霍尔效应与电阻测量
- 格式:ppt
- 大小:3.45 MB
- 文档页数:34
实验二 霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。
随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。
一、实验目的1. 了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2. 学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线;3. 确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。
对于图 (a)所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流I S ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力:B v e F g ()其中,e 为载流子(电子)电量,v 为载流子在电流方向上的平均定向漂移速率,B 为无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生偏移,则在Y 方向即试样A 、A ’电极两侧就开始聚集异号电荷,在A 、A ’两侧产生一个电位差V H ,形成相应的附加电场E H ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A ’称为霍尔电极。
电场的指向取决于试样的导电类型。
N 型半导体的多数载流子为电子,P 型半导体的多(a (b图 样品示意图数载流子为空穴。
对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有I S (X)、B (Z) E H (Y) < 0 (N 型)E H (Y) > 0 (P 型)显然,该电场是阻止载流子继续向侧面偏移。
一、霍尔传感器的工作原理1. 霍尔传感器是一种利用霍尔效应进行测量的传感器,霍尔效应是由美国物理学家爱德华·霍尔于1879年发现的一种物理效应。
2. 霍尔传感器是通过将电流传导材料置于磁场中,利用霍尔效应产生一个电压信号来检测磁场强度的传感器。
当传导材料中有电流通过时,磁场会使电子受到偏转,从而在传感器输出端产生一个电压信号。
3. 霍尔传感器的工作原理可以简单理解为磁场引起电子偏转产生电压信号,从而实现对磁场的检测。
二、磁敏电阻的工作原理1. 磁敏电阻是一种磁场敏感的电阻,其阻值会随着外加磁场的变化而发生变化。
2. 磁敏电阻的工作原理是基于磁阻效应,当磁敏电阻处于外加磁场中时,其晶格结构或磁性材料会发生变化,从而导致电阻值发生变化。
3. 一般来说,磁敏电阻是由氧化铁、氧化镍等磁性材料制成,当外加磁场改变了这些材料的磁矩方向时,电阻值会发生相应的变化。
4. 磁敏电阻的工作原理可简单理解为外加磁场改变磁性材料的磁矩方向,从而导致电阻值发生变化。
三、霍尔传感器与磁敏电阻的对比1. 原理差异:霍尔传感器是利用霍尔效应来测量磁场强度的传感器,而磁敏电阻是利用磁阻效应来测量外加磁场的变化的传感器。
2. 灵敏度:通常情况下,霍尔传感器的灵敏度要高于磁敏电阻,因为霍尔传感器是直接测量磁场强度,而磁敏电阻是间接测量外加磁场的变化。
3. 响应速度:由于霍尔传感器是通过电子受到磁场影响产生电压信号来检测磁场强度,因此其响应速度一般要快于磁敏电阻。
4. 成本:通常来说,磁敏电阻的制造成本要低于霍尔传感器,因为磁敏电阻一般采用的是一些常见的磁性材料,而霍尔传感器需要一定的电子元件来实现。
5. 应用范围:霍尔传感器和磁敏电阻在应用范围上略有不同,霍尔传感器适用于需要精确测量磁场强度的场合,而磁敏电阻适用于对外加磁场变化敏感的场合。
四、结论根据上述分析,霍尔传感器和磁敏电阻的工作原理、性能特点以及应用范围都有所不同。
实验三半导体材料的霍尔效应测量实验1实验原理1)霍尔效应霍尔效应指的是在外加磁场的作用下,给半导体通入电流,内部的载流子受到磁场引起的洛伦兹力的影响,空穴和电子向相反的方向偏转,这种偏转导致在垂直电流和磁场方向上产生正负电荷的积累,形成附加的横向电场,直至电场对载流子的作用力与洛伦兹力抵消,此时的电场强度乘以半导体样品的宽度后,可以得到霍尔电压V H。
设磁感应强度为B,电子浓度(假设为n型半导体)为n,则电流表达式为I H=nevbd,而霍尔电压产生的电场为E H=vB霍尔电压的表达式为:V H=E H b=vBb =I HnebdBb =1neI H Bd=R HI H Bd其中R H称为霍尔系数:R H=1 ne可以通过V H,B, I H的方向可以判断样品的导电类型,通过V H和 I H的关系曲线可以提取出R H,进一步还可以得到电子(空穴)浓度。
