有理数的减法教案(2课时)
- 格式:doc
- 大小:41.50 KB
- 文档页数:5
2.2有理数的减法(第1课时)【教学目标】知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算。
能力目标:培养学生观察、归纳的数学能力及初步掌握数学学习转化的数学思想。
情感目标:过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学生的学习兴趣。
【教学重点、难点】重点:有理数的减法的运算法则,以及法则的应用。
难点:在实际生活中,正、负关系的确定以及原有知识的掌握。
【教学方法】观察、归纳、合作交流、对比、类比等。
【教学过程】一、创设情境,激发兴趣一天, 厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度?列出算式.由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.提出问题:怎么进行这里的减法运算呢?有理数的减法法则是什么?二、合作学习,共同归纳1.不妨我们看一个简单的问题:9 -(-7)=16. 9 +(?)=16.大家注意观察上面的两个算式,你能发现什么规律?先个人研究,而后交流.比较两式,可以发现: 9“减去-7”与“加上+7”结果是相等的,即减法变加法9 -(-7)=9+7.变相反数2.归纳:全班交流,从上述结果我们可以发现规律:减去一个数,等于加上这个数的相反数.这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.三、实践应用,拓展延伸应用1:计算:(1)5-(-5)(2)0-7-5 (3)(-1.3)-(-2.1)(4)113-212(5)(-6)+(-5)在学生口答的基础上,由教师引导归纳::(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是“+”号,还是“-”号);(2)将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变以“+”号;另一个是减数的性质符号.应用2:某天北京中午的气温是零上3℃,到午夜气温下降了9℃,那么北京午夜的气温是多少摄氏度?此例说明,在有理数范围内,不存在“不够减”的减法。
有理数的减法教案一、教学目标:知识与技能:1. 理解有理数的减法概念,掌握有理数减法的基本运算方法。
2. 能够正确进行有理数的减法运算,解决实际问题。
过程与方法:1. 通过实例演示和练习,培养学生的运算能力和逻辑思维能力。
2. 学会运用数轴帮助理解和解决有理数减法问题。
情感态度价值观:1. 培养学生的团队合作精神,学会互相交流和合作解决问题。
2. 激发学生对数学的兴趣,培养积极的学习态度。
二、教学重点与难点:重点:1. 掌握有理数的减法运算方法。
2. 能够运用数轴解决有理数减法问题。
难点:1. 理解有理数减法中的借位概念。
2. 熟练运用减法运算解决实际问题。
三、教学准备:教师准备:1. 教学课件或黑板。
2. 练习题和答案。
3. 数轴教具。
学生准备:1. 笔记本和笔。
2. 学习有理数的基础知识。
四、教学过程:1. 导入:通过一个实际问题引入有理数减法的学习,例如“小明有5个苹果,他吃掉了3个,他还剩下几个苹果?”引导学生思考和讨论。
2. 知识讲解:1) 介绍有理数减法的定义和符号。
2) 通过示例演示有理数减法的运算过程,解释借位的概念和原理。
3) 强调有理数减法运算的注意事项,如正负数的减法、借位的处理等。
3. 练习与讨论:1) 学生独立完成练习题,教师巡回指导。
2) 选取一些学生的作业进行讲解和讨论,引导学生理解和掌握有理数减法运算方法。
4. 应用拓展:1) 通过解决实际问题,让学生运用有理数减法运算,如购物找零、温度变化等。
2) 引导学生思考和讨论有理数减法在现实生活中的应用和意义。
五、作业布置:1. 完成练习题,巩固有理数减法运算。
教学反思:本节课通过实例演示和练习,让学生掌握了有理数减法的基本运算方法,并能够运用数轴解决相关问题。
在教学过程中,注意引导学生思考和讨论,激发学生的学习兴趣。
作业布置旨在巩固所学知识,培养学生的实际应用能力。
在今后的教学中,可以尝试更多实际问题的引入,提高学生的解决问题能力。
第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。
有理数的减法教案(优秀5篇)《有理数的减法》教案篇一一说教材:(一) 地位、作用:本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。
有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用(二) 教学目标:1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三) 重点、难点:重点:有理数的减法法则,熟练地进行有理数的减法运算难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算二、说教学方法:根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。
教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体三、说学法:根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:(一) 引入课题环节:1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
《有理数的减法(2)》教学设计【教材分析】《有理数的减法》是人教版教科书《数学》七年级上册第一章第三节第二课时的内容。
本节课主要学习有理数的加减混合运算的学习远接小学阶段关于非负有理数的减减混合法运算,近承本章有理数的加法和减法运算。
通过对有理数的加减法运算的学习,学生将对加减法运算有进一步的认识和理解,也为后继对有理数的混合运算、实数、整式、方程等运算的学习奠定了坚实的基础。
同时也为生活中的地理、物理等各类问题的解决提供帮助。
【设计理念】数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】知识与技能:使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算。
过程与方法:经历探索有理数的加减混合运算可以统一成加法,加法运算可以写成省略括号及括号前“+”号形式的过程。
情感、态度与价值观:培养学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验。
通过学生间合作、交流、竞争等活动方式,培养学生的合作、互助精神和竞争意识。
