线性方程组的消元解法 ppt课件
- 格式:ppt
- 大小:1.45 MB
- 文档页数:57
§1 线性方程组消元法引例:用消元法求解线性方程组⎪⎩⎪⎨⎧=++=+-=-+2875342622321321321x x x x x x x x x解:为观察消元过程,我们将消元过程中每个步骤的方程组及与其对应的矩阵一并列出:⎪⎩⎪⎨⎧=++=+-=-+2875342622321321321x x x x x x x x x ①←→⎪⎪⎪⎭⎫ ⎝⎛--2836141722512 ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=-+1327202936223232321x x x x x x x ②←→ ⎪⎪⎪⎭⎫ ⎝⎛--13062/72/91232002 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-+132130293622332321x x x x x x ③←→ ⎪⎪⎪⎭⎫ ⎝⎛--13062/132/91032002 ③ ⎪⎪⎩⎪⎪⎨⎧==+-=-+20293622332321x x x x x x ④←→ ⎪⎪⎪⎭⎫ ⎝⎛--20612/91032002 ④ 从最后一个方程得到X3=2,将其代入第二个方程可得到x2=3,再将x2=3 与X3=2一起代入第一个方程得到x1=1。
通常我们把过程①——④称为消元过程,矩阵④是行阶梯型矩阵,与之对应的方程组④则称为行阶梯型方程组。
从上述过程可以看出,用消元法求解线性方程组的具体做法就是对方程组反复实施以下三种变换:(1) 交换某两个方程的位置;(2) 用一个非0数乘某一个方程的两边;(3) 将一个方程的倍数加到另一个方程上去。
以上三种变换称为线性方程组的初等变换。
而消元法的目的就是利用方程组的初等变换将原方程组化为阶梯形方程组,显然这个阶梯形方程组与原方程组同解。
如果用矩阵表示其系数及常数项,则将原方程组化为阶梯形方程组的过程就是将对应矩阵化为行阶梯形矩阵的过程。
将一个方程组化为行阶梯形方程组的步骤并不是唯一的,所以,同一个方程组的行阶梯形方程组也不是唯一的。