在实际测量中,还会伴随一些热磁副效应,使得V H还会附带另外一些电压,给测量带来误差。
为了消除误差,需要取不同的I H和B的方向测量四组数据求平均值得到V H,如下表示I H正向I H负向B正向V1V3B负向V2V42)范德堡法测量电阻率由于实验使用的霍尔元件可视为厚度均匀、无空洞的薄片,故可使用范德堡法进行电阻率的测量。
在样品四周制作四个极小的欧姆接触电极1,2,3,4。
如图2所示。
14图 1 霍尔效应原理示意图先在1、2端通电流,3、4端测电压,可以定义一个电阻R1=|V34| I12然后在2、3端通电流,1、4端测电压,求R2=|V14| I23理论上证明样品的电阻率与R1、R2的关系为ρ=πdln2R1+R22f可以通过查表可知范德堡因子f与R1/R2的关系,从而求得样品的电阻率。
2实验内容本实验所用仪器为SH500-A霍尔效应实验仪、恒流电源、高斯计。
实验步骤如下:1)连线掌握仪器性能,连接恒流电源与霍尔效应试验仪之间的各组连线。
2)测量霍尔系数,判断样品的导电类型测量半导体样品的霍尔系数。
http ://半导体材料研究和器件测试通常要测量样本的电阻率和霍尔电压。
半导体材料的电阻率主要取决于体掺杂,在器件中,电阻率会影响电容、串联电阻和阈值电压。
霍尔电压测量用来推导半导体类型(n 还是p )、自由载流子密度和迁移率。
为确定半导体范德堡法电阻率和霍尔电压,进行电气测量时需要一个电流源和一个电压表。
为自动进行测量,一般会使用一个可编程开关,把电流源和电压表切换到样本的所有侧。
4200A-SCS 参数分析仪拥有4个源测量单元(SMUs )和4个前置放大器(用于高电阻测量),可以自动进行这些测量,而不需可编程开关。
用户可以使用4个中等功率SMU (4200-SMU,4201-SMU )或高功率SMU (4210-SMU,4211-SMU ),对高电阻材料,要求使用4200-PA 前置放大器。
4200A-SCS 包括多项内置测试,在需要时把SMU 的功能自动切换到电压表或电流源,霍尔电压测量要求对样本应用磁场。
4200A-SCS 包括交互软件,在半导体材料上进行范德堡法和霍尔电压测量。
4200A-SCS Clarius+软件提供了全面的程序库,除电阻率和霍尔电压测试外,还包括许多其他测试和项目。
范德堡法和霍尔电压测试是在Clarius V1.5和V1.6中新增的,包括计算确定表面或体积电阻率、霍尔迁移率和霍尔系数。
范德堡法电阻率测量人们通常使用范德堡法(vdp )推导半导体材料的电阻率。
这种四线方法用在拥有四个端子、均匀厚度的小的扁平形样本上。
电流通过两个端子施加到样本上,透过相反的两个端子测量电压下跌,如图1所示。
使用图2所示的SMU 仪器配置,围着样本的边缘重复测量8次。
然后使用这一串8项电压测量(V1-V8)和测试电流(I )来计算电阻率(ρ),ρA 和ρB 是体积电阻率,f A和f B 是样本对称度的几何因数,与两个电阻比率Q A 和Q B 相关。
公式如下:测量范德堡法电阻率和霍尔电压泰克科技供稿图1范德堡法配置图2范德堡法电阻率测量惯例63http ://霍尔电压测量霍尔电压测量对半导体材料表征具有重要意义,因为从霍尔电压和电阻率可以导出传导率类型、载流子密度和迁移率。
霍尔效应实验方法【实用版3篇】目录(篇1)1.霍尔效应实验方法的概述2.霍尔效应实验方法的原理3.霍尔效应实验方法的步骤4.霍尔效应实验方法的应用5.霍尔效应实验方法的注意事项正文(篇1)【霍尔效应实验方法的概述】霍尔效应实验方法是一种用于测量半导体材料中的霍尔效应的实验方法。
霍尔效应是指当半导体材料中的载流子在电场作用下发生偏移,并在材料内部产生横向电场,从而导致横向电流的现象。
霍尔效应实验方法可以帮助研究者了解半导体材料的性质,并为器件设计和制造提供重要参数。
【霍尔效应实验方法的原理】霍尔效应实验方法的原理是基于霍尔效应的测量。
在半导体材料中,载流子受到电场作用而发生偏移,形成横向电场。
当横向电场达到一定程度时,会在材料表面产生横向电流。
通过测量横向电流,可以计算出载流子浓度和电场强度等相关参数。
【霍尔效应实验方法的步骤】1.准备半导体材料:选择合适的半导体材料,如硅、锗等,并加工成薄片或晶圆。
2.制作电极:在半导体材料表面制作电极,通常需要四个电极,分别是源极、漏极、霍尔极和反向霍尔极。
3.施加电压:通过源极和漏极施加直流电压,形成直流电场。
4.测量电流:通过霍尔极和反向霍尔极测量横向电流。
5.计算参数:根据测量得到的横向电流,计算载流子浓度、电场强度等参数。
