解题技巧专题:平行线中作辅助线的方法
- 格式:docx
- 大小:124.68 KB
- 文档页数:6
初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。
辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。
下面将介绍一些初中数学中常用的辅助线的方法。
1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。
例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。
1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。
例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。
2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。
例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。
2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。
例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。
3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。
例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。
3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。
平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。
平行线可以用于解决许多几何问题。
有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。
这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。
方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。
这个方法可以在几何证明中使用,以创建所需的形状或角度。
下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。
然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。
这样,你就可以利用这个平行四边形来证明或解决其他几何问题。
方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。
这种方法通常用于证明几何性质。
例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。
然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。
方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。
通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。
然后,利用这些相似三角形的性质来解决几何问题。
例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。
通过观察,可以发现三角形ADE与三角形BCF相似。
这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。
方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。
中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。
这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。
例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。
通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。
解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题【方法17】1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题【方法17】6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.8.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为______________.第8题图9.★如图①,AB∥CD,EOF是直线AB,CD间的一条折线.(1)试说明:∠EOF=∠BEO+∠DFO;(2)如果将平行线间的1个拐点改为2个拐点,如图②,则∠BEO,∠EOP,∠OPF,∠PFC 之间会满足怎样的数量关系,请说明理由.参考答案与解析1.A2.B解析:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF =40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.3.80° 4.50°5.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°,∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.6.A解析:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.7.140°解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.8.∠α+∠β-∠γ=180°解析:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.9.解:(1)过点O作OM∥AB,如图①,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:分别过点O,P作OM∥AB,PN∥CD,如图②.∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠EOP+∠PFC=∠BEO+∠OPF.。
