原子荧光法
- 格式:doc
- 大小:623.50 KB
- 文档页数:11
原子吸收法和原子荧光法的异同比较原子吸收法和原子荧光法是分析化学中常用的两种技术手段,用于测定物质中微量元素的含量。
尽管它们有着相似的应用领域,但在原理、仪器和操作上存在一些显著的差异。
在本文中,我将深入研究原子吸收法和原子荧光法,并比较它们之间的异同点。
一、原子吸收法原子吸收法(Atomic Absorption Spectroscopy, AAS)通过测量物质中特定元素在特定波长下吸收可见光的量,来确定该元素的含量。
其基本原理是根据原子吸收特定波长的光,但过渡态或分解态的离子并不吸收该波长的光,从而可以利用这一特性分析样品中特定元素的含量。
原子吸收法可以测定多种元素,包括金属和非金属元素。
1. 仪器和工作原理:在原子吸收法中,主要使用的仪器是原子吸收光谱仪。
该仪器包括光源、样品室、光学系统、检测器和数据处理系统。
其工作原理是将样品中的元素化合物转化为原子态,通过中空阴极放电灯或石墨炉技术,产生特定元素的原子吸收光谱,再通过光谱仪测量吸收光强度,最终计算出元素的浓度。
2. 优点和应用:原子吸收法具有高选择性、良好的线性范围和较低的检测限等优点。
它被广泛应用于环境监测、冶金、食品安全等领域。
可用原子吸收法测定土壤中的重金属含量、水中的污染物浓度以及食品中的微量元素含量。
二、原子荧光法原子荧光法(Atomic Fluorescence Spectroscopy, AFS)是一种利用原子或离子在受激发后发射荧光的现象来分析物质中元素含量的技术。
原子荧光法需要源于样品的非分解态的离子或原子进行测定。
它可以测定只能被激发成原子态的元素或离子。
1. 仪器和工作原理:在原子荧光法中,主要使用的仪器是原子荧光光谱仪。
该仪器包括光源、样品室、分光系统、荧光检测器和数据处理系统。
其工作原理是将样品中的元素通过光源激发成原子态并发射荧光,再将荧光信号由光谱仪检测并进行分析。
2. 优点和应用:原子荧光法具有高选择性、较低的检测限和较宽的线性范围等特点。
原子荧光法测定砷一、原子荧光法概述原子荧光法(Atomic Fluorescence Spectrometry,AFS)是一种测定微量元素的分析方法,具有灵敏度高、检出限低、线性范围宽、干扰少等优点。
在众多分析方法中,原子荧光法已成为测定砷的主要手段。
二、原子荧光法测定砷的原理原子荧光法测定砷的原理是基于砷原子在热能作用下,从基态跃迁到激发态,再从激发态返回基态时,释放出特定波长的荧光信号。
通过测量荧光强度,可以推算出样品中砷的含量。
三、实验操作步骤1.样品处理:首先对样品进行消解,将砷转化为无机砷形态,以便于后续测定。
常用的消解方法有酸消解、湿式消解等。
2.标准曲线制备:分别配制不同浓度的砷标准溶液,利用原子荧光仪测定其荧光强度,绘制标准曲线。
3.样品测定:将处理好的样品溶液注入原子荧光仪,进行测定,根据荧光强度计算砷含量。
4.仪器校准:定期对仪器进行校准,确保测量结果的准确性。
四、数据处理与分析1.计算:根据测得的荧光强度和标准曲线,计算样品中砷的含量。
2.质量控制:进行内部质量控制,如重复测定、加标回收等,评估分析方法的准确性和精密度。
3.数据统计:对实验数据进行统计分析,评估方法的检测限、线性范围等性能指标。
五、应用与展望1.原子荧光法已广泛应用于环境、食品、医药等领域,对砷污染监测具有重要意义。
2.随着技术的发展,新型原子荧光仪器的出现,如多功能原子荧光光谱仪、流动注射原子荧光仪等,为砷测定提供了更多可能性。
3.今后研究重点包括提高方法灵敏度、降低检出限、简化操作流程等,以满足不断发展的需求。
综上所述,原子荧光法作为一种高效、准确、灵敏的砷测定方法,在多个领域具有广泛应用前景。
