原子荧光光谱分析法概述
- 格式:ppt
- 大小:1.32 MB
- 文档页数:25
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光光谱法原理
原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。
原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。
原子荧光光谱法原理:基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度进行定量分析的方法。
原子荧光的波长在紫外、可见光区。
气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。
若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。
共振荧光强度大,分析中应用最多。
在一定条件下,共振荧光强度与样品中某元素浓度成正比。
该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳。
主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。
这些优点使得它在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种常用的分析方法,可同时测定环境水样中砷和汞的含量。
本文将对该方法进行详细介绍,并探讨其在环境监测中的应用。
一、原子荧光光谱法的原理原子荧光光谱法是基于原子荧光现象的分析方法。
其原理是将待测样品中的砷和汞原子激发至高能级,随后通过荧光转换回低能级从而产生可测量的荧光信号。
该信号的强度与样品中砷和汞元素的含量成正比,从而可定量测定其浓度。
二、实验步骤1. 样品的制备:将环境水样经过前处理步骤,如过滤、酸化等,将样品中的砷和汞转化为易于测量的形态。
2. 仪器的调试:根据实验要求,对原子荧光光谱仪进行调试,保证其工作状态良好。
3. 样品的测量:将经过前处理的水样加载到原子荧光光谱仪中,按照仪器的操作步骤进行测量,并记录荧光信号的强度。
4. 数据处理和结果分析:根据荧光信号的强度,结合标准曲线,计算样品中砷和汞的含量。
三、优势和应用1. 高灵敏度:原子荧光光谱法具有很高的灵敏度,可检测到非常低浓度的砷和汞。
2. 高选择性:原子荧光光谱法可通过选择性吸收和发射波长,避免干扰物质的影响,提高分析结果的准确性。
3. 宽线性范围:原子荧光光谱法的线性范围宽,适用于不同浓度范围的样品。
4. 速度快:原子荧光光谱法具有较快的分析速度,适用于大批量样品的分析。
5. 应用广泛:原子荧光光谱法可用于环境水样、土壤样品、食品样品等多种样品类型的分析。
四、实验条件的优化在使用原子荧光光谱法进行砷和汞的测定时,需优化实验条件,以提高测量结果的准确性和精确度。
1. 激发波长和发射波长的选择:根据待测元素的特征谱线,选择合适的激发波长和发射波长,避免干扰。
2. 荧光信号的积分时间:根据样品中砷和汞的浓度范围及目标灵敏度,选择合适的荧光信号积分时间。
3. 荧光信号的增强方法:为提高信号强度,可尝试增加荧光信号的增强剂,如氢化物生成剂等。
原子荧光光谱分析法原子荧光光谱分析法具有许多优点。
首先,它具有高选择性。
不同元素的原子荧光光谱具有独特的发射谱线,因此可以通过分析谱线的特征来确定元素的种类。
其次,它具有高灵敏度。
原子荧光光谱的灵敏度可以达到ppm(百万分之一)甚至ppb(十亿分之一)的级别,因此可以准确测量低浓度元素的含量。
此外,该方法还具有无损、快速、简便、高效的特点。
原子荧光光谱分析的操作步骤主要包括:试样的制备、仪器的校准和测量。
试样的制备过程通常包括溶解、溶解质的去除、稀释等步骤,以确保分析的准确性。
仪器的校准是为了消除仪器的系统误差,一般是通过测量已知浓度的标准样品来进行校准。
校准后,样品可以直接进行测量,得到原子荧光光谱。
根据光谱峰的强度和位置,可以确定样品中元素的种类和含量。
原子荧光光谱分析法可以应用于不同领域的元素分析。
例如,在环境科学中,可以用来分析水和土壤中的重金属元素,以评估环境污染的程度。
