5-1 弹簧振子和单摆的运动方程
- 格式:ppt
- 大小:448.00 KB
- 文档页数:14
● 基础知识落实 ●1、弹簧振子: 2.单摆(1).在一条不可伸长、不计质量的细线下端系一质点所形成的装臵.单摆是实际摆的理想化物理模型.(2).单摆做简谐运动的回复力单摆做简谐运动的回复力是由重力mg 沿圆弧切线的分力 F =mgsin θ 提供(不是摆球所受的合外力),θ为细线与竖直方向的夹角,叫偏角.当θ很小时,圆弧可以近似地看成直线,分力F 可以近似地看做沿这条直线作用,这时可以证明F =-tmgx =-kx .可见θ很小时,单摆的振动是 简谐运动 . (3).单摆的周期公式①单摆的等时性:在振幅很小时,单摆的周期与单摆的 振幅 无关,单摆的这种性质叫单摆的等时性,是 伽利略 首先发现的.②单摆的周期公式 π2 g lT =,由此式可知T ∝g1,T 与 振幅 及 摆球质量 无关. (4).单摆的应用①计时器:利用单摆的等时性制成计时仪器,如摆钟等,由单摆的周期公式知道调节单摆摆长即可调节钟表快慢.②测定重力加速度:由gl T π2=变形得g =22π4T l ,只要测出单摆的摆长和振动周期,就可以求出当地的重力加速度.③秒摆的周期 秒 摆长大约 米 (5).单摆的能量摆长为l ,摆球质量为m ,最大偏角为θ,选最低点为重力势能零点,则摆动过程中的总机械能为:E = mgl (1-cos θ) ,在最低点的速度为v = ) cos 1(2 θ-gl .知识点一、弹簧振子:1、定义:一根轻质弹簧一端固定,另一端系一质量为m 的小球就构成一弹簧振子。
2、回复力:水平方向振动的弹簧振子,其回复力由弹簧弹力提供;竖直方向振动的弹簧振子,其回复力由重力和弹簧弹力的合力提供。
3、弹簧振子的周期:km T π2= ① 除受迫振动外,振动周期由振动系统本身的性质决定。
② 弹簧振子的周期和频率只取决于弹簧的劲度系数和振子的质量,与其放臵的环境和放臵的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T ,不管把它放在地球上、月球上还是卫星中;是水平放臵、倾斜放臵还是竖直放臵;振幅是大还是小,只要还是该振子,那它的周期就还是T 。
第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。
频率、周期和初相。
A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。
设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。
弹簧振子公式总结弹簧振子的基本概念弹簧振子是一种简单的物理振动系统,由质点和与之相连的弹簧组成。
当质点在平衡位置附近发生微小位移时,弹簧会产生恢复力使质点回到平衡位置,从而形成振动。
弹簧振子的运动方程弹簧振子的运动方程可以用微分方程表示,一般形式为:m * x'' + c * x' + k * x = 0其中,m是质点的质量,x是质点的位移,c是阻尼系数,k是弹簧的劲度系数。
当阻尼系数为0时,弹簧振子为无阻尼振动;当阻尼系数小于临界阻尼时,弹簧振子为欠阻尼振动;当阻尼系数等于临界阻尼时,弹簧振子为临界阻尼振动;当阻尼系数大于临界阻尼时,弹簧振子为过阻尼振动。
弹簧振子的特征频率弹簧振子的特征频率是指弹簧振子在无阻尼情况下的固有频率。
特征频率可以通过振动系统的质量m和劲度系数k来计算,公式如下:f = 1 / (2 * π * √(k / m))其中,f表示特征频率,π表示圆周率。
弹簧振子的振幅和周期弹簧振子的振幅表示质点在振动过程中的最大位移。
振幅可以由振动系统的初始条件确定。
弹簧振子的周期表示质点完成一次完整振动所用的时间。
周期可以通过特征频率来计算,公式如下:T = 1 / f其中,T表示周期。
弹簧振子的相位弹簧振子的相位表示质点振动的状态或相对于其他物体振动的状态。