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光分析法原子荧光分析法是一种精密的元素分析技术,通过该技术可以对样品中的元素进行定量和定性分析。
该技术的原理基于原子在吸收射线(通常为X射线或UV光)后重新辐射发光的特性。
该技术的应用范围十分广泛,最初在地球科学领域得到了广泛使用,并在微量元素、稀土元素和有机物质等领域中得到了广泛应用。
一、原理原子荧光分析法的原理如下:在样品经过预处理之后,将其放置在一个荧光池中,使用一个电子枪或激光束来激发荧光。
当样品中的原子吸收光束后再重新辐射,就会产生一个荧光峰。
这一峰的位置和幅度可以用来确定样品中的元素种类和含量。
二、应用原子荧光分析法在土壤科学、地球化学、化学和生物科学等领域被广泛使用。
它可以用于分析土壤和岩石中的轻重金属,也可以用于化学分析中的元素定量和定性分析。
原子荧光分析法在环境工程和材料科学中也有重要的应用。
例如,它可以用于分析水污染物中的镉、铅和铬等有害元素。
它也可以用于确定纺织品、电子产品和其他大量消费品中的元素成分。
三、优缺点原子荧光分析法具有以下一些优点:1.能够准确确定样品中的元素含量;2.易于使用;3.对于重金属元素具有很高的灵敏度;4.分析速度较快,可同时分析数百种元素。
然而,原子荧光分析法也存在一些缺点:1.需要高昂的设备成本;2.部分元素会因为吸收和辐射之间的能级限制而无法被检测到;3.常常需要进行样品前处理。
四、总结总体来说,原子荧光分析法是一种精密的元素分析技术,其优点在于准确和灵敏度高,并且可以用于广泛的应用领域。
虽然设备成本较高且需要进行样品前处理,但是其高效率和高精度的优点对于需要进行元素分析的领域来说十分重要。
原子荧光光谱法原子荧光光谱法一、概述原子荧光光谱法是一种专门用于分析原子的物质结构和组成的方法。
该方法利用了原子的特性发射出特定波长的光线来进行分析,具有高灵敏度和精确度等优点。
它广泛应用于化工、冶金、电子、环保等领域中。
二、工作原理原子荧光光谱法的工作原理是将待检物样品进入火焰或等离子体中加热到极高温度,使其中原子被激发到激发态,然后随着原子的自发跃迁,从激发态跃迁回基态时,发出一定波长的特定光线,通过仪器检测出这些发射光谱,再进行计算和分析得到样品中元素成分的定量分析结果。
三、操作流程1.准备样品:将待分析物质制成高纯度的化合物或纯金属样品。
2.样品预处理:将样品加入溶剂中,加热或酸化等方式使其转变成原子迹状态。
3.样品的雾化:将样品雾化成细小的颗粒,通过进一步的气体等离子体激励,使得原子处于激发态。
4.测量光谱:通过分光仪等仪器测量样品中元素特征光谱,得出样品元素成分的信息。
5.结果分析:根据光谱结果,采用定量方法对待分析物质的成分进行分析和计算,获得定量分析结果。
四、应用领域原子荧光光谱法适用于分析大量金属元素,可用于纯金属、杂质金属等检测。
它被广泛应用于冶金、化工、电子、环保等领域。
比如用于水质、土壤、废水等环保领域的检测,能够检测出其中的重金属元素,为环保工作提供有力的技术保障。
五、存在的问题尽管原子荧光光谱法在分析中具有很大的优势,在实际应用中仍然存在一些问题。
比如由于仪器灵敏度限制,使用样品的环境也会对结果产生影响。
此外,样品的制备过程也会对结果产生重要影响。
对于不同样品的处理方法还需进一步研究。
综上所述,原子荧光光谱法是一种非常重要的化学分析方法,应用广泛。
在实际操作和结果分析时,需要注意一些问题。
未来,我们需要根据实际的样品情况,不断地改进研究方法,提高分析的准确性和可靠性。
一. 氢化物发生-原子荧光光谱法基本原理1.2.概述原子荧光光谱分析是20世纪60年代中期提出并发展起来的光谱分析技术,它具有原子吸收和原子发射光谱两种技术的优势并克服了其某些方面的缺点,是一种优良的痕量分析技术。