在材料科学和工业生产中,可以用来分析金属合金中的成分,以确保产品质量。
在生物医学领域,可以用来分析人体组织中的元素,以研究人体健康和疾病。
然而,原子荧光光谱分析方法也存在一些限制。
首先,由于原子荧光光谱需要能量激发原子才能产生光谱,因此只有具有较低能级的原子才能产生明显的荧光,高能级原子的荧光光谱往往比较弱。
其次,由于原子荧光光谱需要对样品进行激发,因此对于不同的元素需要不同的激发能量和波长,这增加了分析的复杂性。
此外,原子荧光光谱在测量过程中还容易受到背景噪声的干扰,影响测量结果的准确性。
总的来说,原子荧光光谱分析法是一种重要的分析技术,具有高选择性、高灵敏度、无损、快速、简便、高效等特点。
在各个领域的元素分析中有广泛的应用前景,是研究和应用的重要手段。
随着技术的不断发展,原子荧光光谱分析法将能够提供更加准确、灵敏、高效的元素分析方法。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法是一种常用的分析方法,可以同时测定环境水样中砷和汞的含量。
本文将详细介绍该分析方法的原理、操作步骤和应用。
一、原理原子荧光光谱法是基于原子能级的跃迁和荧光发射原理的一种分析方法。
通过将水样中的砷和汞原子化,激发原子使其跃迁到高能级,然后放出荧光信号,根据荧光信号的强度来确定砷和汞的含量。
二、操作步骤1. 样品处理:将待测水样进行预处理,首先将水样进行过滤,去除悬浮物和杂质。
然后根据需要,可以进行进一步的处理,如pH调整、酸化、还原等。
2. 仪器准备:根据实验需要,选择合适的原子荧光光谱仪。
检查仪器的状态,保持仪器的干燥、清洁和良好的工作条件。
根据样品的特点和要求,选择合适的测量模式、光源和检测器。
3. 校准曲线:根据待测样品的浓度范围,选择合适的标准品溶液,分别配制多个浓度的标准品溶液。
然后使用原子荧光光谱仪进行测量,绘制砷和汞的标准曲线。
4. 测量:将经过处理的样品注入仪器中,按照设定的测量参数进行测量。
同时测量标准样品并根据标准曲线计算样品中砷和汞的浓度。
5. 数据处理:根据仪器测量得到的荧光信号强度,通过标准曲线计算出砷和汞的浓度。
根据所得数据进行分析和判断。
三、应用原子荧光光谱法广泛应用于环境监测、食品安全、化工生产等领域。
具体应用包括但不限于以下几个方面:1. 环境水样监测:可用于监测地下水、河水、湖水、海水等环境水样中砷和汞的含量。
通过分析水质中的微量砷和汞元素,及时发现和预警水质污染问题。
2. 土壤监测:可用于土壤中砷和汞的含量监测。
通过对土壤样品进行处理和分析,了解土壤中砷和汞的含量分布情况,评估土壤污染状况。
3. 食品安全监测:可用于食品中砷和汞的残留物检测。
通过对食品样品进行处理和测量,了解食品中砷和汞的含量是否超标,保障食品安全。
4. 化工生产过程中的监测:可用于监测化工生产过程中废水、废气中的砷和汞元素。
通过对生产废水和废气样品进行分析,了解化工过程中砷和汞的排放情况,指导和改善生产过程。
原子荧光光谱法原理原子荧光光谱法(AFS)是一种用于测定痕量元素的方法,其原理基于原子在特定波长的辐射激发下产生的荧光发射。
这种方法具有高灵敏度、高精度和低检测限的优点,因此在环境监测、食品分析、地质学等领域得到广泛应用。
以下是原子荧光光谱法的原理的详细介绍:1. 原子荧光的产生原子荧光产生的过程可以分为两个主要阶段:激发和发射。
在激发阶段,原子吸收特定波长的辐射(通常是紫外光或可见光),使电子从基态跃迁至激发态。
这些激发态的原子不稳定,经过一段时间后会回到基态。
在返回过程中,会释放出光子,形成荧光。
每种元素都有其独特的荧光发射波长,这使得可以通过测量荧光波长来确定元素的种类。
2. 荧光信号的检测荧光信号的检测是原子荧光光谱法的核心步骤。
当原子发射出的荧光通过特定波长的滤光片后,可以将其聚焦到光电倍增管(PMT)上。
光电倍增管能够将光信号转化为电信号,进一步放大后传输到数据采集系统。
通过测量电信号的强度,可以推算出原子的荧光发射率,从而确定元素的浓度。
3. 校准和定量分析为了准确测定元素的浓度,需要进行校准和定量分析。
在校准过程中,使用已知浓度的标准溶液对仪器进行校准,建立荧光信号与元素浓度的关系。
通过这种方法,可以确定仪器对目标元素的响应因子。
在定量分析中,将未知浓度的样品通过仪器进行分析,根据已知的响应因子计算出元素的浓度。