人教版七年级数学下册解题技巧专题目录:目录:【专题一】平行线中作辅助线的方法【专题一】平行线中作辅助线的方法【专题二】相交线与平行线中的思想方法【专题三】开方运算及无理数判断中的易错题【专题四】平面直角坐标系中的图形面积【专题五】平面直角坐标系中的变化规律【专题六】解二元一次方程组【专题六】解二元一次方程组【专题七】一元一次不等式(组)与学科内知识的综合【专题八】一元一次不等式(组)中含字母系数的问题【专题一】平行线中作辅助线的方法——形成思维定式,快速解题◆类型一类型一 含一个拐点的平行线问题含一个拐点的平行线问题 1.(2017·南充中考)如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放.若∠1=58°,则∠2的度数为( ) A .30°B .32°C .42°D .58°第1题图 第2题图题图2.(2017·潍坊中考)如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( ) A .∠α+∠β=180°B .∠β-∠α=90°C .∠β=3∠αD .∠α+∠β=90° 3.阅读下列解题过程,然后解答后面的问题.如图①,已知AB ∥CD ,∠B =35°,∠D =32°,求∠BED 的度数.的度数. 解:过E 作EF ∥AB .∵AB ∥CD ,∴CD ∥EF .∵AB ∥EF ,∴∠1=∠B =35°35°..又∵CD ∥EF ,∴∠2=∠D =32°,∴∠BED =∠1+∠2=35°+32°=67°67°. . 如图②、如图②、图③,图③,图③,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问现在明明遇到两个问题,请你帮他解决.题,请你帮他解决.(1)如图②,已知∠D =30°,∠ACD =65°,为了保证AB ∥DE ,∠A 应多大?应多大? (2)如图③,要使GP ∥HQ ,则∠G ,∠GFH ,∠H 之间有什么关系?之间有什么关系?◆类型二类型二 含多个拐点的平行线问题含多个拐点的平行线问题4.如图,已知AB ∥DE ,∠ABC =70°,∠CDE =140°,则∠BCD 的大小为( ) A .20°B .30°C .40°D .70°第4题图 第5题图题图5.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,则∠2的度数为________. 6.如图,给出下列三个论断:①∠B +∠D =180°;②AB ∥CD ;③BC ∥DE .请你以其中两个论断作为已知条件,请你以其中两个论断作为已知条件,填入“已知”栏中,填入“已知”栏中,以剩余一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并解答该题.已知:______________,结论:______________. 解:解:7.如图①,AB ∥CD ,EOF 是直线AB ,CD 间的一条折线.间的一条折线. (1)试说明:∠EOF =∠BEO +∠DFO ;(2)如果将折一次改为折两次,如图②,则∠BEO ,∠EOP ,∠OPF ,∠PFC 之间会满足怎样的数量关系?并说明理由.【专题二】相交线与平行线中的思想方法——明确解题思想,体会便捷渠道◆类型一方程思想类型一 方程思想1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为() A.180°B.160°C.140°D.120°题图第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B 的度数.的度数.4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC. (1)若∠DBC=30°,求∠A的度数;的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.由.◆类型二分类讨论思想类型二 分类讨论思想5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°C.18°或126°D.以上都不对.以上都不对6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,MPA A=40°,则∠NPB的度数是________________.当∠MP7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则180°))其他所有可能符合条件的度数为________________.∠BAD(0°<∠BAD<180°8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.之间的关系.第9题图题图第10题图。
第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。
平行线中添辅助线的方法平行线中常见的添辅助线的方法:(1) 在平行线内(或外)一点作直线的平行线;(2) 加截线(连接两点、延长线段相交)例:探究:(1) 、如图1,若AB//CD ,则/ B+ / D= / E ,你能说明为什么吗?(2) 、反之,若/ B+ / D= / E ,直线AB 与CD 有什么位置关系?请证明(3) 、若将点E 移至图2所示位置,此时之间有什么关系?请证明。
(4) 、若将点E 移至图3所示位置,情况又如何?(5) 、若将点E 移至图4所示位置,情况又如何?(6) 、在图5中,AB//CD ,/ B+ / D+ / F 与/ E+ / G 又有何关系?平行线拓展延伸题、填空题BDA 、10° B 、15° C 、20° A L ________ ~B A —-------------------- B \E ZP C z f --------------------— — C D CD图1图2 1 如图,已知 AB // CD ,若/ A=20。
,/ E=35°,则/ C 等于____________2、如图,I 1//I 2,/ 1=120°,/ 2=100°,则/ 3= ________________ 。
4、如图,AB // CD , 1 50°, 2 110°,则 3 ______________ 。
