1.3有理数的减法(一)教案
- 格式:doc
- 大小:116.36 KB
- 文档页数:2
第一章有理数《1.3有理数的加法》导教案(1) N0:8班级小组姓名小组评论________教师评价 _______一、学习目标1、能正确的进行有理数的加法运算;2、经历研究有理数加法法例的过程,加深对有理数加法法例的理解。
二、自主学习1、自学教材 16—18 页总结有理数的加法法例:(1) 同号两数相加,例 1、计算( -4 )+(-5 )第一步:确立种类(-4 )+(-5 )(同号两数相加)第二步:确立和的符号(-4 )+(-5 )=- ()(取同样的符号)第三步:确立绝对值(-4 )+(-5 )= -9(把绝对值相加)练习: 3+2 =(-3 )+(-2 )=(-1)+(-6)=(2)绝对值不相等的异号两数相加,例 2、计算( -2 )+6第一步:确立种类(-2 )+6(异号两数相加)第二步:确立符号∵6 2,∴( -2 )+6 =+()(取绝对值较大的加数的符号)第三步:确立绝对值∵ 6-2=4,∴( -2 )+6=+4(用较大的绝对值减去较小的绝对值)练习 :(-3)+4=+()=3+(-4 )=-()= 5+(-7)==( -12 )+19==同学们知道有理数的加法的步骤吗?①确立种类;②确立和的(3) 互为相反数的两个数相加得(4) 一个数同 0 相加,仍得;③最后进行绝对值的。
比方: 5+(-5)= 。
比方: 3+0=-3+3=0+。
(-5 )=2、自学检测(1)+ 8 与- 12 的和取___号,+ 4 与- 3 的和取___号。
(2)按①的格式计算以下各题① 14+(-21 )②(-18)+(-9)③(-0.8)+1.7④ -8+ 8解:①原式 = - (21-14 )=-7三、合作研究1.填空( 1)、某天气温由 -3 ℃上涨 4℃后气温是( 2)、已知两数 5 与-9 ,这两个数的和是;比-3 大 5.,这两个数的绝对值的和是,这两个数的相反数的和是.2、设a=-2 ,b= 1 ,计算33( 1) a+(-b)( 2) (-a)+b(3)a+2b3、红星队在 4 场足球赛中的战绩是:第一场 3:1 胜,第二场 2:3 负,第三场 0:0 平,第四场 2:5 负。
1.3 有理数的加减法(第3课时)教学目标1.理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把有理数的减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,向学生渗透事物间普遍联系、可相互转化的辩证唯物主义思想.教学重点难点重点:有理数的减法法则.难点:有理数的混合运算.课前准备多媒体课件教学过程导入新课问题展示如图1所示,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差多少?如何列式?2 / 2图1答案:9 259.43 m8 844.43-(-415)师生活动教师展示问题图片,学生思考并回答.教师:减法运算和加法运算之间的关系是什么?学生:互为逆运算.教师板书:有理数的减法.探究新知图2如图2所示,北京某天的气温是-3 ℃~3 ℃,这一天的温差是多少呢?2 / 22 / 2教师先展示问题图片,学生思考并回答.教师再加以扩展:1.被减数、减数、差的关系.2.3-(-3)=3+3=6,体现了数学中的转化思想.追问:在式子3-(-3)=3+3=6中,是如何把减法转化成加法的?师生活动学生回答问题,教师总结减法的运算法则:减去一个数,等于加上这个数的相反数(板书),用字母表示为a -b =a +(-b )新知应用师:知道了有理数减法法则,我们就可以进行有理数减法的相关运算了. 例 计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4) (−312) -514.(3)7.2-(-4.8)=7.2+4.8=12;(4) (−312) -514= (−312) + (−514) =-834.教师展示问题,并引导学生完成(1)(2)题,学生独立完成(3)(4)题,体会有理数减法的计算法则.课堂练习(见导学案“当堂达标”)参考答案1.A2.A3.A4.-105.(1)10 (2)-69 (3)-297 (4)4 (5)-1146.(1)8-3=5 (2)(-2)-(-3)=1课堂小结1.有理数减法的法则:减去一个数,等于加上这个数的相反数.2.有理数减法的公式是a-b=a+(-b).布置作业教材第23页练习第1,2题,第24页习题1.3第3题.板书设计教学反思2 / 2有理数的减法法则是本课重点,它的探究是本课的难点.“减去一个数等于加上这个数的相反数”这一结论,应当让学生通过具体计算加以讨论,总结得出,从而形成对减法法则的充分感受.在开始运用减法法则计算时,要按照有理数减法法则,先把减法变成加法,再按加法法则运算.学生练习时,要引导学生注意,归纳有理数减法的运算规律,而不能简单机械地把减法化成加法.2 / 2。
教案新人教版七上1.3.4 有理数的加减混合运算教案新人教版七上1.3.4有理数的加减混合运算1.3有理数的加减法崔秀芹一、背景与意义分析本课安排在第一章“有理数的加法、减法”之后,属于《全日制义务教育数学课程标准(试验稿)》中的“数与代数”领域。
