3.2求代数式地值地方法
- 格式:doc
- 大小:1.04 MB
- 文档页数:12
3.2 代数式的值
第1课时实际问题中的代数式求值
师生活动:教师鼓励学生独立完成,潜移默化地提高学生观察、分析、解决问题的能力,并在这一过程中将列代数式与求代数式的值融会贯通,提高应用能力,体验克服困难的过程,树立学习数学的信心.
典例精析
例1 根据下列 x ,y 的值,分别求代数式 2x + 3y 的值.
(1)x = 15,y = 12;
(2)x = 1,y = 1
2 ;
例2 根据下列 a ,b 的值, 分别求代数式 的值. (1)a = 4,b = 12;(2)a = -3,b = 2; 三、当堂练习 1.(海南·期中)当 y = -4 时,代数式 -1 + 5y 的值为 ( ) A.-19 B.19 C.21 D.-21
2. (无锡·中考模拟)当 a = 2,b =-3 时,代数式 (a - b )2 + 2ab 的值为 ( ). A.13 B.27 C. -5 D.-7
2b a a
教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
苏科版数学七年级上册《3.2 代数式》教学设计6一. 教材分析《3.2 代数式》是苏科版数学七年级上册的一个重要章节,本节内容主要介绍了代数式的概念、分类和简单运算。
通过本节课的学习,学生能够理解代数式的基本含义,掌握代数式的基本运算方法,为后续的方程和不等式学习打下基础。
二. 学情分析七年级的学生已经掌握了实数的基础知识,具备一定的逻辑思维能力。
但是,对于代数式的理解和运用还比较陌生,需要通过本节课的学习,逐步建立起代数式的概念框架,掌握代数式的基本运算技巧。
三. 教学目标1.了解代数式的概念,能够正确书写代数式。
2.掌握代数式的基本运算方法,能够进行简单的代数式运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.代数式的概念及其分类。
2.代数式的基本运算方法。
五. 教学方法采用情境教学法、探究教学法和小组合作学习法。
通过设置情境,引导学生主动探究代数式的含义和运算方法,培养学生的问题解决能力。
同时,小组合作学习,让学生在讨论和交流中,巩固所学知识。
六. 教学准备1.PPT课件。
2.练习题。
3.教学黑板。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生用代数式表示这些问题。
例如,小华买了3个苹果和2个香蕉,苹果的单价是2元,香蕉的单价是3元,小华一共花了多少钱?让学生尝试用代数式表示这个问题,从而引出代数式的概念。
2.呈现(10分钟)通过PPT课件,介绍代数式的概念、分类和基本运算。
让学生初步了解代数式的基本知识,为接下来的操练打下基础。
3.操练(15分钟)让学生进行代数式的基本运算练习。
例如,求解下列代数式:(1)(3x - 2y + 5)(2)(4(a + b) - 3(a - b))(3)(x^2 + 3x - 4)引导学生运用所学知识,解决实际问题。
4.巩固(10分钟)让学生完成一些关于代数式的练习题,巩固所学知识。
例如,判断下列代数式是否正确,并说明理由:(1)(2(a + b) = a + 2b)(2)(3x^2 - 2x + 1 = 2x^2 + 3x - 1)(3)(ab + 3a - 4b)5.拓展(10分钟)让学生运用所学知识,解决一些实际问题。
华师大版数学七年级上册《3.2 代数式的值》教学设计3一. 教材分析华师大版数学七年级上册《3.2 代数式的值》是学生在掌握了有理数、整式、分式的基本知识后,进一步深入学习代数式的值。
本节课的内容是让学生理解代数式的值的概念,学会求代数式的值,培养学生运用代数式解决实际问题的能力。
教材通过例题和练习题的形式,让学生掌握代数式的值的求法,并在实际问题中应用。
二. 学情分析七年级的学生已经掌握了有理数、整式、分式的基本知识,具备了一定的逻辑思维能力和运算能力。
但部分学生对于代数式的值的概念理解可能还不够清晰,求代数式的值的方法还不够熟练。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解代数式的值的概念,掌握求代数式的值的方法。
2.能够运用代数式解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.代数式的值的概念。
2.求代数式的值的方法。
3.运用代数式解决实际问题。
五. 教学方法采用讲授法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解代数式的值的概念,掌握求代数式的值的方法。
通过练习和讨论,巩固所学知识,提高学生的应用能力。
六. 教学准备1.PPT课件。
2.练习题。
3.教学用具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,让学生观察这些问题中是否涉及到代数式的值。
通过引导学生思考和讨论,引入本节课的主题——代数式的值。
2.呈现(15分钟)讲解代数式的值的概念,并通过示例让学生理解代数式的值是指将代数式中的变量替换为具体的数值后得到的结果。
接着,引导学生总结求代数式的值的方法,如直接代入法、化简法等。
3.操练(15分钟)让学生独立完成一些求代数式的值的练习题。
教师在旁边进行辅导,解答学生的疑问。
对于错误较多的题目,进行讲解和分析,帮助学生巩固所学知识。
4.巩固(10分钟)小组讨论:让学生分组讨论如何求解一些复杂的代数式的值。