【霍尔效应实验方法的应用】霍尔效应实验方法在半导体材料研究、器件设计和制造等领域具有广泛应用。
通过测量霍尔效应参数,可以了解半导体材料的载流子浓度、迁移率、电阻率等重要参数,为器件设计和制造提供重要依据。
【霍尔效应实验方法的注意事项】1.在实验过程中,要注意半导体材料的加工和处理,避免污染和损伤。
2.在施加电压时,要注意控制电压和电流,避免超过材料的承受范围。
目录(篇2)1.霍尔效应实验方法的背景和意义2.霍尔效应实验方法的原理3.霍尔效应实验方法的实验步骤4.霍尔效应实验方法的注意事项5.霍尔效应实验方法的应用领域正文(篇2)一、霍尔效应实验方法的背景和意义霍尔效应实验方法是一种用于测量磁场强度的实验方法,它基于霍尔效应的原理。
介绍磁通测量的方法磁通测量是一种用于测量磁场特性的方法,它在许多领域中都具有广泛的应用,例如电力系统、电动机、仪器仪表等。
磁通测量可以通过测量磁感应强度、磁通量等参数来反映磁场的分布和特性。
在磁通测量中,我们常用的方法包括:霍尔效应测量、磁电阻测量和法拉第效应测量。
1. 霍尔效应测量:霍尔效应是指在一块薄片上通有电流时,垂直于电流和磁场方向的方向上会产生电势差,这种现象被称为霍尔效应。
利用霍尔效应可以测量磁感应强度以及磁场的方向和分布。
在实际应用中,我们通常使用霍尔元件来测量磁通量。
霍尔元件是一种集成了霍尔效应的电子器件,常用的有霍尔传感器和霍尔开关。
通过将霍尔元件放置在待测磁场中,当磁场发生变化时,霍尔元件会产生相应的电信号,进而测量磁场的特性。
2. 磁电阻测量:磁电阻效应是指材料的电阻会随着外加磁场的变化而发生变化。
根据磁电阻效应,我们可以设计磁电阻测量装置来测量磁感应强度、磁场的方向和大小。
目前,最常用的磁电阻测量方法是磁电阻效应传感器。
磁电阻效应传感器通常由磁电阻材料、导线和电子装置组成。
当该传感器处于磁场中时,其电阻会发生变化,通过测量电阻的变化可以得到与磁场相关的信息。
3. 法拉第效应测量:法拉第效应是指当导电体运动穿过磁场或磁场变化时,会在导电体两端产生电势差。
这种现象被称为法拉第效应。
法拉第效应可以用于测量磁通量和磁场的分布。
法拉第效应传感器是一种典型的应用,通过测量法拉第效应可以得到磁场的特性。
这种传感器可用于测量磁通量、磁场分布以及有关磁场的运动状态等。
总结回顾:在本篇文章中,我们介绍了磁通测量的几种常用方法,包括霍尔效应测量、磁电阻测量和法拉第效应测量。
这些方法都可以用于测量磁场的特性,并提供有关磁感应强度、磁通量以及磁场分布的信息。
通过采用这些方法,我们可以更好地理解和分析各种与磁场相关的问题。
在实际应用中,根据具体的需求和测量要求,我们可以选择合适的方法来进行磁通测量。
实验二 霍尔系数和电阻率的测量把通有电流的半导体置于磁场中,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象称为霍尔效应。
随着半导体物理学的发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出材料的杂质电离能和材料的禁带宽度。
一、实验目的1. 了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识;2. 学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线;3. 确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。
对于图2.1 (a)所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流I S ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力:B v e F g (2.1)其中,e 为载流子(电子)电量,v 为载流子在电流方向上的平均定向漂移速率,B 为磁感无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生偏移,则在Y 方向即试样A 、A ’电极两侧就开始聚集异号电荷,在A 、A ’两侧产生一个电位差V H ,形成相应的附加电场E H ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、A ’称为霍尔电极。
电场的指向取决于试样的导电类型。
N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。
对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有(a) (b) 图2.1 样品示意图I S (X)、B (Z) E H (Y) < 0 (N 型)E H (Y) > 0 (P 型)显然,该电场是阻止载流子继续向侧面偏移。