有理数运算是根据实际需要而产生的,被广泛应用。
从数学科学的角度来看,有理数运算是代数的基本内容。
下一章方程的求解是基于有理数的运算,而有理数的加减运算是有理数运算的基础。
本课根据有理数的减法可以通过转化成有理数的加法来进行运算,则有理数的加减法混合运算就可以统一成加法运算,进一步通过省略加号、括号,得出简单的书写方式,并在此形式下进行加法运算。
运算过程中的“转化思想”是本课始终渗透的主要数学思想,也体现了数学的统一美。
二、学习和指导目标1、知识积累与疏导:通过实际的例子,体会到加减法混合运算的意义,正确掌握并熟练地进行有理数加减法混合运算。
认知率达100%2.技能掌握与指导:由于减法可以转化为加法,加减的混合运算实际上是有理数的加法。
灵活运用加法运算法则简化运算,利用率高达100%。
3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话,与同学合作,合理清晰地表达自己的思维过程,提高计算的准确能力。
互动率达90%。
4.情感培养与启迪:积极创设问题情境,学会从唯物主义的角度分析和解决数学问题,并用数学思想处理问题。
投资率达到95%。
5、观念确认与引导:通过有理数加减混合运算,感受到“问题情境――分析讨论――建立模型――计算应用――转换拓展”的模式,从而更好地掌握有理数的混合运算。
结合例题培养学生观察、类比的能力和计算准确能力和渗透转化思想。
认同率达95%。
三、学习和领导活动(I)创造情境、回顾和介绍师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:(-20)+(+3);(-5)-(+7)(2)“+,-”是什么意思?它是什么样的符号?“+,-”是什么意思?它是什么符号?学生活动:口头回答老师的问题师继续提问:(1)这两个题目运算结果是多少?(2)(-5)-(+7)这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.〔指令〕为了进行有理数的加减运算,首先要复习有理数的加法,特别是有理数的减法,为进一步学习加减混合运算打下基础。
1.3.2 有理数减法(第1课时)一、教学内容和内容解析1.内容有理数减法法则2.内容解析有理数减法是在学习了有理数加法的基础上进行学习的,从减法是加法的逆运算出发,通过一些具体数字,探究两个有理数的差是多少,以及是否可以利用加法进行减法的运算,在此基础上引出有理数减法法则. 通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后续诸如实数的减法运算的学习奠定了坚实的基础.本节课的教学重点:有理数的减法法则的理解和运用.教学难点:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.二、教学目标(1)理解有理数减法法则.(2)能较为熟练地进行两个有理数减法的运算.三、教学过程1.创设情境,引出课题同学们,在前面的学习中,我们知道生活中有许多地方需要用到有理数的加法,那么请同学们想一想,生活中有没有需要用减法的呢?(学生思考,举例)老师遇到这样的一个问题:某地一天的气温是一3~3℃,求这天的温差,可是老师不会算,同学们能帮助老师解决这个问题吗?设计意图:创设一个需要解决的问题情境,让学生主动地参与思考与探索.从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣.同时这也符合七年级学生的认知特征,使学生乐于进一步探索.师生活动:学生讨论解决问题的方法2.观察探究,总结法则出示温度计示意图问题1:你能从温度计上看出3℃比-3℃高多少摄氏度吗?先请同桌两位同学相互讨论交流,然后请两三个学生发言.问题2:如何计算3-(-3)呢?先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数要计算3-(-3)就是求一个数“x”,使x与-3相加等于3 即x+(-3)=3,因为6+(-3)=3,所以3-(-3)=6问题3:请同学们想一想,3十?=6?请学生回答,教师板书:3+(+3)=6,用彩色粉笔在3-(-3)与3十(+3)处画出着重号.引导学生观察3+(+3)=6与3-(-3)=6,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:3-(-3)=3+(+3).这时教师问:你发现这个等式有什么特点?学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流.设计意图:对3-(-3)=6与3+3=6的观察、比较,是进一步探索有理数减法法则的基础.可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系.问题:1.把3换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?2.计算9-8,9+(一8),15一7,15+(一7),你发现了什么?学生讨论得出结果,教师在此基础上归纳:有理数减法法则:减去一个数,等于加上这个数的相反数.设计意图:教学中提供足够的时间让学生探索、交流,学生通过不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则.通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。