相位可以用角度或时间表示。
弹簧振子的相位差可以通过质点的位移和速度来计算,公式如下:φ = arc tan (x / (λ * v))其中,φ表示相位差,x表示位移,v表示速度,λ表示波长。
弹簧振子的能量弹簧振子的能量可以分为动能和势能。
弹簧振子的动能可以由质点的质量和速度计算,公式如下:K = (1/2) * m * v^2弹簧振子的势能可以由弹簧的劲度系数和质点的位移计算,公式如下:U = (1/2) * k * x^2总能量为动能和势能之和:E = K + U弹簧振子的阻尼振动当弹簧振子受到阻尼时,振动会逐渐减弱并最终停止。
简谐振动弹簧振子与单摆的运动规律简谐振动是指物体在一个恢复力作用下,以某一特定频率围绕平衡位置来回振动的现象。
其中,弹簧振子和单摆是两种常见的简谐振动体系。
本文将介绍弹簧振子和单摆的运动规律。
一、弹簧振子弹簧振子是通过连接弹性系数为k的弹簧和质量为m的物体来实现的。
弹簧振子的平衡位置是指物体静止时所处的位置,通常是将弹簧的伸长长度设为平衡位置。
1. 振动方程对于弹簧振子而言,其振动方程可以表示为:m * a + k * x = 0其中,m是物体的质量,a是物体的加速度,k是弹簧的劲度系数,x是物体距离平衡位置的位移。
2. 运动规律根据振动方程,我们可以推导出弹簧振子的运动规律。
假设物体在t=0时刻的位移为x_0,速度为v_0,则弹簧振子的位移可以表示为:x = A * cos(ωt + φ)其中,A是振幅,表示物体离开平衡位置的最大距离;ω是角频率,表示单位时间内物体的振动次数;φ是初相位,表示物体在t=0时刻的相位。
利用初条件,我们可以求解振幅和初始相位。
物体的速度可以表示为:v = -A * ω * sin(ωt +φ)由于速度和位移之间存在90°的相位差,我们可以得到速度的初相位:φ_v = φ + π/23. 简谐振动的特点弹簧振子的简谐振动具有以下特点:- 振动周期:T = 2π/ω,表示物体完成一个完整振动所需要的时间。
- 振动频率:f = 1/T,表示单位时间内物体的振动次数。
- 动能和势能:弹簧振子的动能和势能之和保持不变,即E =1/2mv^2 + 1/2kx^2 = 1/2kA^2,其中E为总能量。
二、单摆单摆由一个允许转动的杆和一个挂在杆末端的质点组成。
当质点被拉至一侧并释放时,它将在重力的作用下来回摆动。
1. 振动方程对于单摆而言,其振动方程可以表示为:m * a + mg * sinθ = 0其中,m是质点的质量,a是质点的加速度,g是重力加速度,θ是质点与竖直方向的夹角。
精心整理第5章 振动和波动5-1 一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为x = 0.02m 时的瞬时速度、加速度和回复力;(2) (3) 解:式中解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++= 上式表明此振动系统的振动为简谐振动,且振动的圆频率为 振动的频率为 1212π2πk k mων+== 5-4 如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。
解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:振动角频率 2π2d gmρω=振动周期 222ππmT d gρ= 5-5 如图所示,定滑轮半径为R ,转动惯量为J ,轻弹簧劲度系数为k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手,不计一切摩擦和空气阻力。
试证明该系统作简谐振动,并求其作微小振动的周期。
习题5-4解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