1974年,Tsujii 和Kuga 将氢化物进样技术与非色散原子荧光分析技术相结合,实现了氢化物发生—原子荧光光谱分析(HG-AFS )。
氢化物发生—原子荧光光谱法是样品溶液中的待测元素(As 、Sb 、Bi 、Ge 、Sn 、Pb 、Se 、Te 等)经与还原剂硼氢化钾(钠)反应转换为挥发性共价化合物,借助载气流将其道入原子化器中原子化为基态原子,基态原子吸收激发光源特定波长(频率)的能量(辐射)而被激发至高能态,而后,激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,荧光强度与样品溶液中的待测元素浓度之间具有正比关系,据此进行待测元素的定量分析的。
I f =aC+b3.特点(1)干扰少,谱线简单。
待测元素与可能引起干扰的样品基体分离,消除了光谱干扰,仅需分光本领一般的分光光度计,甚至可以用滤光片等进行简单的分光或用日盲光电倍增管直接测量。
(2)灵敏度高,检出限低。
(3)操作简单,适合于多元素同时测定,宜于实现自动化。
(4)不同价态的元素氢化物发生实现的条件不同,可进行价态分析。
(5)硼氢化钾(钠)—酸还原体系,在还原能力,反应速度,自动化操作,干扰程度以及适用的元素数目等诸多方面都表现出极大的优越性。
4. 激发光源激发光源是原子荧光光谱法仪的主要组成部分,一个理想的激发光源应具有(1)强度高,无自吸,(2)稳定性好,噪声低,(3)辐射光谱重复性好,(4)操作容易,不需复杂的电源,(5)使用寿命长,(6)价格便宜,(7)发射的谱线要足够纯。
原子荧光法中所用的光源有:(1)蒸气放电灯,(2)连续光源—高压汞氙灯,(3)空心阴极灯,(6)无电极放电灯,(7)电感耦合等离子体,(8)温梯原子光谱灯,(9)可调谐染料激光。
原子荧光光谱法(afs)这一周我们继续推送各种分析方法的干货知识,今天推送的是有关原子荧光光谱的内容。
按照惯例,我们先来看看纲要——一概述二基本原理三仪器结构四应用情况下面,让我们开始今天的学习吧!一概述原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。
是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术,所用仪器及操作技术与原子吸收光谱法相近。
(一)AFS的发展历程•1859年开始原子荧光理论的研究•1902年首次观察到钠的原子荧光•1962年提出将原子荧光用于化学分析•1964年得出原子荧光的基本方程式•1964年对Zn、Cd、Hg进行了原子荧光法的分析•1974年首次将氢化物进样技术和无色散原子荧光光谱技术相结合,开创了氢化物发生—无色散原子荧光光谱分析技术(HG-AFS)(二)AFS在我国的发展•1975年杜文虎等介绍了原子荧光法,次年研制了冷原子荧光测汞仪;•20世纪70年代末,郭小伟等研制成功研制了溴化物无极放电灯,为原子荧光分析技术的进一步深入研究和发展奠定了基础;•1983年郭小伟等研制了双通道原子荧光光谱仪,后将技术转让给北京地质仪器厂,即现在的海光仪器公司,开创了领先世界水平的有我国自主知识产权分析仪器的先河。
在此后的20多年中,郭小伟等在开发原子荧光分析方法仪器的设计研制,尤其在氢化物发生原子荧光分析方面做了大量卓有成效的工作,使我国在HG-AFS技术领域处于国际领先地位。
(三)我国在AFS的主要突破•用溴化物无极放电灯代替碘化物无极放电灯,成功地解决了铋的光谱干扰问题;•利用氢化物发生所产生的氢气使之在电热石英炉口形成氢氩小火焰作为原子化器,从而使整个装置简单实用;•将高强度脉冲供电空心阴极灯成功地用于作AFS光源,解决了无极放电灯制作工艺不完善和调谐困难等对使用带来的不便;•将流动注射(FIA)技术、断续流动注射技术与AFS联用开创了FIA-AFS全自动分析,并研制开发出全自动原子荧光光谱仪。