凤州初级中学高效课堂教改实验集体备课电子教案七年级数学备课组主备人王东田成员王东田陈斌范超科王伟琼崔刚李琴课题七年级数学1.3.2(一)年级:七年级版本:人教版内容:有理数的减法(1)课型:新授学习目标:1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则.2、会正确进行有理数减法运算.3、体验把减法转化为加法的转化思想.学习重点:有理数减法法则和运算学习难点:有理数减法法则的理解教学方法:引导、探究、归纳教学过程导读单:一、学前准备补充:先复习有理数的加法,回顾有理数加法法则。
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C).显然,这天的温差是3―(―2).想想看,温差到底是多少呢?那么,3―(―2)= .结合数轴对答案进行验证。
生成单:二、探究新知1、还记得吗,被减数、减数差之间的关系是:被减数—减数= .差+减数= .2、请你与同桌伙伴一起探究、交流:要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 .也就是3―(―2)=5.再看看,3+2= .所以3―(―2) 3+2!由上你有什么发现?请写出来 .3、换两个式子计算一下,看看上面的结论还成立吗?—1—(—3)= ,—1+3= ,所以(—1)—(—3)—1+(+3). 0—(—3)= , 0+3= ,所以0—(—3) 0+(+3).4、师生归纳1)法则 2)字母表示三、新知应用1、例题例1 计算:(1) (-3)―(―5); (2)0-7;(3) 7.2―(―4.8); (4)-341521- 请同学们先尝试解决例2、练习 P231、2四、小结通过这节课的学习,你有什么收获?五、检测练习1、计算:(1)(-37)-(-47); (2)(-53)-16;(3)(-210)-87; (4)1.3-(-2.7);(5)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-4341; (6)(-243)-(-121);(7)(-6)-6-7; (18)(1-5)-(2-8).2.分别求出数轴上下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数-2的点与表示数-3的点.。
七年级数学上册《有理数的减法》教案教学设计教学目标:【知识与技能】掌握有理数的减法法则,能运用有理数的减法法则进行运算。
【过程与方法】经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
【情感、态度与价值观】在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
【教学重点】理解有理数减法法则的意义,会运用有理数的减法法则进行运算。
【教学难点】有理数减法法则的探讨。
【教学准备】多媒体课件【教学过程】一、复习回顾1.-2的相反数是____,+的相反数____,相反数是它的本身的数是___.2.计算(1)4+16= (2)(–2)+(–7)=(3)(–1)+= (4)2+(–4)=(5)(–5)+ 5 = (6)0 +(–8)=设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
二、创设情境、引入新课北京某天气温是-3ºC~3ºC,这天的温差是多少摄氏度呢学生列式表示3-(-3)=但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
三、探究新知同学们都知道,减法和加法互为逆运算,3-(-3)=也就是问什么数加上-3等于3因为6+(-3)=3 所以3-(-3)=6师问:3+=6 生答:3+3=6请同学们观察以下两个式子:(1)3-(–3)=6;(2)3+3=6你发现了什么换些数试试。
(学生自主思考)9-8=____,9+(-8)=____;15-7=____, 15+(-7)=____.然后比较上面的式子,能发现其中的规律吗分小组讨论。
然后师生共同归纳法则,教师板书法则。
并强调减法在运算时有2个要素要发生变化,1个要素不变。
(两变一不变)设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
有理数的减法教学目标:1.通过实例,经历探索有理数减法法那么的过程。
2.理解有理数减法法那么,渗透化归思想。
3.掌握有理数的减法法那么,会运用法那么求两个有理数的差。
4.能利用有理数的减法解决简单的实际问题,体会数学与现实生活的联系。
