第七章回归案例
- 格式:ppt
- 大小:1.18 MB
- 文档页数:62
第七章相关与回归分析学习内容一、变量间的相关关系二、一元线性回归三、线性回归方程拟合优度的测定学习目标1. 掌握相关系数的含义、计算方法和应用2. 掌握一元线性回归的基本原理和参数的最小二3. 掌握回归方程的显著性检验4. 利用回归方程进行预测5. 了解可化为线性回归的曲线回归6. 用Excel 进行回归分析一、变量间的相关关系1. 变量间的关系(函数关系)1)是一一对应的确定关系。
2)设有两个变量x和y,变量y 随变量x一起变化,并完全依赖于x,当变量x 取某个数值时,y依确定的关系取相应的值,则称y 是x的函数,记为y = f (x),其中x 称为自变量,y 称为因变量。
3)各观测点落在一条线上。
4)函数关系的例子–某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)。
–圆的面积(S)与半径之间的关系可表示为S = π R2。
–企业的原材料消耗额(y)与产量x1、单位产量消耗x2、原材料价格x3间的关系可表示为y =x1 x2 x3。
单选题下面的函数关系是()A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2. 变量间的关系(相关关系)1)变量间关系不能用函数关系精确表达。
2)一个变量的取值不能由另一个变量唯一确定。
3)当变量 x 取某个值时,变量 y 的取值可能有几个。
4)各观测点分布在直线周围。
5)相关关系的例子–商品的消费量(y)与居民收入(x)之间的关系。
–商品销售额(y)与广告费支出(x)之间的关系。
–粮食亩产量(y)与施肥量(x1)、降雨量(x2)、温度 (x3)之间的关系。
–收入水平(y)与受教育程度(x)之间的关系。
–父亲身高(y)与子女身高(x)之间的关系。
3. 相关图表1)相关表:将具有相关关系的原始数据,按某一顺序平行排列在一张表上,以观察它们之间的相互关系。
2)相关图:也称为分布图或散点图,它是在平面直角坐标中把相关关系的原始数据用点描绘出来,通常以直角坐标轴的横轴代表自变量x,纵轴代表因变量y。
第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。
就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。
在每种情况下,变量的大小都传递了有用的信息。
在经验研究中,我们还必须在回归模型中考虑定性因素。
一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。
本章的绝大部分内容都在探讨定性自变量。
我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。
这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。
我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。
这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。
尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。
虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。
7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。
在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。
在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。
在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。
比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。
这种情形中的变量名称就是取值1的事件。
通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。