总之,原子荧光光谱法通过测量原子在特定波长辐射激发下产生的荧光发射,实现了对痕量元素的测定。
该方法具有高灵敏度、高精度和低检测限的优点,可广泛应用于各种领域中的元素分析。
通过校准和定量分析,能够准确地测定元素的浓度,为相关研究和应用提供可靠的数据支持。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法(Atomic Fluorescence Spectrometry, AFS)是一种常用的分析方法,可以用于同时测定环境水样中的砷和汞。
砷和汞是常见的环境污染物,对人体健康造成严重威胁。
监测环境水样中的砷和汞含量具有重要意义。
原子荧光光谱法是一种高灵敏度、高选择性的分析方法,可以同时测定环境水样中的微量砷和汞。
原子荧光光谱法的基本原理是利用原子在激发态下吸收能量并返回基态时发射特定波长的荧光。
在测定砷和汞时,首先将水样中的砷和汞化合物转化为易挥发的含砷和汞气体。
然后,通过原子荧光光谱仪,通过激光或电源将样品中的砷和汞原子激发至激发态,之后返回基态时会发出特定的荧光。
荧光的强度与砷和汞的浓度成正比,通过测定荧光强度即可得到砷和汞的含量。
原子荧光光谱法可以同时测定砷和汞的原因是这两种元素具有不同的激发能级和荧光波长。
砷的激发能级在245.1纳米附近,而汞的激发能级在253.7纳米附近。
通过调节仪器的参数,可以分别选择不同的激发波长,使得砷和汞的荧光可以被分别测定。
在实际操作中,测定环境水样中砷和汞的步骤如下:1. 采集水样:选择合适的采样点位,使用专用采样瓶采集环境水样,并避免样品污染。
2. 前处理:根据样品的不同性质,对水样进行必要的前处理,例如酸化、滤过等。
3. 仪器调试:根据样品的特性和测定要求,调节原子荧光光谱仪的参数,包括激发波长、荧光扫描范围等。
4. 标准曲线绘制:使用标准溶液配制一系列不同浓度的砷和汞溶液,分别测定其荧光强度,并绘制砷和汞的标准曲线。
5. 测定样品:将前处理后的水样放入原子荧光光谱仪中,测定样品的荧光强度。
根据标准曲线,可以计算样品中砷和汞的浓度。
6. 质量控制:测定过程中需要进行质控,包括测定空白试样、加标回收实验等,以确保测定结果的准确性和可靠性。
原子荧光光谱法具有灵敏度高、选择性好、快速方便等优点,已广泛应用于环境水样中砷和汞的测定。
原子荧光光谱法分析原始记录原子荧光光谱法(Atomic Fluorescence Spectroscopy, AFS)是一种常用的分析方法,可用于测定无机物质中低浓度的金属元素。
这种分析方法是在分析过程中利用金属元素吸收光谱辐射能力的原理,通过测定元素吸收辐射能量释放出的荧光光谱强度来定量分析金属元素的含量。
本文将详细介绍原子荧光光谱法的原始记录。
在这个示例中,横轴代表波长,纵轴代表荧光光谱强度。
通过这个原始记录图,我们可以看到不同波长处的荧光光谱强度的分布情况。
在进行原子荧光光谱法分析时,我们首先需要实施样品的制备工作。
这包括将样品溶解在适当的溶剂中,使得待测元素能够以溶解态的形式存在。
然后,我们将样品输入到原子荧光光谱仪中。
原子荧光光谱仪由激发光源、光谱分析系统以及荧光检测器组成。
激发光源一般使用氢、锗或汞灯,可以发出相应的光源以激发样品的原子。
光谱分析系统包括光栅、波长选择器和荧光检测器。
荧光检测器一般使用光电倍增管,可以测定不同波长处的荧光光谱强度。
在进行原子荧光光谱分析时,我们需要先选择一个波长进行激发。
然后,我们记录激发后的荧光光谱强度的变化。
通过绘制原始记录图,我们可以观察到样品中不同波长处的荧光光谱强度。
根据荧光光谱强度与元素含量的关系,我们可以通过对原始记录图的分析,来定量测定样品中待测元素的含量。
在实际操作中,我们通常会进行多次测量,并取平均值来提高测量结果的准确性。
此外,我们还需要进行空白试验来消除其他因素的影响。
比如,我们可以用适当的溶剂作为空白对照,然后再测量样品溶液的荧光光谱强度。
最后,通过减去空白试验的结果,我们可以得到待测元素的真实含量。
总结起来,原子荧光光谱法分析原始记录是一种重要的分析手段,通过绘制原始记录图并进行分析,可以准确测定样品中金属元素的含量。
在进行原子荧光光谱法分析时,我们需要注意选取合适的波长、进行多次测量并取平均值,并进行空白试验来排除其他因素的影响。