教学重点:有理数的减法法那么教学难点:有理数减法法那么的探索过程教学过程:〔第一课时〕一温故互惠〔二人小组完成〕1.加法运算和减法运算有什么关系?2.填空:〔1〕4+_____=6, 6-4=____.〔2〕3+___=5, 5-3=_____.〔3〕-3+___=4, 4-〔-3〕=____.〔4〕4+___=-2, -2-4=____.3.说出以下各数的相反数.3 -5 -6二设问导读阅读教材P21-22完成以下问题:1.在温度计上,从零上4℃到零下3℃相差____℃,所以可以列算式为:_____,因为4+3=7对照这两个算式得到等式:____=____.2.探究:9-8=______. 9+〔-8〕=______.15-7=____. 15+〔-7〕=_____.0-〔-3〕=____. 0+3=_____.-1-〔-3〕=_____. -1+3=____.-5-〔-3〕=____. -5+3=___.观察上面算式你能发现什么结论?3.有理数的减法法那么:_______________也可以表示成_____________________.4.先阅读教材例5,从例5我们知道减法运算可以利用减法法那么转化为加法运算,即减负变加________,减正变加________三自我检测1.利用减法法那么计算以下各题:〔1〕15-〔-7〕;〔2〕〔-6〕-5;〔3〕0-〔-1〕;〔4〕〔-18〕-0〔5〕11-〔+10〕;〔6〕0-〔+4〕2.计算:〔1〕温度3℃比-8℃高_____;〔2〕温度-10℃比-2℃低_____;〔3〕海拨-10m比-30m高_____;〔4〕从海拨20m到-8m,下降了_____.四稳固训练1.计算:〔1〕〔+5〕-〔-3〕;〔2〕〔〕;〔3〕〔-61〕-〔-31〕.2.某地连续五天内每天最高气温与最低气温纪录如下表所示,哪一天的温差〔最高气温与最低气温的差〕最大?哪天的温差最小?1.3.〔1〕甲数是4 的相反数,乙数比甲数的相反数大3,求乙数比甲数大多少?〔2〕月球外表的温度中午是101℃,半夜是-153℃,中午比半夜的温度高多少? 五 拓展探究1.一个数加-3.6,和为-0.36,那么这个数是〔 〕 A.-2.24 B.-3.96 C2.以下计算正确的选项是〔 〕A.(-14)-(+5)=-9B.0-(-3)=3C.(-3)-(-3)=3D.|5-3|=-(5-3) 3.较小的数减去较大的数,所得的差一定是〔 〕4.以下结论正确的选项是〔 〕A.数轴上表示6的点与表示4的点两点之间的距离是10.B.数轴上表示-8的点与表示-2的点两点之间的距离是-10.C.数轴上表示-8的点与表示+2的点两点之间的距离是10.D.数轴上表示0的点与表示-5的点两点之间的距离是-5.5.以下结论正确的选项是〔〕A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数六、教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕D CA BD CABDCA B[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识.Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习2.如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D CA B〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一EDCA B P三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b aa b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习1.计算:(1))1)(1(y x xy x y+--+(2)22242)44122(a aa a a a a a a a -÷-⋅+----+(3)zx yz xy xyz y x ++⋅++)111(2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
综合与实践:奇妙的幻方一、教材分析《奇妙的幻方》这节内容是以古老的幻方知识为引子,以探寻三阶幻方的本质特征为载体,让学生借助对实际问题中的数量关系符号化抽象的过程,从而达成领会问题探究方法提升问题解决能力的目标.本节共2课时,作为第一课时,重在引导学生获得“从特殊到一般”的研究方法.其过程也是落实数学活动经验积累、学会学习的重要载体.二、学情分析学生已完成了“有理数及其运算”与“整式及其加减”的学习,有过“探索规律”的经历,对图形对称性也有初步了解.主要面临的问题是从哪里入手以及从哪些角度研究三阶幻方的本质特征和构造思路,如何讲清特征背后的道理、提炼幻方构造的普适性方法.本节是学生初中阶段第一次接触综合实践活动,其研究意识和研究思路还不成形,教学定位在示范引领学生初步掌握研究性学习的方法.以面向全体学生的数学活动为主线,在层层递进的探究过程中引导学生积累数学活动经验.本班学生的整体水平良好,具备初步的观察、分析、概括的能力.课前安排学生收集整理幻方的背景资料并尝试完成用1~9填三阶幻方的体验任务.三、教学目标分析1、通过综合运用有理数混合运算、用字母表示数及其运算等知识,探索三阶幻方的本质特征.2、经历观察、猜想、归纳、类比等活动,初步积累构造三阶幻方的经验.3、通过对蕴含在具体事物中的规律性结论进行分析和解释,初步获得“由特殊到一般”的探究问题的方法和经验.4、通过自主探究、合作交流的学习方式,在感悟数形结合的思想及数学的对称美均衡美的同时体会合作学习的价值.本节课的重点为:经历探究过程,发现和提炼蕴含在三阶幻方中的数学知识和规律,并应用知识和规律去解决实际问题.