6、如图,已知 AB // EF ,/ BAC=p ,/ ACD=x ,/ CDE=y ,/ DEF=q,用 p 、q 、 y 来表示x 得 ___________________________ 。
、选择题如图1, AB / CD ,且/BAP=60° —a ,Z APC=45° + a ,2、 如图2, AB//CD ,且 A 25 , C 45,贝U E 的度数是(A. 60B. 70C. 110D. 80 3、如图3,已知AB // CD ,则角a 、B 、丫之间的关系为( )BD/ PCD=30°—a ,贝U a (),证明:BC丄CD。
初中几何辅助线思路
在初中几何中,当我们遇到一些看似复杂的问题时,常常需要添加辅助线来帮助我们解决问题。
以下是一些常见的添加辅助线的思路:
1. 构造中点:通过构造中点,我们可以利用中点定理来解决问题。
中点定理告诉我们,如果一条线段的中点被找到,那么可以通过这条中点作一条垂线或平行线,将问题简化为一个更简单的问题。
2. 延长或截取:在某些情况下,通过延长或截取线段,我们可以使图形的形状更加明显,从而更容易找到解题思路。
3. 平行线构造:平行线的性质可以为我们提供很多有用的信息。
通过构造平行线,我们可以利用平行线的性质来解决问题。
4. 作垂线:在处理与矩形、菱形等四边形有关的问题时,我们可以通过作垂线来构造直角三角形,从而利用勾股定理等三角函数性质来解决问题。
5. 利用30度角:在一些与30度角有关的问题中,我们可以构造一条过30度角的线段,从而利用30度角的一些特殊性质来解决问题。
6. 连接两点:连接两点构造一条线段,可以通过这条线段找到一些与问题相关的信息,从而更容易解决问题。
7. 作平行四边形:通过作平行四边形,我们可以利用平行四边形的性质来解决问题。
8、在添加辅助线时,我们需要注意以下几点:
要明确添加辅助线的目的,不要为了添加而添加。
要根据题目的条件和要求,选择合适的方法添加辅助线。
在添加辅助线后,要仔细分析图形的形状和性质,从而找到解决问题的关键点。
总之,在初中几何中添加辅助线是一项非常重要的技能。
通过不断练习和掌握常见的辅助线方法,我们可以更好地解决各种几何问题,提高自己的数学水平。
湘教版七年级数学下册专题训练(附答案) 湘教版七年级数学下册专题训练(附答案解析)本套专题训练包含6个训练专题。
类比归纳专题:二元一次方程组的解法选择类比归纳专题:因式分解的方法思想方法专题:相交线与平行线中的思想方法解题技巧专题:方程组中较复杂的实际问题解题技巧专题:平行线中作辅助线的方法解题技巧专题:整式乘法及乘法公式中公式的巧用类比归纳专题:二元一次方程组的解法选择——学会选择最优的解法类型一解未知数系数含1或-1的方程组1.(湘潭期末)方程组{x-1=,x+1=y}的解是()。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}改写:解如下方程组{x-1=0,x+1=y}。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}2.(冷水江期末)方程组{ x+y=4,2x-y=2 }的解是________。
改写:解如下方程组{ x+y=4,2x-y=2 }。
3.解方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
改写:解如下方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
4.下面是老师在XXX的数学作业本上截取的部分内容:解方程组{ 2x-y=3,x+y=-12 }。
解:将方程2x-y=3变形,得y=2x-3③,……第一步把方程③代入方程2x-y=3,得2x-(2x-3)=3,……第二步整理,得3=3,……第三步因为x可以取任意实数,所以原方程组有无数个解……第四步问题:1)这种解方程组的方法叫“代入法”.XXX的解法正确吗?若不正确,错在哪一步?请你指出错误的原因,求出正确的解;2)请用不同于(1)中的方法解这个方程组。
改写:解方程组{ 2x-y=3,x+y=-12 }。
解:1)这种解方程组的方法叫“代入法”.XXX的解法正确。
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
实用文档 用心整理
X*千里之行 始于足下
解题技巧专题:平行线中作辅助线的方法
某城市的两座高楼顶部各装有一个射灯,当光柱相交在同一个平面时,/ O
4. (2017枣庄中考)将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三 角板的一直角边重合,含 30°角的直角三角板的斜边与纸条一边重合,含 45°角的三角板
的
一个顶点在纸条的另一边上,则/
1的度数是 ________ .
5.如图,AB // CD ,分别探讨下面四个图形中/ 从所得
到的关系中任选一个加以说明. 【方法8】
♦类型一 含一个拐点的平行线问题
1.如图, AB // EF , CD 丄 EF 于点 D.若/ ABC = 40 ° 则/ BCD 的度数为
( A . 140
B . 130 °
C . 120 °
D . 110
第2题图
2.如图, 已知 AB // DE , / ABC = 70 ° / CDE =
140 ° 则/ BCD 的度数为(
A . 20
B . 30 °
C . 40
D . 70
第4题图
图②
图®
1
3.如图, + /
2+/ 3 =
APC 与/ PAB , / PCD 的关系,请你
实用文档 用心整理
2
之行始于足下
♦类型二 含两个或多个拐点的平行线问题
6.如图,AB // CD ,用含/ 1,/ 2,/ 3的式子表示/ 4,则/ 4的值为( A ./ 1 + / 2 — / 3 B ./ 1 + / 3—/ 2 C . 180。
+/ 3—/ 1 — / 2 D . / 2+/3 — /
⑶如图③,/
2+/ 3 +/ 4 =
1 + /
2 + /3+/ 4+••• + / n =
第7题图
7.如图,直线 11// 12,/ a=/ 3, / 1 =
40 °
则/ 2 =
&如图,AB //CD ,试解决下列问题:
⑴如图①,/ 2= (2)如图②,/
2+/ 3 = 1 — 180
⑷如图④,试探究/
3
千里之行 始于足下
9. (1)如图①,AB // CD ,则/ 2+/4与/ 1 + / 3+/ 5有何关系?请说明理由;
(2)如图②,AB // CD ,试问/ 2 +/ 4+/ 6与/ 1 + / 3+/ 5+/ 7还有类似的数量关系 吗?
若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.
