仪器分析第8章原子荧光光谱分析法
- 格式:ppt
- 大小:287.00 KB
- 文档页数:17
原子荧光光谱分析法测定的应用实例及操作规程原子荧光光谱分析法测定的应用实例原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。
这些优点使得它在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。
1、原子荧光法测定农产品中砷1)前处理:依照GB/T5009、11—2023的方法,取样品0、5—5、0克,置于50ml小烧杯中或小三角瓶中,加10ml硝酸,0、5ml 高氯酸,1、25ml硫酸,盖上小漏斗,放置过夜。
置于电热板上低温消解1—2小时后,提高温度消解,直至高氯酸烟冒尽时取下。
冷却后转移至25ml比色管中,加入2、5ml5%的硫脲,定容,30分钟后上机测定。
2)仪器条件:AFS230原子荧光分光光度计灯电流:60mA;负高压:300V;其它条件都为仪器默认即可;标准曲线浓度为0,1、0,2、0,4、0,8、0,10、0,ug/L。
用5%的盐酸作载流,1、5%的硼氢化钾作还原剂,进行测定。
2、原子荧光法测定农产品中汞1)前处理:依照GB/T5009、17—2023的方法,取样品0、3—0、5克,不要超过0、5克。
置于微波消解管中,加入5ml硝酸,1ml过氧化氢,拧紧消解管盖子,放置30—60min,再置于微波消解仪中,分三步完成消解步骤。
第一步让温度升至100度左右保持10分钟,第二步让温度升至150度保持10分钟,第三步让温度升至180度保持5分钟。
完成消解后,取出冷却,用0、02%的重铬酸钾溶液转移至25ml比色管中,并用其定容。
摇匀后上机测定。
2)AFS230原子荧光分光光计,灯电流:30mA;负高压:270V;其它条件都为仪器默认即可;标准曲线浓度为0,0、1,0、2,0、4,0、8,1、0ug/L,标准曲线用汞保存液定容。
其中汞保存液为0、02%的重铬酸钾和5%的硝酸混合溶液。
用5%的硝酸作载流,0、5%的硼氢化钾作还原剂,进行测定。
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光光谱法原理
原子荧光光谱法是一种用于定量分析元素的分析技术。
它基于原子在受激激发的情况下发射特定波长的荧光光谱的原理。
原子荧光光谱法利用光源对样品中的原子进行激发。
当原子从基态转变为激发态时,它们会吸收入射光的能量。
随后,原子会从激发态返回基态,并发射出与其原子结构和能级差相关的特定波长的荧光光谱。
对荧光光谱进行测量和分析可以提供关于样品中存在的元素的信息。
每种元素都有其特定的荧光光谱,这使得可以通过测量荧光光谱来确定样品中元素的存在和浓度。
原子荧光光谱法的分析过程通常涉及以下步骤:
1. 准备样品:将样品制备成可满足荧光光谱测量条件的形式,例如溶液或固体样品的溶解。
2. 光源激发:使用合适的光源来激发样品中的原子,通常是使用强度足够的波长适当的光源。
3. 荧光光谱测量:测量样品荧光光谱的波长和强度。
光谱仪通常用于高分辨率地记录荧光光谱。
4. 分析和定量:通过比较样品的荧光光谱与标准样品的光谱,可以确定样品中元素的存在和浓度。
采用原子荧光光谱法的优点包括高灵敏度、较低的检测限、宽线性范围和多元素分析能力。
它广泛应用于各种行业,包括环境、食品、药物和矿产等领域的元素分析。
仪器分析原理3原子荧光光谱与X射线荧光光谱分析原子荧光光谱和X射线荧光光谱是常用的仪器分析原理之一、这两种分析方法可以快速准确地确定样品中元素的种类和含量。
下面将分别介绍原子荧光光谱和X射线荧光光谱的工作原理及其在仪器分析中的应用。
1.原子荧光光谱原子荧光光谱(Atomic Fluorescence Spectroscopy, AFS)是利用物质吸收射入能量后,再辐射能量的特性来分析物质中元素的种类和含量。
工作原理:原子荧光光谱的工作原理分为两个步骤:原子化和荧光辐射。
首先,样品通过加热、火焰、电磁辐射等方式使其原子化。
原子化是将样品中的元素由化合物或离子状态转变为单体原子的过程。
常用的原子化方式有火焰原子吸收光谱(Flame Atomic Absorption Spectroscopy, FAAS)和电感耦合等离子体发射光谱(Inductively Coupled Plasma Emission Spectroscopy, ICP-OES)等。
然后,通过激发原子辐射的方式,使其产生特定的荧光辐射。
荧光辐射的能量和波长是特定的,因此可以通过测量样品的荧光辐射来确定元素的种类和含量。
应用:原子荧光光谱广泛应用于环境、食品、农产品等领域的元素分析。
它具有分析速度快、准确度高、灵敏度高的特点。
可以用于分析痕量元素,如水中的重金属等。
2.X射线荧光光谱X射线荧光光谱(X-ray Fluorescence Spectroscopy, XRF)是利用物质受到X射线激发后发生荧光辐射的特性来分析样品中元素的种类和含量。
工作原理:X射线荧光光谱是利用样品中的元素受到高能X射线激发后产生特定能量的荧光X射线。
当样品被照射时,元素中的电子会被激发到较高能级,并在回到基态时发出荧光X射线。
每个元素的荧光X射线的能量和强度是特定的,通过测量荧光X射线的能量和强度可以确定样品中元素的种类和含量。
应用:X射线荧光光谱广泛应用于材料分析、岩石矿产分析、金属合金分析等领域。
原子荧光光谱法原子荧光光谱法一、概述原子荧光光谱法是一种专门用于分析原子的物质结构和组成的方法。
该方法利用了原子的特性发射出特定波长的光线来进行分析,具有高灵敏度和精确度等优点。
它广泛应用于化工、冶金、电子、环保等领域中。
二、工作原理原子荧光光谱法的工作原理是将待检物样品进入火焰或等离子体中加热到极高温度,使其中原子被激发到激发态,然后随着原子的自发跃迁,从激发态跃迁回基态时,发出一定波长的特定光线,通过仪器检测出这些发射光谱,再进行计算和分析得到样品中元素成分的定量分析结果。
