1 线性方程组的消元法教学资料
- 格式:ppt
- 大小:190.50 KB
- 文档页数:6
(完整版)解线性方程组的消元法及其应用解线性方程组的消元法及其应用朱立平曲小刚)教学目标与要求通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵.教学重点与难点教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵教学难点:高斯消元法,利用消元法求逆矩阵.教学方法与建议先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。
教学过程设计1. 问题的提出由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的.引例解线性方程组4x1 2x2 5x3 4 (1)x1 2x2 7 (2)2x1 x2 3x3 1 (3)x1 2x2 7 (1)(1) ( 4) (2)x1 2x2 7 (1)解(1)(1) (2) 4x1 2x2 5x3 4 (2)(1) ( 2) (3)6x2 5x3 24 (2)2x1 x2 3x3 1 (3) 5x2 3x3 13 (3)5 X i 2x 2 7(2)()(3)66x 2 5x 3 24 7 X 3 7 6用回代的方法求出解即可.问题:观察解此方程组的过程,我们总共作了三种变换:(1 )交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法.2. 矩阵的初等变换定义1阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵.定义2下面的三种变换统称为矩阵的初等行变换:i. 互换矩阵的两行(例如第i 行与第j 行,记作r i r j ),ii.用数k 0乘矩阵的某行的所有元素(例如第 i 行乘k ,记作kr i ),iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作r i kr j ).同理可以定义矩阵的初等列变换 .定义3如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵 A 与B 等价,记作A ~B .注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵3.咼斯消兀法对」般口丁 II 阶线性方程组a 〔1 X 1812X 2 a 1n Xnb (1)a 21 X 1 a 22X 2a 2n X nb 2 (2)(3.1)an 1 X1a n2X 2ann Xnb n(n)若系数行列式detA 0,即方程组有唯一解,则其消元过程如下:第一步,设方程(1)中X i 的系数a M 0将方程(I )与(1)对调,使对调后的第一个方程 X i第二步,设a 22) 0,保留第二个方程,消去它以下方程中的含X 2的项,得(1) ⑵(3)的系数不为零.作i並(D(i 2,3,a 11n ),得到同解方程组(0)anX1(0)a 12 X 2 (0) a 1 n Xn b 1(0) (1) a ?2 X 2(1) a 2n X nby(1)a n2X 2(1)a nn X n(3.2)接下来的回代过程首先由(3.4)的最后万程求出X n ,依次向上代入求出 X n1,X n 2, X 1即可?高斯消元法用矩阵初等变换的方法表示就是注:用高斯消元法求解线性方程组,是对线性方程组作三种初等行变换(某个方程乘非零常数k ;一个方程乘常数 k 加到另一个方程,对换两个方程的位置),将其化为同解的阶梯形方程组,这一消元过程用矩阵来表示就是对方程组的增广矩阵施行初等行变换,化为阶梯矩阵?因此,求解线性方程组时不能对增广矩阵施行对换矩阵的两列以外的列变换,若对换矩阵的两列,相应地未知兀也要对换4.应用(1)化矩阵为阶梯形例1试用消元法化 A 为阶梯形矩阵,1 2 1 0 22 4 2 6 6A2 1 0 2 33333 4解(0) 耳1 X1a^x 2 a 22)x 2(0)&13 X 3(1) a 23 X3a 33)X 3(0) a 1n Xn a 2nX n a 3?X n附 byb 32)a%a n^X nb n (3)照此消兀,直至第 n 1步得到三角形方程组J0)」o )jo) J°)a 〔i x 〔 a 〔2 X 2 a 13 X 3 a1 n Xnb 1(1) a ?2 X 2 (1) a 23 X 3 (1) a 2n Xn by(2)a 33 X 3(2)a 3n X nb 32)(3.3)(3.4)a11a 12a1 nb 1 (A,b)a21 a22a2nb 2an1n2annb na (0)a (0)a11a12 a*a (0)a1n