3.2代数式【学习目标】1.在具体情境中认识用字母表示数的意义.2.能解释一些简单代数式所表示的实际背景或几何意义,发展符号感.【学习重点】列代数式,求代数式的值.【学习难点】感受代数式求值可以理解为一个转换过程或某种算法.行为提示:点燃激情,引发学生思考本节课学什么.情景导入生成问题在上节内容中出现过的4+3(x-1),x+x+(x+1),m-1,3v,2a+10,1an,st,6(a-1)2等式子,有什么共同的特征?【说明】学生通过观察、分析与同伴进行交流,找出它们的共同特征.行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.说明:学生通过分析,与同伴交流,正确地列出代数式并求值,让学生初步感受怎样列代数式.行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.展示目标:知识模块一主要展示代数式的概念;知识模块二主要展示同一个代数式可以表示不同的意义;知识模块三展示求代数式的一般方法步骤.自学互研生成能力知识模块一代数式的概念问题1什么样的式子是代数式?【说明】学生在导入里已经找到这些式子的共同特征,教师应加以规范.【归纳结论】像这样用运算符号把数和字母连接而成的式子叫做代数式.注意:单独一个数或一个字母也是代数式.知识模块二列代数式和代数式表示的意义学生分组合作,共同完成下面的问题.问题2列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?【归纳结论】列代数式就是把实际问题中的数量关系用代数式表示出来.用具体数值代替式中的字母,就可以求出代数式的值.问题3代数式10x+5y还可以表示什么?【说明】学生通过讨论、交流,能准确地理解并掌握代数式的意义.【归纳结论】同一个代数式可以表示不同的意义.知识模块三求代数式的值1.师生合作共同完成教材第81页“做一做”的内容.【说明】学生先了解身体质量指数的计算方法,然后列出代数式,再根据给出的数值求出代数式的值,体会求代数式值的方法.【归纳结论】求代数式的值分两步完成:(1)代入;(2)计算.2.师生合作共同完成教材第83页下面和第84页上面“议一议”的内容.【说明】学生通过计算,掌握求代数式值的方法.【归纳结论】用具体数值代替代数式里的字母,按照代数式指明的运算计算出的结果叫代数式的值.代数式的值随着代数式中字母取值的变化而变化.交流展示生成新知1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书规划.知识模块一代数式的概念知识模块二列代数式和代数式表示的意义知识模块三求代数式的值检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
教师 陆阳红 学生 年 级 一年级 上课日期 2019.5.25学 科数学课题名称求代数式值的方法上课时间13:00-15:00教学目标1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法.2.会利用代数式求值推断代数式反映的规律.3.能解释代数式求值的实际应用.教学重难点重点:列代数式,会求代数式的值难点:感受代数式求值可以理解为一个转换过程或某种算法课程教案一、创设情境如图就是小明设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、知识点一、代数式的值1、概念 像这样,用具体数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression ).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化. 2、字母的取值①代数式中的字母取值必须使这个代数式有意义.如在代数式1x -3中,x 不能取3,因为当x =3时,分母x -3=0,代数式1x -3无意义.②实际问题中,字母的取值要符合题意.如当x 表示人数时,x 不能取负数和分数. [例题1] :下列代数式中,a 不能取0的是( ).A.13aB.3aC.2a -5D .2a -b 解析:代数式中字母的取值必须使这个代数式有意义,由分母不能为0可知,B 选项中的a 不能取0.故选B.答案:B 练一练1、要使代数式1x 1-有意义,则x 需要满足什么条件? 2、要让代数式938-x 有意义,则x 需要满足什么条件?知识点二、代数式求值的步骤1、步骤第一步:代入,用具体数值代替代数式里的字母第二步:计算,按照代数式中指明的运算,计算出结果 2、注意事项①一个代数式中的同一个字母,只能用同一个数值去代替。
②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号。
③代入时,不能改变原式中的运算符号及数字。
④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的。
[例题2]当a=2,b=-1,c=-3,求下列代数式的值 (1)b ²-4ac (2)(a+b+c)²解析:(1)当a=2,b=-1,c=-3(注意:一定要这步!!!) b ²-4ac=(-1)²-4×2×(-3) =1+24 =25 (2)练一练1. 已知x=1,y=2,则代数式x-y 的值为( ) A.1 B.-1 C.2 D.-32.(2016)当填x=1时,代数式4-3x 的值为( ) A.1 B.2 C.3 D.43. 某商店购进一批茶杯,每个1.5元,则买n 个茶杯需付款 元.如果茶杯的零售价为每个2元,则售完茶杯得付款 元.当n=300时,该商店的利润为 元,n=3561时你能确定利润吗? 知识点三、求代数式的值的方法 (1)直接求值法[例题3] 当a =12,b =3时,求代数式2a 2+6b -3ab 的值.解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得.解:原式=2×(12)2+6×3-3×12×3=12+18-92=14.方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来. 试一试根据下列各组x 、y 的值,分别求出代数式 x 2+2xy+y 2 与x 2-2xy+y 2的值:(1)x=2,y=3;(2)x=-2,y=-4。