【教学重点】有理数的减法法则的理解和应用,及学生合作意识和探究能力的培养。
【教学难点】法则中减法到加法的转变过程,在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
【教法学法】自主探究法小组合作学习法归纳总结学习方式【教具学具准备】多媒体课件【教学流程】一、情境导入认定目标1、请说出有理数的减法法则。
2.(化简)-(-5)+(-1.2)-(+3)+(+0.2)3.计算:(1)0-(-9)(2)9.5-10(3)23-(-11)(4)(-7)-(-13)【设计意图】为进一步学习有理数减法法则奠定牢固的基础。
情境问题:一架飞机作特技表演, 起飞后的高度变化如下表:此时,飞机比起飞点高了多少千米?)(1)4.1(1.13.1)4.1(1.1)2.3(5.41千米解法=-++=-++-+)(14.11.13.14.11.12.35.42千米解法=-+=-+-比较以上两种解法,你发现了什么?(省略了括号和加号,结果不变。
2.5 有理数的减法教与学 反思 你有什么收获? 教学反思: 1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法那么的得出,是在经历从实际例子〔温度计上的温差〕到抽象的过程中形成种,减法法那么的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也表达教师是学生教学的引导者、伙伴的新型师生关系.2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法那么的理解和掌握是建立在一定量的练习根底之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导〔提倡〕学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的根底上又让学生〔或教师启发引导〕去寻找一些〔如减正数即加负数;减负数即加正数〕规律,目的。
第1课时 有理数的加减混合运算及运算律在其中的应用1.理解有理数加减混合运算统一成加法运算的意义,掌握有理数加减混合运算的方法,并能熟练运算.2.能根据具体问题,适当运用运算律简化运算.一、情境导入甲、乙两队进行拔河比赛,规定标志物向某队方向移动2米,该队即可获胜.比赛开始后,标志物先向乙队方向移动0.2米,又向甲队方向移动0.5米,相持一会儿后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家欢呼声鼓励中,标志物又向甲队移动了0.9米,请你通过计算判断哪队获胜.就让我们带着这一问题去学习有理数的加减混合运算.二、合作探究探究点一:有理数的加减混合运算计算:12+(-23)-(-45). 解析:先将减法统一为加法,再按有理数的加法运算法那么进行计算.解:原式=12+(-23)+(+45)=-16+45=1930.方法总结:有理数加减混合运算的步骤是:(1)用减法法那么将减法转化为加法;(2)写成省略加号的和的形式;(3)进行有理数的加法运算.探究点二:利用加法运算律进行计算计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:此题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后运用加法运算律简化运算,求出结果.其中互为相反数的两数先结合,能凑成整数的各数先结合.另外,同号各数先结合,同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2-14=-16; (3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.三、板书设计本课时在学习了有理数加减法运算的根底上,通过对同一具体情境两种算法的比较,让学生体会加减混合运算可以统一成加法运算,以及加法运算可以写成省略括号及前面加括号的形式,渗透“转化〞思想.通过师生、生生之间的交流,培养学生的口头表达能力和计算能力.。
2.2有理数的减法(第1课时)
【教学目标】
知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算。
能力目标:培养学生观察、归纳的数学能力及初步掌握数学学习转化的数学思想。
情感目标:过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学
生的学习兴趣。
【教学重点、难点】
重点:有理数的减法的运算法则,以及法则的应用。
难点:在实际生活中,正、负关系的确定以及原有知识的掌握。
【教学方法】观察、归纳、合作交流、对比、类比等。
【教学过程】
一、创设情境,激发兴趣
一天, 厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度?列出算式.
由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.
提出问题:怎么进行这里的减法运算呢?有理数的减法法则是什么?
二、合作学习,共同归纳
1.不妨我们看一个简单的问题:
9 -(-7)=16. 9 +(?)=16.
大家注意观察上面的两个算式,你能发现什么规律?
先个人研究,而后交流.比较两式,可以发现: 9“减去-7”与“加上+7”结果是相等的,即
减法变加法
9 -(-7)=9+7.
变相反数
2.归纳:全班交流,从上述结果我们可以发现规律:
减去一个数,等于加上这个数的相反数.
这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.
三、实践应用,拓展延伸
应用1:计算:(1)5-(-5)(2)0-7-5 (3)(-1.3)-(-2.1)
(4)11
3
-2
1
2
(5)(-6)+(-5)
在学生口答的基础上,由教师引导归纳::
(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是“+”号,还是“-”号);
(2)将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变以“+”号;另一个是减数的性质符号.
应用2:某天北京中午的气温是零上3℃,到午夜气温下降了9℃,那么北京午夜的气温是多少摄氏度?
此例说明,在有理数范围内,不存在“不够减”的减法。
四、尝试反馈,巩固练习
1.计算
(1)(-2.5)-1.5 (2)1
4
-(-
1
2
) (3)(-1)-(-4)-3
(4)13
8
-2
1
4
(5)[8+(-7)]-15
2.填空:
(1)温度3℃比-8℃高___________;(2)温度-9℃比-1℃低_____________;
(3)海拔-20m比-30m高________; (4)从海拔22m到-10m,下降了______.