D
图②
C D
图③
C D
图®
参考答案与解析
图②
4
^千里之行
始于足下
1.B 解析:过点C 向右作CG // AB ,由题意可得 AB // EF // CG , A / B = / BCG ,/GCD =90° 则/ BCD = 40° + 90°= 130°故选 B.
2. B 解析:如图,过点 C 作CF // DE , / CDE + / DCF = 180° A / DCF = 180° -/ -/ DCF = 70° - 40°= 30°.故选 B. 贝U AB // DE // CF , A / BCF = / ABC = 70 CDE = 180° - 140° = 40° A/ BCD = / BCF
3.
360
4. 15 ° 解析:如图,过 A 点作 AB // a,A/ 1 = / 2. v a // b,A AB / b,A/ 3 =/ 4 =30°.v/ 2+/ 3 = 45° A/
5. 解:女 0图①,过点 P 作 PF // AB ,贝y AB // PF // CD. A / PAB =/ APF , / PCD = / FPC , A. / APC = / APF + / FPC
= / D
C 图③
「图④D
如图②,
=180° A/ 过点 P 作 PF // AB ,贝 y AB // PF // CD. A / PAB +/ APF = 180° APC + / PAB +/ PCD = 360°
/ PCD + / FPC
过点 -o
如图③, + / PCD = 180° P 作 PF // AB,贝 U PF // AB// CD.A / FPA +/ PAB = 180° •••/ PAB = / APC+/ PCD ;
/ FPA +/ APC
如图④,过点 / PCD , A / PAB+/ APC = / PCD.
P 作 PF // AB 」PF // AB // CD. A / FPA=/ PAB, / FPA +/ APC =
解析:如图,过点 E 作 EG // AB ,过点F 作FH // CD.v AB // CD ,
A. AB // CD // EG// FH , A / 1 = / AEG , A / GEF = / 2-/ 1. v EG // FH , A / EFH = 180° 1, A. / CFH =/ 3-/ EFH =/ 3 — (180 ° — A. / 4 =/ CFH =/ 3 +/ 2-/ 1 — 180°.故选 -/ GEF = 180° - (/ 2-/ 1) = 180°—/ 2+/ / 2 +/ 1) =/ 3+/ 2-/ 1- 180°. •/ FH // CD , D.
FAB +/ PCD ;
5
千里之行 始于足下
AE 交 12 于点 B.V l 1 / l 2, •/ 3 =/ 1 = 40 °. •// a=/ 3,
2 = 180° — / 3= 180° — 40°= 140°
(2)如图②,过点E 作直线 =180° / FEC +/ 3 = 180° •/ 1 + / 2+/ 3= 360°
(3)过点 E , F 作 EG , FH 平行于 AB.v AB / CD , •• AB // EG // FH // CD ,
•/
=180° , / GEF + / EFH = 180° / HFC +/ 4= 180° ••/ 1 + / 2 + / 3 + / 4= 540° ⑷根据上述规律,显然作(n — 2)条辅助线,运用(n — 1)次两条直线平行,同旁内角互补, 即可得到n 个角的和是(n — 1)-180°
9.解:⑴/ 2+/ 4=/ 1 + / 3 +/5.理由如下:如图,分别过点 E , G , M 作EF // AB , GH // AB , MN // AB. ••• AB // CD , • AB // CD // EF // GH // MN ,•/ 1 =/ BEF , / FEG = / EGH , / HGM =/ GMN , / CMN =/ 5,•/ 2+/ 4=/ BEF + / FEG + / GMN +/ CMN =/ 1 + / EGH +/ MGH +/ 5=/ 1 + / 3+/ 5.
7. ••• AB 140解析:如图,延长
CD..../ 2+/ 3 = 180° •••/ (1)180 ° (2)360 ° (3)540 解析:(1)如图①,••• AB //CD , 图①
⑷(n — 1) 180
•••/ 1+/ 2= 180°
fl
A
B
G
二 H
~D 图③
A B E ------ F N ______
C 图④
EF 平行于 AB.TAB // CD , A AB // 1 + / AEF
1 + / AEG
A
(2)/ 2 +/ 4+/ 6=/ 1 + / 3+/ 5+/ 7.结论:开口朝左的所有角的度数之和与开口朝右的所有角的度数之和相等.
6
^千里之行始于足下。