原子荧光光谱法原理
原子荧光光谱法是一种用于定量分析元素的分析技术。
它基于原子在受激激发的情况下发射特定波长的荧光光谱的原理。
原子荧光光谱法利用光源对样品中的原子进行激发。
当原子从基态转变为激发态时,它们会吸收入射光的能量。
随后,原子会从激发态返回基态,并发射出与其原子结构和能级差相关的特定波长的荧光光谱。
对荧光光谱进行测量和分析可以提供关于样品中存在的元素的信息。
每种元素都有其特定的荧光光谱,这使得可以通过测量荧光光谱来确定样品中元素的存在和浓度。
原子荧光光谱法的分析过程通常涉及以下步骤:
1. 准备样品:将样品制备成可满足荧光光谱测量条件的形式,例如溶液或固体样品的溶解。
2. 光源激发:使用合适的光源来激发样品中的原子,通常是使用强度足够的波长适当的光源。
3. 荧光光谱测量:测量样品荧光光谱的波长和强度。
光谱仪通常用于高分辨率地记录荧光光谱。
4. 分析和定量:通过比较样品的荧光光谱与标准样品的光谱,可以确定样品中元素的存在和浓度。
采用原子荧光光谱法的优点包括高灵敏度、较低的检测限、宽线性范围和多元素分析能力。
它广泛应用于各种行业,包括环境、食品、药物和矿产等领域的元素分析。
原子荧光光谱法原子荧光光谱法一、概述原子荧光光谱法是一种专门用于分析原子的物质结构和组成的方法。
该方法利用了原子的特性发射出特定波长的光线来进行分析,具有高灵敏度和精确度等优点。
它广泛应用于化工、冶金、电子、环保等领域中。
二、工作原理原子荧光光谱法的工作原理是将待检物样品进入火焰或等离子体中加热到极高温度,使其中原子被激发到激发态,然后随着原子的自发跃迁,从激发态跃迁回基态时,发出一定波长的特定光线,通过仪器检测出这些发射光谱,再进行计算和分析得到样品中元素成分的定量分析结果。
三、操作流程1.准备样品:将待分析物质制成高纯度的化合物或纯金属样品。
2.样品预处理:将样品加入溶剂中,加热或酸化等方式使其转变成原子迹状态。
3.样品的雾化:将样品雾化成细小的颗粒,通过进一步的气体等离子体激励,使得原子处于激发态。
4.测量光谱:通过分光仪等仪器测量样品中元素特征光谱,得出样品元素成分的信息。
5.结果分析:根据光谱结果,采用定量方法对待分析物质的成分进行分析和计算,获得定量分析结果。
四、应用领域原子荧光光谱法适用于分析大量金属元素,可用于纯金属、杂质金属等检测。
它被广泛应用于冶金、化工、电子、环保等领域。
比如用于水质、土壤、废水等环保领域的检测,能够检测出其中的重金属元素,为环保工作提供有力的技术保障。
五、存在的问题尽管原子荧光光谱法在分析中具有很大的优势,在实际应用中仍然存在一些问题。
比如由于仪器灵敏度限制,使用样品的环境也会对结果产生影响。
此外,样品的制备过程也会对结果产生重要影响。
对于不同样品的处理方法还需进一步研究。
综上所述,原子荧光光谱法是一种非常重要的化学分析方法,应用广泛。
在实际操作和结果分析时,需要注意一些问题。
未来,我们需要根据实际的样品情况,不断地改进研究方法,提高分析的准确性和可靠性。
原子荧光光谱法(afs)这一周我们继续推送各种分析方法的干货知识,今天推送的是有关原子荧光光谱的内容。
按照惯例,我们先来看看纲要——一概述二基本原理三仪器结构四应用情况下面,让我们开始今天的学习吧!一概述原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。
是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术,所用仪器及操作技术与原子吸收光谱法相近。
(一)AFS的发展历程•1859年开始原子荧光理论的研究•1902年首次观察到钠的原子荧光•1962年提出将原子荧光用于化学分析•1964年得出原子荧光的基本方程式•1964年对Zn、Cd、Hg进行了原子荧光法的分析•1974年首次将氢化物进样技术和无色散原子荧光光谱技术相结合,开创了氢化物发生—无色散原子荧光光谱分析技术(HG-AFS)(二)AFS在我国的发展•1975年杜文虎等介绍了原子荧光法,次年研制了冷原子荧光测汞仪;•20世纪70年代末,郭小伟等研制成功研制了溴化物无极放电灯,为原子荧光分析技术的进一步深入研究和发展奠定了基础;•1983年郭小伟等研制了双通道原子荧光光谱仪,后将技术转让给北京地质仪器厂,即现在的海光仪器公司,开创了领先世界水平的有我国自主知识产权分析仪器的先河。
