课件之五--原子荧光光谱分析
- 格式:pdf
- 大小:3.35 MB
- 文档页数:30
原子荧光光谱基本原理及应用原子荧光光谱的产生主要基于物质放电的过程。
首先,物质被输入到一个高频电场中,使得原子的电子从基态跃迁到激发态,形成一个激发态的原子。
接下来,激发态的原子会通过非辐射跃迁或辐射跃迁返回到基态。
在辐射跃迁过程中,原子会发射出一些特定波长的光线,即荧光。
这些发射的特定波长与原子的能级结构有关,因此可以用来确定物质的成分和浓度。
1.分析元素成分:原子荧光光谱可以用来分析物质的成分,特别是元素的含量。
它可以检测多种元素,包括有机和无机物质中的常规和微量元素。
这种分析方法广泛应用于环境监测、食品安全、制药工业等领域,对于确定物质的成分和浓度非常有用。
2.确定金属离子浓度:原子荧光光谱可以用于确定金属离子的浓度。
这是因为金属离子在光谱分析中通常具有特定的荧光发射线。
通过测量发射线的强度,可以确定金属离子的浓度,从而实现对金属离子的准确测量。
这种应用在水质监测和环境污染监测中尤为重要。
3.质量分析:原子荧光光谱可以用来进行质量分析,特别是对分子的质量分析。
通过测量样品中特定元素的质谱峰,可以确定不同分子的相对质量。
这种方法广泛应用于化学分析、物质鉴定和药物检测等领域。
4.检测痕量元素:原子荧光光谱可以用来检测痕量元素。
痕量元素指的是物质中的微量元素,其浓度通常非常低。
原子荧光光谱具有高灵敏度和高分辨率的优点,使其成为检测痕量元素的理想工具。
这种应用在地质学、化学工业和研究等领域中非常重要。
综上所述,原子荧光光谱是一种基于物质放电过程的分析技术,通过测量物质放电时发射的特定波长的光线,确定物质的成分和浓度。
它具有可广泛应用于元素分析、金属离子浓度测量、质量分析和痕量元素检测等领域的优点。