三、操作流程1.准备样品:将待分析物质制成高纯度的化合物或纯金属样品。
2.样品预处理:将样品加入溶剂中,加热或酸化等方式使其转变成原子迹状态。
3.样品的雾化:将样品雾化成细小的颗粒,通过进一步的气体等离子体激励,使得原子处于激发态。
4.测量光谱:通过分光仪等仪器测量样品中元素特征光谱,得出样品元素成分的信息。
5.结果分析:根据光谱结果,采用定量方法对待分析物质的成分进行分析和计算,获得定量分析结果。
四、应用领域原子荧光光谱法适用于分析大量金属元素,可用于纯金属、杂质金属等检测。
它被广泛应用于冶金、化工、电子、环保等领域。
比如用于水质、土壤、废水等环保领域的检测,能够检测出其中的重金属元素,为环保工作提供有力的技术保障。
五、存在的问题尽管原子荧光光谱法在分析中具有很大的优势,在实际应用中仍然存在一些问题。
比如由于仪器灵敏度限制,使用样品的环境也会对结果产生影响。
此外,样品的制备过程也会对结果产生重要影响。
对于不同样品的处理方法还需进一步研究。
综上所述,原子荧光光谱法是一种非常重要的化学分析方法,应用广泛。
在实际操作和结果分析时,需要注意一些问题。
未来,我们需要根据实际的样品情况,不断地改进研究方法,提高分析的准确性和可靠性。
第一章绪论问答题1. 简述仪器分析法的特点。
第二章色谱分析法1.塔板理论的要点与不足是什么?2.速率理论的要点是什么?3.利用保留值定性的依据是什么?4.利用相对保留值定性有什么优点?5.色谱图上的色谱流出曲线可说明什么问题?6.什么叫死时间?用什么样的样品测定? .7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么?8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。
9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗?简要说明理由。
10.色谱分析中常用的定量分析方法有哪几种?当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法?11.气相色谱仪一般由哪几部分组成?各部件的主要作用是什么?12.气相色谱仪的气路结构分为几种?双柱双气路有何作用?13.为什么载气需要净化?如何净化?14.简述热导检测器的基本原理。
15.简述氢火焰离子化检测器的基本结构和工作原理。
16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的?17.为什么常用气固色谱分离永久性气体?18.对气相色谱的载体有哪些要求?19.试比较红色载体和白色载体的特点。
20.对气相色谱的固定液有哪些要求?21.固定液按极性大小如何分类?22.如何选择固定液?23.什么叫聚合物固定相?有何优点?24.柱温对分离有何影响?柱温的选择原则是什么?25.根据样品的沸点如何选择柱温、固定液用量和载体的种类?26.毛细管色谱柱与填充柱相比有何特点?27.为什么毛细管色谱系统要采用分流进样和尾吹装置?28.在下列情况下色谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。
第八章原子吸收光谱分析法一、简答题1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。
2.解释下列名词:⑴谱线轮廓;⑵积分吸收;⑶峰值吸收;⑷锐线光源;⑸光谱通带。
3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些?4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光源?5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什么?6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的作用是什么?7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子化法的检测限比原子化法高的原因。
8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。
9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式?10.分析下列元素时,应选用何种类型的火焰?并说明其理由:⑴人发中的硒;⑵矿石中的锆;⑶油漆中的铅。
11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰?12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正?13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题?14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作的理由,并说明标准溶液应如何配制?15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收低?二、填空题1.原子吸收光谱分析法与发射光谱分析法,其共同点都是利用原子光谱,但二者在本质上有区别,前者利用的是现象,而后者利用的是现象。
2.根据玻耳兹曼分布定律,基态原子数远大于激发态原子数,所以发射光谱法比原子吸收法受的影响要大,这就是原子吸收法比发射光谱法较好的原因。
3.澳大利亚物理学家瓦尔什提出用吸收来代替吸收,从尔解决测量吸收的困难。
4.空心阴极灯发射的光谱,主要是的光谱,光强度随着的增大而增大。