难点确定为:自主构造三阶幻方.四、教法学法分析:教法:启发和问题驱动式教学法.综合实践活动课是以问题为载体,以解决问题为目标,让学生在“活动”中学习、借助“行动”来研究,学习过程是“动手与动脑”的结合与统一.学法:自主探索、合作交流.研究性学习要求学生既要能独立的多角度观察和思考,也要能关注别人不同的思路和见解,同时研究课题的综合性、开放性以及学生之间客观存在的学情差异,共同决定了本节课要以自主探索和合作交流做为主要的学习方式.五、教学过程:课前准备活动:1、查阅收集关于幻方的背景知识.2、尝试完成课前思考题:请将1~9这九个数字分别填在三行三列的数表中,使每行、每列、每条对角线上的三个数字之和都相等.一、情景导入通过影视剧的片段引入幻方数学活动1:关于三阶幻方的背景知识分享交流.同学们,我们课前研究的这个问题,我们的先辈在两千多年前就已经关注和研究过了,课前也让大家进行了背景资料查阅,现在我们请一位同学代表给我们大家分享一下他们小组查阅的成果.[师]这幅图被称为“洛书”,实际上是一个三阶幻方,(即三行三列九个方格)如图2(出示投影片2)。
1.3.2有理数的减法教学目标:1.知识与技能:体会有理数减法的意义;表述有理数减法的发生过程;掌握有理数减法法则,发展转化和运算的能力。
2.过程与方法:通过经历将减法运算转化为加法运算的过程,从中感悟到思考和解决问题的重要方法——转化的思想方法。
体验在把减法转为加法运算这一过程中的两个改变;一是改变运算符号;二是改变减数的性质符号。
3.情感、态度与价值观:养成把未知转化为已知的思想方法及不断探索的精神和生活态度。
教学重点和难点:有理数减法法则。
教学安排:2课时。
第一课时课堂教学过程设计:一、从学生原有认知结构提出问题一个实际问题:某地一天的气温是-3~4℃,这天的温差(最高气温减最低气温,单位:℃)怎么计算。
学生思考:你能从温度计看出4℃比-3℃高多少度吗?二、师生共同研究有理数减法法则可以得出这天的温差是4-(-3),这里用到的是正数和负数的减法。
师:减法是与加法相反的运算,计算4-(-3),就是要求出一个数x,使得x与-3相加得4。
因为7与-3相加得4,所以x应该是7,即4-(-3)=7①另一方面,4+(+3)=7,②由①②有 4-(-3)=4+(+3)。
③教师提问:从③式能看出减-3相当于加哪个数吗?把4换成0,-1,-5,用上面的方法考虑0-(-3),(-1)-(-3),(-5)-(-3)。
这些数减-3的结果与它们加+3的结果相同吗?计算 9-8,9+(+8); 15-7,15+(-7)。
从中又能有新发现吗?得出结论:有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
三、运用举例变式练习例5 计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8);(4)(-312)-514。
通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。
练习:1.计算:(1)(-3)-[6-(-2)]; (2)15-(6-9).2.15℃比5℃高多少? 15℃比-5℃高多少?3.计算(口答):(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);(4)(-4)-9; (5)0-(-5); (6)0-5.四、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。
人教版义务教育教科书《数学》七年级(上)第一章第3节《1.3.2有理数的减法》教学设计汾阳市冀村中学董永萍《1.3.2有理数的减法》教学设计课题:《1.3.2有理数的减法》科目数学教学对象初一年级76班课时 1 授课者董永萍单位汾阳市冀村镇初级中学校一、教学目标知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学内容分析本节是在学习了正负数、相反数、有理数加法运算之后,以初中数学第一章有理数减法法则为课堂教学内容。
有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
三、学情分析(1)学生已学习了有理数的加法运算,有一定的认知基础。
(2)初一学生个性活泼,思维活跃,积极性高, 已初步具有对数学问题进行自主探究、合作交流的意识与能力。
(3)义务教育使得学生个体差异非常明显,因此在教学中必须采取因材施教,分层教学,不使任何学生掉队,实现真正的大众数学。
四、教学策略选择与设计1.基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的训练,情感的成功体验。
同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2.学生应该从自己已有的知识经验出发,自主参与整堂课的知识构建。
在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。