原子荧光法
原子荧光法
1、原子荧光法原理
分光光度法
连续光源
(D2,W)
光电转换原子吸收法
锐线光源(HCL)
光电倍增等离子发射光谱法
等离子体光电转换
聚光
原子荧光
原子化器
光电转换
HCL
2、方法特点
测定Hg、As、Bi、Se、Sb、Be、Te、Ge(Sn、Pb、Cu)等最可靠、最有前途的方法。
不使用SnCl2作还原剂,而使用NaBH4(KBH4)作还原剂。
主要特点:
(1)光谱干扰少;
(2)基体影响影响易于消除;
(3)通过氢化物发生达到分离和富集的目的;
(4)根据所测元素的还原性质不同,可进行价态分析;
(5)气相干扰少;
(6)线性范围宽,测汞可达三个数量级;
(7)灵敏度远远高于冷原子吸收法。
3、测定过程中的注意事项
由于灵敏度很高,防止试剂、器皿的沾污和扣除空白是实验成败的关键之一(这点比其他方法更为重要)。
(1)小的光电倍增管电压,可减少噪声水平;
(2)观测高度直接影响测量灵敏度和数据的稳定性,建议使用6~8mm(不同仪器标尺可能不同);
(3)载气及流量:原子荧光法只能使用Ar气,这点与冷原子荧光法不同,Ar气纯度很重要,达到1%时,会导致Hg(As、
Bi、Se、Sb、Te、Ge)灵敏度降低约5%;
(4)载气流量过大会冲稀测定成分的浓度,过小不能迅速将测定成分带入石英炉,一般以0.4~0.6L/min为宜;
(5)屏蔽气体:屏蔽气体可防止周围空气进入火焰产生荧光淬灭,一般在0.6~1.6L/min范围选择;
(6)仪器都有峰高和峰面积测量的功能,用峰高好;
(7)选择最佳延迟时间和积分时间是得到最佳测量效果的重要因素;
(8)还原剂:NaBH4是强还原剂,必须避光保存(溶液也应避光),如发现浑浊,须经热酸浸泡并洗净的玻璃砂过滤(注意承接滤液瓶的洗净)。
NaBH4(或KBH4)一般在含NaOH (KOH)0.5~1%的介质中才能稳定;NaBH4(或KBH4)在酸介质中才能起到还原作用,因此,测定水样(溶液)的酸性必须足以中和NaBH4(或KBH4)溶液中的碱后还应保持至少1mol/L的酸性;NaBH4(或KBH4)浓度对汞的测量结果影响很大,测汞时以0.4%左右为最佳;
(9)石英炉温度对测汞的灵敏度和精度影响较为明显,800~900℃记忆效应小,精度高,但灵敏度下降约5倍,而350灵敏度较高。
下表是推荐使用的原子荧光法测汞的条件。
原子荧光法测汞的条件
光电倍增管负高压300~320V
石英炉温度300~800
灯电流30mA
载气流量(Ar气)0.6L/min
屏蔽气流量(Ar气) 1.0L/min
NaBH4浓度0.2~0.4%
NaBH4进样量0.8ml
读数时间10s
延迟时间1s
测量方式峰面积
由于原子荧光仪器生产厂家不同,测量条件也存在差异,下表的测量条件仅供参考。
相关元素的国内、国际饮用水标准(mg/l)
元素中国
2001
WHO
(现行)
EPA
(1996)
日本法国德国台湾欧共体加拿大
美国
(加州)
As 0.05 0.01 <D.L. <0.01 0.05 0.01 0.05 0.01 0.025 0.05 Hg 0.001 0.001 0.001 <0.0005 0.001 0.001 0.002 0.001 0.001 0.002 Se 0.01 0.01 0.05 <0.01 0.01 0.01 0.01 0.01 0.01 0.05 Sb —0.005 0.006 0.002 0.01 0.01 0.01 0.005 0.006 0.006
氢化物的沸点、检出限及适用浓度范围