b 1(0) a22a 23)a2nbyf 2)33a(2)b 32)f 2)n3a(2)nnb n (2)r2 —r 1 a11r 931『afa(0)12「3b (0)a (1) a 22 )2a 42)rr3r 1*11a(1)22a 2^r4by于 arn Ta11a(1)an2事 byr n吧r矿a :0〉aja(0)a 13 a,0〉 a (0) a 22)a23 a*b 21)f 2)33a 3?b 32)(n 1)(n 1)annn(n 1) ann xn』1)b n1 2 1 02 121 02 『2 2r 1r 32r10 0 0 6 2 r 2 『332 2 1 『4 3r 2 Ar 44r10 3 2 2 10 0 6 20 9 6 3 2 09 632110 2 1121 020 32 2 1 r4-r 3 232 2 1B0 0 0 6 2 0 0 0 6 20 031则B 即为所求的与 A 等价的阶梯形矩阵求逆矩阵利用初等行变换求逆矩阵的方法主要分为以下三步 :a )将矩阵A 与冋阶的单位方阵 I 拼成(A, I) ;b )对A 施行初等行变换,目标是将 A 变换成 I ;c )当A 变换为时,原来的 I 变换成A 1,即(A,1)(I, A 1)主:若将A, I 拼成 A,只能施行初等列变换,A II A1?求矩阵A 的逆矩阵11 1A1 02 .1 2 11 11 1 0 01 11 1 0( 1)『1解(A, 1)=1 020 1 00 1 1 1 112 1 10 0 1 『3『10 1 1 2 1 0 “『3『211 1 1 i 1 0 0『1 『『3 1 『3 0 0 ; 4 3 20 1 1! 11 0 0 1 0\ 32 10 0 1 : 2 1 『1 1 『20 0 1 21 14 3 2 1所以A 32 12 1 1。
线性方程组的消元法线性方程组的消元法是解决线性方程组的常用方法之一,通过逐步消去未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
本文将详细介绍线性方程组的消元法及其应用。
1. 消元法简介消元法是一种通过逐步消除未知数的系数,将线性方程组转化为更简单形式的方法。
它的基本思想是通过不断的代入与消去操作,将方程组转化为三角形式或最简形式,从而求得方程组的解。
2. 线性方程组的一般形式线性方程组的一般形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁、a₁₂、...、aₙₙ为未知数的系数,b₁、b₂、...、bₙ为常数项。
3. 消元法的步骤(1)选取主元:根据方程组的特点,选择一项作为主元,并将其系数置为1,并且使其所在的其他行对应的列的系数皆为0,这样可以简化计算过程并减少误差。
(2)代入消元:选择一个非主元进行代入,将其代入主元所在的其他方程中,从而消去该未知数。
(3)重复步骤(1)和(2),直至将所有的非主元都消去为止。
(4)最后得到一个三角形形式的线性方程组,可以通过回代法求解该方程组的解。
4. 消元法的应用消元法广泛应用于各个领域,特别是在科学和工程领域中具有重要作用。
以下是几个应用实例:(1)经济学中的输入产出模型:通过消元法可以分析不同产业之间的投入产出关系,从而得出经济模型的解释。
(2)物理学中的电路分析:通过消元法可以简化复杂的电路方程组,从而计算出电路中各个节点的电压和电流。
(3)化学反应平衡问题:通过消元法可以解决化学反应平衡过程中的复杂线性方程组,从而得到反应物和生成物的浓度。
5. 总结消元法是一种解决线性方程组的有效方法,通过逐步消除未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
第一章 线性方程组的消元法和矩阵的初等变换本章说明与要求:本章主要介绍线性方程组的基本概念以及求解线性方程组的消元法,并由此引出矩阵及其初等变换的有关概念.讨论一般的n 元线性方程组的求解问题.一般的线性方程组的形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(I)方程的个数m 与未知量的个数n 不一定相等,对于线性方程组(I ),需要研究以下两个问题:(1) 怎样判断线性方程组是否有解?即它有解的充分必要条件是什么?(2) 方程组有解时,它究竟有多少个解及如何去求解?。
本章重点:解线性方程组;线性方程组解的判定.。