设平衡时弹簧伸长0l ,有:0kl mg = (1) 物体位于x 位置时(以原点为重力势能零点): 对上式两边求导:,物体械能于是ω=5-7如图所示,质量为10g的子弹,以01000m sv=速度射入木块并嵌在木块中,使弹簧压缩从而作简谐运动,若木块质量为4.99kg,弹簧的劲度系数为3810N m⨯,求振动的振幅。
大学物理机械振动 篇一:大学物理——机械振动 第十章 机械振动 基本要求 1.掌握简谐振动的基本概念和描述简谐振动的特征量的意义及相互关系。
2.掌握和熟练应用旋转 矢量法分析与解决有关简谐振动的问题。
3.掌握简谐振动的动力学与运动学特征,从而判定一个运动是否为简谐振动。
4.理解简谐振动的 能量特征,并能进行有关的计算。
5.理解两个同振动方向、同频率的简谐振动的合成。
6.了解同振动方向不同频率的简谐振动的合成和相互垂直的两个振动的合成。
7.了解频谱分析、阻尼振动与受迫振动。
8.了解混沌的概念和电磁振荡。
10-1 简谐振动 一. 弹簧振子 ?? f??kx1. 弹性力:2.运动学特征: dxdt 22 特征方程: 2 ??x?0 式中 ?2?K m 其解: x?Acos(?t??) 二. 描述谐振动的物理量 1. 2. 振幅:A 角频率:?? km 3. 频率:?? ? 2?2? 4. 5. 6. 三. 周期:T? ? 相位:?t?? 初相位:? 谐振动中的速度和加速度 v? dxdt??A?sin(?t??)?vmcos(?t??? ? 2 ) a? dvdt ? dxdt 2 2 ??A? 2 cos(?t??)?amcos(?t????) 四. 决定?,A,?的因素 1.? 决定于振动系统,与振动方式无关; 2.A,?决定于初始条件: v0 22 公式法: A?分析法: x0? 2 ? ,??arctg(? v0 ?x0 ) x0?Acos? ? cos?? x0Av0 ??1,?2 { ?0(1,2 象限)?0(3,4 象限) v0??Asin??sin??? 六.谐振动的能量 Ek? 1212mv 2 A? ? 1212 m?Asin(?t??)2 2 222 Ep? kx 2 ?kAcos(?t??)?12 12 12 m?Acos(?t??) 222 E?Ek?Ep? kA 2 ? ?Am 22 Ek? 1T ?0 T 12 m?Asin(?t??)dt? 222 14 mA? 22 ? 14 kA 2 Ep?Ek 例1. 已知 t?0 时 x0? 例2. 已知 t?0 时 x0?0,v0?0,求?思考: 1. 地球, M,R 已知, 中间开一遂道; 小球 m, 从离表面 h 处掉入隧道, 问, 小球是否作谐振动? 2. 复 摆问题(I,m,lc 已知) d?dt 22 A2,v0?0,求? ? mglI c ??0 3. 弹簧串、并联 串联: 1k?1k1 ?1k2 并联:k?k1?k2 10-2 谐振动的旋转矢量表示法 一、幅矢量法 1. 2. 作 x 轴,O 为平衡位置; ? A 在 x 轴上的投影点 P 作谐振动: x?Acos(?t??) 3. T? O ? A 以角速度?旋转一周,P 正好来回一次: 2? P P0 ? 二、参考圆法 1. 2.三、相位差 1. 同频率、同方向的两谐振动的相位差就是它们的初相差,即:????2??1 2. 超前与落后 例 1. 一物体沿 x 轴作简谐振动,振幅 A?12cm,周期 T?2s,t?0 时,位移为 6cm 且向 x 正方向运动,求: 1) 初位相及振动方程; 2) t?0.5s 时,物体的位置、速度和加速度; 3) x0??6cm 处,向 x 轴负方向运动时,物体的速度和加速度,以及从这一位置回到平衡位置所需的最 短时间; 例 2. 设有一音叉的振动为谐振动,角频率为??6.28?10s 2 ?1 以 O 为原点,A 为半径作圆,x 轴; 在图上根据已知求未知 ,音叉尖端的 振幅 A?1mm。