运算放大器的线性应用1
- 格式:ppt
- 大小:629.01 KB
- 文档页数:9
运算放大器的线性应用实验目的1.掌握检查运算放大器好坏的方法。
2.掌握运算放大器组成比例,求和运算,积分运算电路的工作原理以及运算功能。
3.掌握以上各种应用电路的组成及其测试方法。
实验仪器1.双踪示波器X12.函数发生器X13.数字万用表X14.直流稳压电源X15.运算放大器X1;面包板X1;电阻若干;导线若干实验原理1.运算放大器是一种包含许多晶体管的集成电路,其作用是把输入电压放大一定倍数后在输送出去,其输出电压与输入电压的比值称为电压的放大倍数。
2.在集成运放应用的电路中,运放的工作范围有两种:工作在线性区(指输入电压U0与输出电压Ud成正比时的输入电压范围)或工作在非线性区。
3.集成运放工作在线性区有两个特点:虚短:集成运放两个输入端之间的电压接近于零。
虚断:流入集成运放两个输入端的电流可视为零。
4. UM741的引脚图:实验内容:基本操作:将电源1,电源2分别调为12V,将电源1的黑色夹子接在放大器的引脚4(正电源端),将电源2的黑色夹子接在放大器的引脚11(负电源端),接着电源1,2的红色夹子接在一起(接地端),使电源输出±12V。
(1).运算放大器的好坏检测实验电路图:实验步骤:1.调节信号发生器,并将红色夹子接在放大器的引脚3(同相输入端),使其输入1kHz,1V峰峰值的正弦波信号Ui,黑色夹子接地。
2.将引脚2用导线接在引脚14(输出端口4),并将示波器的红色夹子接在引脚14上,黑色夹子接地。
3.观察示波器上显示的输出电压U0;比较Ui与U0的大小。
实验结果:(2)反相比例运算放大器实验电路图:实验步骤:1.如图连接电路,在反相输入端接入直流电压Ui。
2.根据下表内容进行测量,并完成表格,绘制传输特性。
实验结果:(3)积分电路实验电路图:操作步骤:1.如上图所示连接电路,并输入峰峰值为2V,f=1kHz的正弦信号。
2.观察并记录示波器上Ui,U0的波形,绘制波形。
实验结果:(4)积分电路操作步骤:1.如图连接电路,并输入峰峰值为2V ,f=1kHz的方波信号。
集成运算放大器在线性区的应用摘要:运算放大器用途非常广泛,接入适当的反馈网络,可实现不同用途的电路,本论文主要研究Multisim仿真环境下的集成运算放大器传输特性、集成运算放大器构成的比例运算电路、加减法运算电路。
关键字:运算放大器 Multisim 运算电路在实际电路中,集成运算放大器通常结合反馈网络共同组成某种功能的电路模块,由于早期应用于模拟计算机中,用以实现数学运算,故名“运算放大器”。
运算放大器是具有很高放大倍数的电路单元,常简称运放,随着半导体技术的发展,如今绝大多数的运放是以单片的形式存在。
集成运算放大器可分为如下几种类型:通用型、高阻型、低温漂型、高速型、低功耗型和高压大功率型。
运算放大器用途非常广泛,接入适当的反馈网络,可实现不同用途的电路,如信号放大、信号运算、信号处理和波形的产生与变换。
其应用已经延伸到汽车电子、通信、自动控制、消费等各个领域。
一、关于集成运放参数的选择(1)最大输出电压:集成运算放大器的最大输出电压约为±14V。
(2)开环电压放大倍数:没外接反馈环节测定的差模放大倍数。
(3)输入失调电压:当输入为零时,输出不为零。
如果要使此时的输出为零,输入端加一个很小的补偿电压,即为输入失调电压。
一般为毫伏级。
(4)输入失调电流:输入为零时,两个输入端静态基极电流之差,一般为零点零几的微安级。
二、原理及方案集成运算放大器具有放大倍数高,输入电阻大,输出电阻小,可靠性高等特点,广泛应用于各种技术领域,应用中按照其传输特性,可分为线性区和非线性饱和区。
在理论研究中将集成运算放大器理想化,即放大倍数和输入电阻趋近于无穷大,输出电阻无穷小,也可推导得到集成运放工作在线性区的两点重要依据[1]:(1)(一)反相比例运算图1是由集成运算放大器构成的反相比例运算电路,主要特点是反馈电阻跨接于输出端与反相输入端之间构成闭环,输入信号由反相输入端输入。