本章难点:用矩阵的初等变换解线性方程组;线性方程组解的判定.§1.1 线性方程组的消元法解二元、三元线性方程组时曾用过加减消元法,实际上是解一般n 元线性方程组的最有效的方法.下面通过例子介绍如何用消元法解一般的线性方程组.例1.求解线性方程组⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x(1)解:交换第一、三两个方程的位置: ⎪⎩⎪⎨⎧=+-=+-=--2531252321321321x x x x x x x x x第一个方程乘以(–1)加于第二个方程,第一个方程乘以(–3)加于第三个方程,得:⎪⎩⎪⎨-=+-=+1385433232321x x x x第二个方程乘以(–5)加于第三个方程,得⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x(2) 第三个方程乘以(–71),求得x 3=–1,再代入第二个方程,求出x 2=–1,最后求出x 1=2.这样就得到了方程组(1)的解:⎪⎩⎪⎨⎧-=-==112321x x x方程组(2)称为阶梯形方程组.如果在本例中,把原方程组中的第一个方程改为2x 1–3x 2+ x 3=6,得到一个新的方程组⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x(3)用类似的方法,可以把方程组化为 ⎩⎨⎧-=+=+-431232321x x x x x (4)即 ⎩⎨⎧--=--=32313453x x x x 显然,此方程组有无穷多个解.如果在本例中,把原方程组的第一个方程改为2x 1–3x 2+ x 3=5,作出新的方程组 ⎪⎩⎪⎨⎧=--=+-=+-5212532321321321x x x x x x x x x(5)用类似的方法,可得到⎪⎩⎪⎨-=-=+104332321x x (6)显然方程组无解. 上面的方法具有一般性,即无论方程组只有一个解或有无穷个解还是没有解,都可用消元法将其化为一个阶梯形方程组,从而判断出它是否有解.分析一下消元法,不难看出,它实际上是反复地对方程组进行变换,而所作的变换,也只是由以下三种基本的变换所构成:1. 交换方程组中某两个方程的位置;2. 用一个非零数乘某一个方程;3. 用一个数乘某一个方程后加到另一个方程上.这三种变换称为线性方程组的初等变换.用消元法解线性方程组的过程就是对线性方程组反复地实行初等变换的过程.方程组(I)的全部解称为(I)的解集合.如果两个方程组有相同的解集合,就称它们是同解的或等价的方程组.现在证明:初等变换把方程组变成与它同解的方程组.考虑线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (I)我们只对第三种变换来证明.为简便起见,不妨设把第二个方程乘以数k 后加到第一个方程上,这样,得到新方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++++mn mn m m n n n n n b x a x a x a b x a x a x a kb b x ka a x ka a x ka a 22112222212121212221212111)()()( (I ' ) 设x i =c i (i =1,2,…,n )是(I)的任意一个解.因(I)与(I ' )的后m –1个方程是一样的,所以,x i =c i (i =1,2,…,n )满足(I ' )的后m –1个方程 .又x i =c i (i =1,2,…,n )满足(I)的前两个方程,所以有⎩⎨⎧=+++=+++22222211211122121111b x c a x c a x c a b x c a x c a x c a n n n n n n 把第二式的两边乘以k ,再与第一式相加,即为21212221212111)()()(kb b c ka a c ka a c ka a n n n +=++++++这说明x i =c i (i =1,2,…,n )又满足(I')的第一个方程,故x i =c i (i =1,2,…,n )是(I')的解.类似地可以证明(I ')的任意一个解也是(I)的解,这就证明了(I) 与(I ')是同解的.容易证明另外两种初等变换,也把方程组变成与它同解的方程组.下面来说明,如何利用初等变换来解一般的线性方程组.对于方程组(I),首先检查x 1的系数.如果x 1的系数a 11, a 21, … , a m 1全为零,那么方程组(I)对x 1没有任何限制,x 1就可以任意取值,而方程组(I)可看作x 2, …, x n 的方程组来解.如果x 1的系数不全为零,不妨设a 11≠0不等于零,否则可利用初等变换1,交换第一个方程与另一个方程的位置,使得第一个方程中x 1的系数不为零.然后利用初等变换3,分别把第一个方程的)(111a a i -倍加到第i 个(i =2,3,…, m )方程,于是方程组(I)变成 ⎪⎪⎩⎪⎪⎨⎧=++=++=+++m n mn m n n n n b x a x a b x a x a b x a x a x a 222222*********(Ⅱ) 其中 n j m i a a a a a j i ij ij ,,2 ,,,2 ,'1111⋅⋅⋅=⋅⋅⋅=-= 显然方程组(Ⅱ)与(Ⅰ)是同解的.