霍尔效应及霍尔元件基本参数的测量一、实验目的1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。
2.掌握常温情况下测量霍尔系数的方法。
3.判断样品的导电类型,计算霍尔系数、载流子浓度、电导率、霍尔迁移率。
4.用霍尔元件测量铁电磁铁气隙中磁感应强度B沿X方向的分布曲线及电磁铁的励磁曲线。
二、实验原理1.霍尔效应和霍尔系数图1霍尔效应示意图如图1所示,在半导体的x方向有均匀的电流I x通过,同时在z方向上加有磁场B z,那么在这块半导体的y方向会出现一个横向电势差U H,这种现象叫做“霍尔效应”,U H称为“霍尔电压”,对应的y轴的电场称为“霍尔电场”。
半导体的长、宽、高分别为L、a、b,p(n)型半导体的载流子为空穴(电子),在沿x方向电场的作用下,以平均漂移速度v x运动,形成电流I x,由于在z轴方向有磁场B z,载流子受到洛伦兹力的作用F q v B⋅⨯=()P型半导体中空穴带正电,由右手定则可知:受到的洛伦兹力沿着y轴负向,那么空穴向着y轴负向运动,在y轴方向形成沿着y轴正向的电场—霍尔电场,当该电场对空穴的作用力qE y与洛伦兹力F达到平衡时,空穴不再沿着y轴偏离,达到稳态,只有沿着x方向的电流。
同理,n型半导体中电子带负电,电子的速度方向为x轴负向,电荷为-q,那么根据右手定则可知:受到的洛伦兹力沿着y轴负向,那么电子向着y轴负向运动,在y 轴方向形成沿着y 轴负向的电场—霍尔电场,当该电场对电子的作用力qE y 与洛伦兹力F 达到平衡时,电子不再沿着y 轴偏离,达到稳态,只有沿着x 方向的电流。
因此,在给定电流方向以及外加磁场方向时,根据霍尔电场的方向便可以判断半导体是n 型还是p 型。
下面推导霍尔系数的表达式。
在稳态下,载流子受到的电场力与洛伦兹力达到平衡,即为Hx z H U qv B E q q a==,H H x z E R J B =(其中R H 即为霍尔系数) 而根据半导体中电流公式:x x x I nqv S nqv ab ==可知:H H x zU bR I B =(3/m C ) (1) 2. 霍尔效应中的副效应及消除办法在霍尔系数的测量中,会伴随一些热磁副效应、电极不对称等因素引起的附加电压叠加在霍尔电压上,主要有爱廷豪森效应、能斯脱效应、里纪—勒杜克效应、电极位置不对称、温度梯度存在等副效应。
霍尔效应测试㈠霍尔效应的组成,功能及性能,工作原理.组成: HMS测试系统主要由恒电流源、范德堡法则终端转换器、电压测量计,低温管道系统及磁场强度系统组成.功能及性能:工作原理:范德堡法则1 、电阻率测量测量电阻率时,依次在一对相邻的电极通电流,另一对电极之间测电位差,得到电阻R,代入公式得到电阻率ρ。
这种方法对于样品形状没有特殊的要求,但是要求薄膜样品的厚度均匀,电阻率均匀,表面是单连通的,即没有孔洞。
此外,A,B,C,D四个接触点要尽可能小(远远小于样品尺寸),并且这四个接触点必须位于薄膜的边缘。
为了简化测量和计算,常常要求待测薄膜为正方形,这是由于正方形具有很高的对称性,正方形材料的四个顶点从几何上是完全等效,因而可推知电阻值R AB,CD和R BC,AD在理论上也应该是相等。
查表可知当R AB,CD/R BC,AD=1时,f=1。
因此,最终电阻率的公式即可简化为:2、霍尔系数和迁移率测量测量霍尔系数时,在一对不相邻的电极通上电流,并在垂直样品方向上加一磁场,在另一对不相邻的电极上测量电压的变化,可得霍尔系数及其载流子浓度.其中d为样品厚度,B为磁场强度,q为电子电荷。
由电阻率和霍尔系数的测量,同时还可以得到电子的霍尔迁移率。
㈡软件菜单使用说明1. 先打开电脑主机,再打开设备开关。
2. 左手拿磁极的上盖(N朝上),将待测得薄膜样品放入弹簧夹内,此时弹簧夹应正面朝上(如果放反,会将样品烧坏),放好后盖好上盖。
3. 开始界面4. 进入霍尔测试界面需要输入数据的只有左上角的INPUT VALUE栏,别的都不用改动。
INPUT VALUE的菜单说明如下所示。
DATE:测试日期;USER NAME:用户名称;SAMPLE NAME:样品名称;(前三项自己正确填写);COMPORT:通信端口(已设置好不用重新输入);TEMP:测试温度(室温下测选择300K,液氮的环境中测选择77K);I: 测试电流(根据试验需求输入);DELAY:更换测试点测试延时(一般无需改动,0.100s);D:样品厚度(根据自己的样品输入);B:测量磁场(根据磁铁上的数据输入);Measurement Number:测量次数(一般选择1000)。