在此后的20多年中,郭小伟等在开发原子荧光分析方法仪器的设计研制,尤其在氢化物发生原子荧光分析方面做了大量卓有成效的工作,使我国在HG-AFS技术领域处于国际领先地位。
(三)我国在AFS的主要突破•用溴化物无极放电灯代替碘化物无极放电灯,成功地解决了铋的光谱干扰问题;•利用氢化物发生所产生的氢气使之在电热石英炉口形成氢氩小火焰作为原子化器,从而使整个装置简单实用;•将高强度脉冲供电空心阴极灯成功地用于作AFS光源,解决了无极放电灯制作工艺不完善和调谐困难等对使用带来的不便;•将流动注射(FIA)技术、断续流动注射技术与AFS联用开创了FIA-AFS全自动分析,并研制开发出全自动原子荧光光谱仪。
原子荧光光谱分析法在食品分析中的应用一、概述原子荧光光谱分析法(AFS)是利用原子荧光谱线的波长和强度举行物质定性及定量分析办法,是介于原子放射光谱(AES)和原子汲取光谱(AAS)之间的光谱分析技术。
其基本原理为原子蒸气汲取特征波长的光辐射后,原子被激发至高能级,再跃迁至低能级的过程中,原子所放射的光辐射称为原子荧光。
原子荧光为光致发光,二次发光,激发光源停止时,再放射过程立刻停止。
对某一元素而言,原子汲取光辐射之后,按照跃迁过程中所涉及的能级不同,将放射出一组特征荧光谱线。
因为在原子荧光光谱分析的试验条件下,大部分原子处于基态,而且能够激发的能级又取决于光源所放射的谱线,因而各元素的原子荧光谱线非常容易。
按照所记录的荧光谱线的波长即可推断有哪些元素存在,这是定性分析的基础。
原子荧光可分为3类,即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。
优点为: (1)检出限低,敏捷度高。
对Zn、Cd等元素有相当低的检出限,Zn为0.04ng/cm3、Cd可达0.001ng/cm3因为原子荧光的辐射强度与激发光源成比例,采纳新的高强度光源可进一步降低其检出限。
现已有20多种元素低于原子汲取光谱法的检出限。
(2)干扰较少,谱线比较容易。
非色散原子荧光分析仪,结构容易,价格廉价。
(3)标准曲线线性范围宽,可达3一5个数量级。
(4)可多元素同时测定。
因为原子荧光是向空间各个方向放射的,比较简单制作多道仪器,因而能实现多元素同时测定。
二、原子关光光谱仪原子荧光光谱仪可分为单道和多道两类,前者一次只能测量一个元素的荧光强度,后者一次可同时测量多个元素。
(1)辐射源:用于激发原子使其产生原子荧光。
要求强度高,稳定性好。
光源分延续光源和线光源。
延续光源普通采纳高压氛灯,功率可高达数百瓦。
这种灯的测定敏捷度较低,光谱干扰较大,但是一个灯即可激发出各元素的荧光。
常用的线光源为脉冲供电的空心阴极灯、无电极放电灯及70年月中期提出的可控温度梯度原子光谱灯。
原子荧光光谱法定量
原子荧光光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种用于定量分析的光谱技术,通常用于检测和测定液体样品中的金属元素。
下面是使用原子荧光光谱法进行定量分析的一般步骤:
1.样品制备:收集待测样品,必要时对样品进行前处理,以确保
合适的样品状态和浓度范围。
2.原子化:将样品中的金属元素原子化。
这通常通过火焰、电感
耦合等离子体(ICP)、石墨炉等手段来实现。
原子化的目的是将金属元素从其化合物中转化为自由的原子态。
3.激发和发射:通过使用激发源(通常是辐射源,如光源或激光)
激发原子的电子,导致金属原子发射荧光辐射。
每个金属元素都有独特的光谱线,这些光谱线可以用于唯一地识别和测定该元素。
4.分析光谱:通过使用荧光光谱仪测量发射的荧光光谱。
光谱中
的荧光峰的强度与样品中金属元素的浓度成正比。
5.制备标准曲线:使用一系列已知浓度的金属元素标准溶液,绘
制标准曲线。
这将用于将光谱信号转换为元素浓度。
6.定量分析:将样品中的光谱信号与标准曲线进行比较,从而确
定样品中金属元素的浓度。
7.质量控制:进行质量控制,确保分析的准确性和可靠性。
这包
括使用质控样品、重复分析等。
原子荧光光谱法的优势在于其高灵敏度、选择性和多元素分析能
力。
然而,需要注意的是,对于不同元素,可能需要调整光谱测量条件,并考虑矩阵效应等因素。