3.已知一个数与3的和是-10,求这个数.
4.求出下列每对数在数轴上对应点之间的距离:
(1)3与-2.2 (2)41
2
与2
1
4
(3)-4与-4.5 (4)-3
1
2
与2
1
3
你能发现所得的距离与这两数的差有什么关系吗?
五、交流反思,形成结构(师生共同完成)
1.通过上面的练习,你能总结出有理数减法与小学里学过的减法的不同点吗?
(1)被减数可以小于减数.如: 1-5 ;
(2)差可以大于被减数,如:(+3)-(-2);
(3)有理数相减,差仍为有理数;
(4)大数减小数,差为正数;小数减大数,差为负数;
2.根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算.六、布置作业
作业本中的相应部分。
2.2有理数的减法(第2课时)
【教学目标】
知识目标:理解有理数加减法可以互相转化,会进行加减混合运算;
能力目标:培养观察、讨论、积极思维探索的能力及计算的准确能力.
情感目标:激发学生对数学的兴趣,培养学生热爱数学的情感.
【教学重点、难点】
重点:写成省略加号的和的形式及熟练地进行有理数的加减混合运算.
难点:能灵活运用加法运算律进行有理数的加减混合运算.
【教学方法】比较、归纳、探索、练习等.
【教学过程】
一、创设情境,激发兴趣
(-1)-(-2)+(-3)-(-4)+(-5)-(-6)…(-49)-(-50)在学生讨论交流下,提出问题
(1)如何解该题?(2)如何将减号进行转变?
二、合作学习,共同归纳
根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法
1.提出问题:1
3
-(+
1
4
)+(-
3
4
)-(-
2
3
)如何统一成加号?
学生回答:1
3
+(-
1
4
)+(-
3
4
)+(+
2
3
)
2.省略加号如何表示?
由教师讲解:在一个和式里,通常把各个加数的括号与它前面的加
法省略不写.
形如:1
3
-
1
4
-
3
4
+
2
3
3.如何读呢?
总结读法:按和式读做“正1
3
、负
1
4
、负
3
4
与正
2
3
的和”
按运算意义读做“1
3
减
1
4
减
3
4
加
2
3
”
4.你认为如何计算:1
3
-(+
1
4
)+(-
3
4
)-(-
2
3
)
由学生合作交流,教师引导下得出有理数加减混合运算步骤:(1)利用减法法则,将减法统一为加法.
(2)省略加号的和的形式,简化算式.
(3) 运用加法交换律、结合律,使运算简单.
三、实践应用,拓展延伸
应用1:把写下式成省略加号的和的形式,并把它读出来.
(-3)+(-8)-(-6)+(-7)
由学生完成,并用两种方法读出.
应用2:计算:
(1)(+16)+(-29)-(-7)-(+11)+(+9);
(2)(-3.1)-(-4.5)+(+4.4)-(+10.3)+(-4.5);
(3)(+12 )-(+5)+(-13 )-(+14 )+(+413
); (4)(-2
5
2)-(-4.7)-(+0.5)+(-3.2). 法一:按正常顺序来解(从左到右)法二:运用简便方法来解(加法交换律和结合律)
问:该如何灵活运用?根据上述解题过程,师生共同归纳.
(1)使符号相同的加数放在一起.(2)互为相反数的放在一起.
(3)使和为整数的加数放在一起.(4)使分母相同的加数放在一起. 应用3:一储蓄所在某时段内共理了8项现款储蓄业务:
取出63.7元,存入150元,取出200元,存入120元,
存入300元,取出112元,取出300元,存入100.2元.
问该储蓄所在这一时段内现款增加或减少了多少元?
由师生共同合作、交流来完成。
四、尝试反馈,巩固练习
1.把下列各式中的减法转化为加法,再写成省略加号的和的形式,并把它读出来:
(1)(-7)+(-8)-(-9);(2)(-32)-(+17)-(-65)-(-24)
2.计算:
(1)7.8+(-1.2)-(-0.2);(2)-5.3-(-6.1)-(-3.4)+7; (3)-23 +14 -16 -12 ; (4)-5.75-[(-334 )+(-518
)]-3.125; 3.一电脑公司仓库8月1日库存某种型号的电脑20台,8月2日到6日该种型号的
电脑进出记录如下表,问到8月6日止,库存该种电脑多少台?
地出发到收工时 所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5
(1)问收工时距A 地多远?
(2)若每千米耗油0.2升,问从A 地出发到收工时共耗油多少升?
五、交流反思,形成结构(师生共同完成)
1.有理数加减混合运算步骤:
(1)利用减法法则,将减法统一为加法.
(2)省略加号的和的形式,简化算式.
(3)运用加法交换律、结合律,使运算简单
2.进行有理数加减混合运算使用交换律、结合律的简便方法
(1)使符号相同的加数放在一起.(2)互为相反数的放在一起.
(3)使和为整数的加数放在一起.(4)使分母相同的加数放在一起.六、布置作业
作业本中的相应部分。