人教版七年级上册数学公开课优秀教案(有理数的减法法则)教学设计与反思人教版七年级上册数学公开课优秀教案(有理数的减法法则)教学设计与反思1.3.2 有理数的减法第1课时有理数的减法法则1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.一、情境导入北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下列图是2022年1月30日北京天气预报网上的北京天气情况,从下列图我们可以得知北京从周五到下周二的X温度为6℃,X温度为-5℃.那么它的温差怎么算?6-(-5)=?二、合作探究探究点:有理数的减法法则(类型一)有理数减法法则的直接运用计算:(1)7.2-(-4.8);(2)-312-514.解析:先依据有理数的减法法则,将减法转化为加法,再依据有理数的加法法则计算即可.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.方法总结:进行有理数减法运算时,将减法转化为加法,再依据有理数加法法则进行计算.要特别注意减数的符号.(类型二)有理数减法的实际应用上海某天的X气温为6℃,X气温为-1℃,则这一天的X气温与X气温的差为( )A.5℃ B.6℃ C.7℃ D.8℃解析:由题意得6-(-1)=6+1=7(℃),应选C.方法总结:要依据题意列出算式,再运用有理数的减法法则解答.(类型三)应用有理数减法法则判定正负性已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解析:推断a,b差的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.解:因为b<0,所以-b>0.又因为a<0,a-b=a+(-b),所以a与-b 是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.方法总结:此类问题如果是填空或选择题,可以采纳“特别值〞法进行推断,假设是解答题,可以将减法转化为加法通过运算法则来解答.三、板书设计有理数减法法则:减去一个数,等于加上这个数的相反数,即a-b=a+(-b).利用有理数减法法则,可以将有理数减法统一成加法运算.本节课从实际问题出发,创设教学情境,有效调动学生学习的兴趣和积极性.通过实例计算,激发学生的探究精神.通过大量的数学练习,使学生在计算中稳固解题技能,在小组交流中体验有理数的减法运算的运算魅力,并在教师的指导下自行归纳运算法则;学生亲身体验知识的形成过程,感想数学的转化思想.有理数的减法第1课时有理数的减法法则教学目标:1.经历探究有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.教学重点:有理数减法法则和运算.教学难点:有理数减法法则的推导.教与学互动设计(一)创设情景,导入新课观察温度计:你能从温度计看出4℃比-3℃高出多少度吗学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(X气温减X气温,单位℃)如何用算式表示按照刚刚观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,℃由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生答复.(二)动手实践,发觉新知观察、探究、商量:从③式能看出减-3相当于加哪个数吗结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗先让学生直观观察,然后教师再利用“减法是与加法相反的运算〞引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,又因为(-1)+(+3)=2 ②,由①②有(-1)-(-3)=-1+(+3) ③,即上述结论依旧成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗让学生利用“减法是加法的相反运算〞得出结果,再与加法算式的结果进行比拟,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢计算9-8与9+(-8);15-7与15+(-7)从中又能有新发觉吗让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发觉,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐渐渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则(例)计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-3-5.(五)总结稳固,初步应用总结这节课我们学习了哪些数学知识和数学思想你能说一说吗教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.。