根据集成运算放大器工作在线性区的两点重要依据可以得到式(2)。
电工电子实验报告实验46运算放大器的线性应用
实验目的:
1.了解运算放大器的基本原理和特性;
2.了解运算放大器在线性应用中的应用;
3.掌握运算放大器的性能参数的测试方法。
实验仪器和材料:
1.运算放大器集成电路;
2.函数发生器;
3.直流电源供电电路;
4.信号发生器;
5.锁相放大器;
6.示波器。
实验原理:
运算放大器是一种特殊的放大器,它的主要特点是输入电阻极大,输
出电阻极小,倍数稳定。
运算放大器一般由差动放大器、输入级、中间级、输出级和负反馈电路组成。
实验步骤:
1.将运算放大器集成电路插入插座中,接入电源电压;
2.使用函数发生器产生一个频率为1kHz的正弦信号,调整振幅为1V;
3.将信号源连接到运算放大器集成电路的非反相输入端,将运算放大器集成电路的输出端连接到示波器的通道1;
4.调整示波器的刻度,使正弦信号波形在示波器屏幕上显示完整;
5.调整函数发生器的频率,并观察示波器屏幕上信号波形的变化;
6.测量运算放大器的输入电阻、输出电阻。
实验结果:
通过实验可以观察到随着函数发生器频率的变化,示波器屏幕上信号波形的变化情况。
当频率较低时,波形显示完整;当频率逐渐增加时,波形开始变形,幅度逐渐减小。
实验总结:
通过本次实验,我们深入了解了运算放大器的基本原理和特性,学会了运算放大器在线性应用中的应用。
同时,我们还掌握了运算放大器的性能参数的测试方法,如输入电阻、输出电阻的测量方法。
运算放大器在电子电路中具有广泛的应用,对于电子工程专业的学生来说,掌握运算放大器的使用非常重要。
集成运算放大器的线性应用实验佘新平编写一、 实验目的1.了解集成运放的使用方法;2.熟悉集成运放的双电源和单电源供电方法;3.掌握集成运放构成各种运算电路的原理和测试方法。
二、 实验仪器及器件 1.双踪示波器; 2.直流稳压电源; 3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA741 2块、瓷片电容0.01uF2个、电阻10k 10个、20k 5个、30k 2个、50k 2个、100k 2个、5.1k 1个、3.3k 1个、680k 1个,10k 电位器3个。
三、 预习要求1.熟悉集成电路芯片uA741的引脚图及功能; 2.掌握集成运放的工作特点;3.掌握构各种运算电路的形式及工作原理。
四、实验原理(1)集成运放简介集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电路。
集成运放uA741的电路符号及引脚图如图1所示。
图1 uA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。
(a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。
如:uA741的7脚和4脚。
(b )输出端:只有一个输出端。
在输出端和地(正、负电源公共端)之间获得输出电压。
如:uA741的6脚。
最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。
这表明集成运放的输出电阻很小,带负载能力较强。
调零V - V + -V cc调零 +V cc NC V O(c )输入端:分别为同相输入端和反相输入端。
如:uA741的3脚和2脚。
输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压V ic max。
实验集成运算放大器线性应用(1)实验集成运算放大器(OP AMP)是电路设计中常用的基本元件。
在线性应用中,OP AMP可以用来构建各种信号处理电路,如放大、滤波、比较等。
本文将探讨OP AMP在线性应用中的常见用法及其实验方法。
一、非反馈放大器非反馈放大器是OP AMP最基本的应用之一。