元素化合物融点(℃)沸点(℃)
检出限
(ng)测定范围(ng/ml)
Ge GeH4-165 -90 5.0 30—150 Sn SnH4-150 -52 5.0 30—150 Pb PbH4——0.6 5—150 As AsH3-116 -62 1.0 5—30 Sb SbH3-88 -18 1.0 10—50 BI BiH3—16.8 1.0 5—60 Se H2Se -65 -41.3 1.0 10—150 Te H2Te -48 -1.8 0.5 5—100
Hg:0.090ug/L ,返回数:27(共33)
标准值↓
5101520253035404550556065707580850.800.850.900.95 1.00 1.05 1.10 1.15 1.20 1.25
平均浓度的倍数 (倍)频率 (%)
低浓度水样Hg 的频率分布直方图
Hg:19.8ug/L ,返回数:27(共33)
标准值↓
5101520253035404550556065707580850.800.850.900.95 1.00 1.05 1.10 1.15 1.20 1.25
平均浓度的倍数 (倍)
频率 (%)
高浓度水样Hg 的频率分布直方图
问题的回答与分析
1、检出限(D.L.)
在给定置信度(90~95%)内,能检出的最小浓度(量)。
“检出”是定性的。
空白、仪器操作。
D.L.与灵敏度的关系。
D.L.=3倍空白的RSD(3.143)
(4,4.6,5,6倍)
2、定量下限
4×D.L.(EPA)
10×D.L.(JIS)
3、校正曲线
●工作曲线
●标准曲线
●何时重做?何时只做1~2点?
●特例:生物样品中Hg、As、PCB、PCDDs、PCDFs
4、数据的五性
代表性、准确性、精密性、完整性、可比性。
它们之间的关系。
D.L.附近,浓缩或放宽要求。
5、高含量时的稀释方法选择
低含量时的浓缩注意事项
6、试样前处理
●地表水
●污水、海水
●食品、生物(失水、HClO4)
●临床(尿、血、人发)
●矿物、土壤(王水、逆王水、HF、HClO4)
●固体废物(干燥时损失)、(高压釜、微波消解)
7、工作条件的选择
(1)光源
●无级放电灯:输出功率0~100W,反射功率1~5W
不同灯条件各异:Hg<As<Sb<Bi
输出(W)反射(mW)
Hg 8~12 0~2
As 10~15 0~2
Sb 18~22 0~3
Bi 30~35 0~4
寿命,表面不热
●高强度灯:
脉冲供电,~2 mA,峰值达60 mA
(2)倍增管:
负高压尽量小
(3)原子化炉:
高温灵敏度↓、噪声↑、干扰↓
低温原子化不充分。
(4)观测高度:
6~8mm(标尺不同)
(5)载气:
400~600ml/min,1%O2 As、Bi、Hg、Se、Te↓(6)屏蔽气体:600~1600nl
(7)其它
●峰面积测量:粒度好,
●峰高测量:基体复杂时好,
二者比较
●读数延迟时间:改善信噪比2~35
●积分时间:7~10s
8、提高检测能力的方法
(1)灯电流,光电倍增管电压
(2)加入增敏剂:
K3Fe(CN)6
亚硝基R盐
络合剂等
(3)萃取分离:
APDC-MIBK
DDTC-MIBK
Te 、As 、Se 、Hg : KI-苯
疏基棉 Fe (OH )↓ 交换树脂。
(4) 时常校正曲线 (5) 空白与室温 9、
干扰及消除
(1)干扰的检查:标准加入曲线
[
(2)Sn 2+、Ni 2+、Co 2+、Cd 2+、Zn 2+、Fe 2+、Cu 2+ 黑(黄)色↓ (3)消除
游效动原子
传输过发生氢化物气相干扰 分类
液相干扰
测定
①加入络合剂:K2[Fe(CN)6]、KCNs
②酸介质oxine、EDTA、硫脲
③缓冲剂KI-硫脲、邻菲罗啉
④分离方法。