《1.3有理数的加减法——有理数的减法》教学设计一、内容和内容解析1.内容有理数的减法法则.2.内容解析有理数的减法是有理数的一种基本运算,它是有理数加法的推广和延续.在有理数运算中,“减去一个数等于加上这个数的相反数”,于是减法就转化为加法了,这正是引进负数的意义所在,也为后面将除法转化为乘法提供了类比对象.因此,本课的重点是有理数减法法则.二、目标和目标解析1.目标(1)理解有理数减法法则,了解有理数减法与有理数加法的关系,体会转化的思想方法.(2)能利用有理数减法法则计算两个数的减法.2.目标解析达到目标(1)的标志是:学生通过对温度计的观察,探索有理数减法法则的过程,能够知道“减去一个数等于加上这个数的相反数”的结论,感知有理数减法的意义;达到目标(2)的标志是:学生理解有理数的减法法则,并准确运用法则进行简单计算.三、教学问题诊断分析有理数的减法,学生在前面两个学段已经具备了在正有理数范围内用大数减小数的运算方法,但是在有理数范围内,学生遇到了小数减大数不够减的问题,这在理解上造成困难.在学习过程中,将有理数的减法转化为加法时,容易出现“两变”上的错误(一是减法变加法,二是把减数变为它的相反数).本课的教学难点:有理数的减法法则的归纳以及把减法正确地转化为加法.五、教学过程设计(一)复习巩固问题1 有理数的加法法则是如何叙述的?师生活动:学生回答,教师聆听、补充.设计意图:通过复习有理数的加法法则,为学习有理数的减法做铺垫.问题2 某地一天的气温是-3℃~3℃,就是说,这一天的最高温度为3℃,最低温度为-3℃.请用式子表示这天的温差(即最高温度与最低温度的差).观察温度计,从你自己的生活经验出发,这天的温差是多少?师生活动:学生读题、独立思考、回答问题,教师在“温差”的意义,如何观察温度计等作适当引导.结论:按照温差的意义,就是要计算3-(-3),根据生活经验,温差应该为6℃. 设计意图:通过实际问题引入,让学生体会学习减法运算的必要性. (二)探索新知问题 3 根据小学的经验,减法是加法的逆运算.你能由此说明计算3-(-3)的方法吗?得到什么结果?师生活动:在教师的引导下,学生尝试说明:(1)计算3-(-3),就是要求一个数x ,使得x 与-3相加得3.根据有理数加法可知,6与-3相加得3,所以x 应该是6,即3-(-3)=6.(2)想一想:3+ =6.(3)观察(1),(2)两个等式得出的结果,你发现了什么?从结果中能看出减3-相当于加哪个数?【设计意图】以减法是加法的逆运算为依据,针对具体数字的运算,通过说理获得“减-3相当于加上+3”.问题4 将上式中的3换成014--,,,用上面的方法考虑:)3(0--, )3()1(---,)3()4(---,这些数减-3的结果与它们加3+的结果相同吗?师生活动:学生独立思考,再讨论交流.教师指导,在学生交流的基础上进行总结. 设计意图:通过不同实例,加强对“减去-3,相当于加上+3”的认同度,为抽象出减法法则做准备.追问:请你自己再举出几个不同的例子,检验一下上述类似的结论是否成立. 师生活动:教师提醒例子的多样性,例如“正数减正数”,“正数减负数”,“负数减正数”,“负数减负数”,“0减负数”等.学生思考、回答.设计意图:通过学生自己全面举例,进一步确认有理数减法法则,“减去一个数等于加上这个数的相反数”.()a ba b -=+-问题5 归纳上面的例子可知,有理数的减法可以转化为加法.你能概括一下上述例子,尝试给出有理数减法法则吗?师生活动:学生尝试归纳有理数的减法法则——减去一个数,等于加上这个数的相反数.设计意图:培养学生语言表达能力和总结、归纳能力. 追问 你能用字母把法则表示出来吗? 学生在教师的引导下,归纳得出结论:()a b a b -=+-.(三)巩固练习 例题计算:(1))5()3(---;(2)70-;(3))8.4(2.7--;(4)415)213(--. 解:(1))5()3(---=)5()3(++-2=;(2)70-)7(0-+=7-=; (3))8.4(2.7--8.42.7+=12=; (4)415)213(--)415()213(-+-=438-=. 师生活动:由学生独立作业,教师要引导学生归纳有理数减法的运算步骤,即先把减法化成加法,然后按照有理数加法法则运算.设计意图:熟悉有理数减法法则.让学生叙述解题思路时,要强调“步步说理”,这样可以强化有理数减法法则.问题6 思考:在小学,只有当a 大于或等于b 时,我们才会做a -b (例如2-1,1-1)现在,当a 小于b 时,你会做a -b (例如1-2,(-1)-1)吗?一般地,较小的数减去较大的数,所得的差的符号是什么?减号变加号减数(-5)变为相反数(+5)师生活动:由学生独立思考后交流,一方面要得出“小数减大数所得的差是负数”,另一方面也要引导学生体会引入负数的好处.结合学生的回答,教师要带领学生进一步得出:小数减大数,等于大数减小数的相反数.设计意图:让学生在小学的减法基础上认识到有理数的减法的与其之间的统一性和拓展性,即在引入负数后,在有理数范围内,以前不能解决的小数减大数问题就可以解决了.从另一个角度数就是减法总可以得以实施,这就是引入负数的重要目的.练习教科书第23页练习第1,2题.师生活动:学生独立完成,教师巡视点拨.设计意图:练习第1题的目的在于让学生在计算中进一步体会有理数的减法法则,教师关注学生能否熟练地把减法转化为加法,再利用加法法则正确地进行计算.第2题目的是让学生利用有理数的减法解决简单的实际问题.(四)课堂小结师生共同回顾本节课所学的主要内容,并请学生回答以下问题:1.有理数的减法法则是什么?2.进行有理数的减法运算时需要注意哪几个步骤?师生活动:学生梳理、交流.教师和学生一起补充完善.(五)布置作业教科书习题1.3,第3,4,11题.五、板书设计有理数的减法二、例题三、注意的问题一、有理数减法法则,“减去一个数等于加上这个数的相反数””.a-b=a+(-b)小数减大数,等于大数减小数的相反数.。