对方程组(Ⅱ)再按上面的考虑进行变换,并且这样一步一步做下去,必要时改变未知量的次序,最后就得到一个阶梯形方程组.为了讨论方便,不妨设所得到的阶梯形方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++=++++=++++++000001222222111212111r r n rn r rr n n r r n n r r d d x c x c d x c x c x c d x c x c x c x c (Ⅲ)其中c ii ≠0, i =1,2,…,r .方程组(Ⅲ)中“0 = 0”是一些恒等式,可以去掉,并不影响方程组的解.我们知道,(I)与(Ⅲ)是同解的,根据上面的分析,方程组(Ⅲ)是否有解就取决于第r +1个方程0 = d r +1是否矛盾,于是方程组(I)有解的充分必要条件为d r+1= 0.在方程组有解时,分两种情形:1) 当r =n 时,阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n d x c d x c x c d x c x c x c 2222211212111 (Ⅳ)其中c ii ≠0, i =1,2,…, n .由克莱姆法则(Ⅳ)有唯一解,从而(I)有唯一解.例如 前面讨论过的方程组(1)⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x经过一系列的初等变换后,变为阶梯形方程组⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x这时方程的个数等于未知量的个数,方程组的唯一解是⎪⎩⎪⎨⎧-=-==112321x x x2) 当 r <n 时,这时阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++++=++++++++++++211221122222111111212111d x c x c x c d x c x c x c x c d x c x c x c x c x c n rn r rr r rr n n r r r r n n r r r r其中 c ii ≠0, i =1,2,…, r , 写成如下形式⎪⎪⎩⎪⎪⎨⎧---=---=++---=+++++++++n rn r rr r rr n n r r r r n r r n r r x c x c d x c x c x c d x c x c x c x c d x c x c x c 112211222222111111212111(Ⅴ)当x r+1,…,x n 任意取定一组值,就唯一确定出x 1,…,x r 值,也就是定出方程组(Ⅴ)的一个解,一般地,由(Ⅴ)可以把x 1,x 2…,x r 的值由x r+1,…,x n 表示出来.这样表示出来的解称为方程组(I)的一般解,因x r+1,…,x n 可以任意取值,故称它们为自由未知量.显然,(Ⅴ)有无穷多个解,即(I)有无穷多个解.如上面讨论过的方程组(3)⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x经过一系列的变换后,得到阶梯形方程组⎩⎨⎧-=+=+-431232321x x x x x 将x 1,x 2用x 3表示出来即有⎩⎨⎧--=--=32313453x x x x 这就是方程组(3)的一般解,而x 3是自由未知量.用消元法解线性方程组的过程,归纳起来就是,首先用初等变换把方程组化为阶梯形方程组,若最后出现一些等式“0 = 0”,则将其去掉.如果剩下的方程当中最后一个方程是零等于一个非零的数,那么方程组无解,否则有解.方程组有解时,如果阶梯形方程组中方程的个数等于未知量的个数,则方程组有唯一解;如果阶梯形方程组中方程个数小于未知量的个数,则方程组有无穷多个解.当线性方程组(1)中的常数项b 1= b 2=…= b m = 0时,即⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m n n n n x a x a x a x a x a x a x a x a x a(Ⅵ)称为齐次线性方程组.显然,齐次线性方程组是一定有解的.因为x 1= x 2=…= x n =0就是它的一个解.这个解称为齐次方程组的零解.我们所关心的是它除了零解之外,还有没有非零解?把上述对非齐次线性方程组讨论的结果应用到齐次线性方程组,就有如下定理.定理 在齐次线性方程组(Ⅵ)中,如果m<n ,则它必有非零解.证明:因为(Ⅵ)一定有解,又r ≤m<n ,所以它有无穷多个解,因而有非零解.。