练一练(2)整体代入法求值.[例题4] 已知x +y =2013,xy =2012,求xy -2(x +y)的值.解析:由于条件是关于x +y ,xy 的值,故应考虑用整体代入的方法计算,即将xy 看成一个整体,将x +y 看成一个整体.解:xy -2(x +y)=2012-2×2013=-2014. 练一练1. 已知323,64x y x y +=+=则______,32x y --= ,69y x += ,23x y += 。
2. 已知42=-n m ,则m n n m +--2)2(2的值是 .3. 已知232=+-y x y x ,则=++-y x x y 32 ,=-+y x y x 23 ,=-+yx yx 2124 。
4. 已知3=-b a ,4=-c b ,则=-c a ,=+-c b a 2 ,=--a c b 2 。
拓展提升题 例1:已知7=-+ba ba ,求)(3)(2b a b a b a b a +---+的值.变式:若已知232=+-y x y x ,则yx y x y x y x -+-+-2124324的值。
(3)利用程序图求代数式的值.[例题5] 有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是 .解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.练一练.按如图所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( ).[来源:学§科§网]A .6B .21C .156D .231解析:按照本题的运算程序,是否输出结果,关键是看每次计算的结果是否大于100,在输出结果之前的计算可以是多次反复循环的.第一次:输入的数x =3,则x (x +1)2=3×(3+1)2=6,因为6<100,所以不能输出结果,而是进入“否”程序,回到“输入”,再进行计算;第二次:输入的数x =6(此时输入的数已变为第一次的计算结果),则x (x +1)2=6×(6+1)2=21,因为21<100,所以再次进入“否”程序,回到“输入”,再进行计算;第三次:输入的数x =21(此时输入的数已变为第二次的计算结果),则x (x +1)2=21×(21+1)2=231,因为231>100,所以进入“是”程序,“输出结果”231,故选D.如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积; (2)计算当a =3,b =1时,水渠的横断面面积.(3)课后请你估算一下你及你的家人的身体质量指数。
三、知识总结求代数式的值常用的方法有:直接代入计算、整体代入计算、按指定的程序代入计算. (1)直接代入计算当已知一个代数式中各字母的取值时,可以用直接代入计算的方法. (2)整体代入计算已知一个含有字母的代数式的值,求另一个代数式的值时,可以选用整体代入的方法. 整体代入步骤:①对已知代数式或所求代数式进行适当变形;②整体代入求值.运用整体思想求代数式的值就是将一个代数式(的值)作为一个整体代入到欲求值的代数式中,从而求出代数式的值的方法.解答此类问题时,要从整体上分析已知代数式与欲求值的代数式之间结构的异同,从整体上把握解题思路,寻求解决问题的方法. (3)按指定的程序代入计算按指定的程序代入计算,即数值转换机.给出一个代数式,或提供运算程序,给出字母的取值,代入求值即可. 四、一 选择题: 1、当12x =时,代数式21(1)5x +的值为 ( ) A. 15 B.14 C. 1 D.352、当a =5时,下列代数式中值最大的是 ( )A.2a +3B.12a -C.212105a a -+D.271005a -3.已知3a b =,a b a -的值是( ) A.43 B.1 C.23D.0 4.如果代数式22m nm n -+的值为0,那么m 与n 应该满足 ( )A.m +n =0B.mn =0C.m =n ≠0D.mn≠15.求下列代数式的值,计算正确的是 ( ) A 、当x =0时,3x +7=0 B 、当x =1时,3x 2-4x +1=0C 、当x =3,y =2时,x 2-y 2=1D 、当x =0.1,y =0.01时,3x 2+y =0.31 二 填空题1. 当a =4,b =12时,代数式a 2-ba的值是___________。
2. 小在计算31+a 的值时,误将“+”号看成“-”号,结果得12,那么31+a 的值应为_____________。
3. 当x =_______时,代数式53x -的值为0。
21n n +(2)观察上表,描述所求得的这一列数的变化规律;(3)当n 非常大时,21n n +的值接近于什么数? 思维拓展1.按下图所示的程序计算,若开始输入的n 值为2,则最后输入的结果是_________.2、若37x y +=-,a ,b 互为倒数,代数式1()52x y ab ++的值为______. 3、(2008)已知221x y -=,那么2243x y -+=_________.4、若,234c b a ==求cb ac b a 323++++的值.5、已知221a ab -=,25b ab -=,那么代数式222b a -的值为多少?。