§1.3.2 有理数的减法(1) 学习目标:1.记住有理数减法法则,并能熟练地进行有理数减法运算 2.能用有理数的减法解决实际问题。
复习导入:(2分钟) 1、有理数加法法则 2、计算 1、(–3)+(–9)= 2、85+(+15)= 3、(–3 )+(–3 )= 4、(–3.5)+(–5 )= 5、(–45) +(+23)= 6、(–1.35)+6.35= 7、(–9)+ 0 = 8、0 +(+15)= 自主学习: (一)自主探究,合作归纳(10分钟) 1、-3的相反数是 , 2、计算:(1)-4+1= (2)(+8)+(-3)= (3)(-3.4)+(-5.6)= 3、比10℃低2℃的温度是 ,比-1℃低2℃的温度是 。
你能用算式表达上面第3题中的两个运算关系吗?试试看。
(1) (2) 4、计算:(3)10+(-2)= (4)(-1)+(-2)= 5、观察比较以上两题中的(1)、(3)算式,你有什么发现?(2)和(4)呢?是否也符合你的发现?试着把你的发现描述出来吧。
归纳总结:有理数的减法法则: 。
表达式为:a-b= (二)应用法则,规范步骤(用5分钟时间阅读课本P22例4,完成以下各题) (1)11-(+7) (2)-1.2-(+2.1) (3) (32-)-(31-) (4)0-(-3.5)思考: 1、有理数相减的运算过程中,改变的是哪些?不变的是哪些? 2、小学里学习的减法,差总是小于被减数。
有理数减法中,差一定小于被减数吗? 两人互动小游戏:(5分钟) 请同学们自己准备三道利用有理数的减法进行运算的题目,和同桌交换来做,看谁做得又快又好! 巩固拓展:(15分钟) 1、计算1-|-2|结果正确的是 ( ). A. 3 B. 1 C. -1 D. -3 2、世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.珠穆朗玛峰比吐鲁番盆地高度 米。
1.3.2有理数的减法第1课时有理数的减法法则教学目标:1.经历探索有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.教学重点:有理数减法法则和运算.教学难点:有理数减法法则的推导.教与学互动设计(一)创设情景,导入新课观察温度计:你能从温度计看出4℃比-3℃高出多少度吗?学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7①,而4+(+3)=7②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2①,又因为(-1)+(+3)=2②,由①②有(-1)-(-3)=-1+(+3)③,即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.作者留言:非常感谢!您浏览到此文档。
1.3 有理数的减法(一)
备课人 课型:自主探究课 学生:___________
学习目标:掌握减法法则,会进行减法运算
重 点:减法运算
难 点:减法法则的推理
一.根据左边的等式填右边的空格
甲数 + 乙数 = 和 和- 乙数 = ( )
(+8) + (+2) = 10 10- (+2) = ( )
(+9)+ (-3) = 6 6- (-3) = ( )
(-5)+(-4)=-9 -9-(-4)= ( )
二.自主学习(看书21p~22p页,完成下列作业)
1.感受生活中的数学问题(结合书21p页完成下面的问题)
说明有理数的减法可以转化为 来计算。
2. 现在请你归纳出有理数减法法则:
有理数减法法则用字母公式表示:
3. 把下面有理数减法转换成有理数的加法,然后算出结果
)3(0 )3(1 )3(5
)6(11 )7(13 )5(5
)8(9 )3(6
715
4.认真看书22p页例5的解题格式,然后再做下面的减法题
)5(3
= = 70 =
)8(5
96
1.某地冬季某天的最高气温是 4℃,最低气温是-3℃,最高气温与最低气温的差是多少? 2.甲地海拔800米,乙地海拔
-200米 ,甲地比乙地高多少
米?
另一方面:
列出算式,写出结果: 你能仿照1题格式在横线上写出2题中合适的算式吗?
…⑵ 7)3(47)3(4…⑴ …⑴ …⑵
这三道减法题的结果
能用其它方法算出吗?
由⑴⑵得到等式 由⑴⑵得到等式
)3(4)3(4
)7(4
9.55.2
)6.0(9.1 )5(0
)7(8.3
03
)53(52 31)21(
讨论:做有理数减法有哪两个两个步骤:
5.要小心哦,下面算式中既有加法题也有减法题,别把题看错了,别把法则弄错了。
)7(9 )7(9
)10(8 )10(8
三、问题交流:
⑴交换导学案看一看,欣赏他人作业之美,同时发现自己和他人之不足
⑵提出问题,小组内讨论解决问题
⑶总结小组内不能解决的问题和一些发现,展示到黑板上
四、展示提升(展示不能解决的问题,接受任务,小组作好准备哦!)
五、达标检测
1.课本
23p练习1、2题 还有25
p
页第3、4题做在作业本上
2. )7.0(7.1
)9(9
)10(0 10)8(
3.梯等式计算
)10()7(6
(—323)-(—123)-(—1.75)-(—234)