通过将反馈电阻接地,输入电压作为差分放大器的一个输入,输出电压在理想情况下是等于放大倍数(增益)乘以输入电压的,即Vo = Av × Vi,其中Av为增益,Vi为输入电压。
在实验中,可通过将输入信号加到放大器的非反相输入端,再通过示波器观察输出信号大小变化,确定增益大小。
二、反相放大器反相放大器是一种常用的放大电路,可将输入信号反相放大输出。
该电路将反馈电阻连接到反相输入端,输入信号作为非反相输入端。
输出信号的大小为输入信号大小的负值与反馈电阻值之比,即 Vo = -(Rf/Rin) × Vi,其中Rf为反馈电路的电阻,Rin为输入电路的电阻。
在实验中,可依据电路电压计算公式计算增益大小,再将输入信号加到非反相输入端,通过示波器观察输出信号的大小变化,验证理论计算结果。
三、比较器OP AMP还可用来构成比较器电路,将输入信号与参考电压进行比较,输出高低电平。
在一个比较器电路中,将参考电压作为差分放大器的一个输入端,而输入电压接另一个输入端。
在理想情况下,当输入电压高于参考电压时,输出电压会变为高电平;当输入电压低于参考电压时,输出电压变为低电平。
在实验中,可选择不同的参考电压观察输出电平变化,验证比较器的作用。
四、滤波器滤波器是一种将特定频率的信号通过而将其他频率的信号滤除的电路。
低通滤波器将低于某个截止频率的信号通过,而将高于该频率的信号滤除;而高通滤波器则将高于某个截止频率的信号通过,而将低于该频率的信号滤除。
在实验中,可通过将适当的电容和电阻接入OP AMP反馈环路中,构建低通或高通滤波器电路,并通过示波器观察输入信号的变化,验证滤波器的有效性。
运放的线性应用实验原理概述本文档介绍了运放(Operational Amplifier,简称OP-AMP)的线性应用实验原理。
运放是一种非常常见的电子元件,常用于模拟电路和信号处理电路中。
本文将从基本概念入手,介绍运放的工作原理,并以实验为例,阐述运放的线性应用原理。
运放基本概念运放是一种差分放大器,具有高增益和高输入阻抗的特点。
它由多个晶体管和电阻元件构成,通常具有两个输入端(非反相输入端和反相输入端)、一个输出端以及两个电源端(正电源和负电源)。
运放的基本原理运放的工作原理基于反馈机制。
当运放输入端的差异电压趋近于0时,运放将输出一个电压,使得反馈电路输出的电压与输入信号相等。
运放具有以下几个基本参数:1.增益(Gain):运放的输入信号与输出信号之间的比值。
增益可以是负值、正值、大于1或小于1的小数。
2.输入电阻(Input Impedance):运放输入端对外电路的阻抗。
3.输出电阻(Output Impedance):运放输出端对外电路的阻抗。
4.带宽(Bandwidth):运放能处理的信号频率范围。
5.共模抑制比(Common-Mode Rejection Ratio,CMRR):运放抑制共模信号的能力。
运放的线性应用运放具有很多线性应用,如放大器、滤波器、积分器、微分器等。
下面以放大器为例,介绍运放的线性应用原理。
放大器的基本原理放大器是运放最常见的应用之一。
它根据输入信号的大小,将其放大到一个更大的幅度,以便对信号进行进一步处理或放大。
放大器可以分为单端输入放大器和差分输入放大器。
单端输入放大器使用单个输入端,而差分输入放大器使用两个输入端。
单端放大器电路单端放大器通常由运放、若干个电阻和一个输入信号源组成。
输入信号通过电阻接入运放的非反相输入端,并通过运放的反相输入端与输出串联的电阻相连。
以下是一个常见的单端放大器电路示意图:•运放电源连接方式•输入端的电阻连接方式•输出端的电阻连接方式1. 运放电源连接方式:- 正电源连接到运放的正电源端- 负电源连接到运放的负电源端- 电源连接方式要根据实际电路要求确定2. 输入端的电阻连接方式:- 输入信号源接入非反相输入端的电阻- 与输入信号相位相同的电阻接入反相输入端3. 输出端的电阻连接方式:- 输出端接一个负载,如电阻或电容- 电阻值根据实际电路要求确定差分放大器电路差分放大器是一种常见的放大器电路,可以将两个输入信号进行放大。