粗糙集
- 格式:ppt
- 大小:175.00 KB
- 文档页数:30
粗糙集理论的基本原理与模型构建粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它在信息科学、数据挖掘和人工智能等领域具有广泛的应用。
本文将介绍粗糙集理论的基本原理和模型构建方法。
一、粗糙集理论的基本原理粗糙集理论最早由波兰学者Pawlak于1982年提出,它是基于集合论和近似推理的一种数学模型。
粗糙集理论的核心思想是通过对数据集进行分析,找出数据之间的关联和规律,从而进行决策和推理。
粗糙集理论的基本原理包括下近似和上近似。
下近似是指在给定条件下,能够包含所有满足条件的对象的最小集合;上近似是指在给定条件下,能够包含所有满足条件的对象的最大集合。
通过下近似和上近似的计算,可以得到粗糙集的边界区域,进而进行数据分类、决策和模式识别等任务。
二、粗糙集模型的构建方法粗糙集模型的构建方法主要包括属性约简和决策规则提取两个步骤。
属性约简是指从原始数据集中选择出最具代表性和决策能力的属性子集。
属性约简的目标是减少属性的数量,同时保持原始数据集的决策能力。
常用的属性约简方法包括正域约简、核约简和快速约简等。
这些方法通过计算属性的重要性和相关性,从而选择出最优的属性子集。
决策规则提取是指从属性约简后的数据集中提取出具有决策能力的规则。
决策规则是一种描述数据之间关系的形式化表示,它可以用于数据分类、决策和模式识别等任务。
决策规则提取的方法包括基于规则的决策树、基于规则的神经网络和基于规则的关联规则等。
三、粗糙集理论的应用领域粗糙集理论在信息科学、数据挖掘和人工智能等领域具有广泛的应用。
它可以用于数据预处理、特征选择、数据分类和模式识别等任务。
在数据预处理方面,粗糙集理论可以帮助我们对原始数据进行清洗和转换,从而提高数据的质量和可用性。
通过对数据集进行属性约简和决策规则提取,可以减少数据集的维度和复杂度,提高数据挖掘和决策分析的效率和准确性。
在特征选择方面,粗糙集理论可以帮助我们选择出最具代表性和决策能力的属性子集。
粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。
粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。
本文将介绍粗糙集理论的基本概念与原理。
1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。
在粗糙集理论中,等价关系是一个重要的概念。
等价关系是指具有自反性、对称性和传递性的关系。
在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。
2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。
下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。
上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。
3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。
约简可以通过删除一些不重要或不相关的属性来实现。
精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。
4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。
模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。
而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。
5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。
在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。
在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。
在决策支持系统领域,粗糙集理论可以用来辅助决策过程。
在模式识别领域,粗糙集理论可以用来提取和分类模式。
总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。
粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。
粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。
首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。
粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。
粗糙集的构建是通过等价关系来实现的。
其次,等价关系是粗糙集理论中的一个重要概念。
等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。
等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。
等价关系的划分可以将原始数据进行分类,从而构建粗糙集。
下面,我们来介绍下近似集和上近似集。
下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。
换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。
而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。
上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。
粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。
通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。
粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。
总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。
它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。
粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。
通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。
粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。
本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。
粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。
它主要包括近似集、正域、决策表等概念。
二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。
这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。
2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。
构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。
属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。
3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。
通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。
正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。
4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。
通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。
近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。
5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。
属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。
属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。
6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。
决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。
粗糙集(Rough Set)理论是由波兰数学家Pawlak在1982年提出的一种数据分析理论,常用于处理模糊和不精确的问题。
RS可以从大量的数据中挖掘潜在的、有利用价值的知识,它与概率方法、模糊集方法和证据理论方法等其他处理不确定性问题理论的最显著的区别在于:它无需提供问题所需处理的数据集合之外的任何先验信息(即无需指定隶属度或隶属函数)。
粗糙集是提供了严格的数学理论方法。
它把知识理解为对对象的分类能力。
它包含了知识的一种形式模型,这种模型将知识定义为不可区分关系的一个族集。
在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。
为此采用基于互信息的粗糙集理论来处理这类不确定性问题。
动态约简技术探讨:利用标准的粗糙集方法来产生约简,即直接在原决策表的基础上计算所有的约简集,然后利用这些约简计算决策规则集合来分类未知对象。
这种方法对于未知对象的分类不总是足够充分的,因为该方法没有考虑到约简集的属性部分可能是混乱、不规则的。
动态约简是来自于在决策表的众多随机采样的子表中具有最大的出现频率的约简,在此意义上来说,利用动态约简来分类位置对象是最为稳定、可靠的。
经典粗糙集理论是建立在对象空间的等价类之上,采用上近似、下近似和边界的概念来分析对象的空间中不能由等价关系定义的子集的性质,是一种利用三值逻辑处理不精确或不完全信息的形式化方法。
有“智慧”,实际上是它们将外部环境和内部状态的传感信号分类,得出可能的情况,并由此支配行动,知识直接与真实或抽象世界有关的不同分类模式联系在一起。
因此,任何一个物种都是由一些知识来描述,对物种可以产生不同的分类。
从而如何在知识库中进行本质特征提取,发现最简决策表及最简分类规则集成为知识描述的关键。
从理论上看,智能信息处理的重要任务就是要从大量观察和实验数据中获取知识、表达知识、推理决策规则,特别是对于不精确、不完整的知识。
RS是处理不精确信息的有力工具。
粗糙集信息熵粗糙集与信息熵是数据分析和机器学习中两个重要的概念。
粗糙集理论是一种对数据进行不确定性处理的方法,而信息熵是用来衡量数据中的不确定性和信息量的指标。
本文将介绍粗糙集和信息熵的概念、原理及其在数据分析和机器学习中的应用。
粗糙集是巾帼集合理论中的一种基于粗糙关系的数据处理方法。
巾帼集合理论是由波兰数学家帕夫尔·彼得·波尔茨花博士在20世纪80年代提出的。
它是基于粗糙关系的数学模型,用来处理数据中的不确定性和不完备性。
粗糙集理论认为,一个对象的属性值可能存在不确定性,即不同属性值的对象可能属于同一个类别,或者相同属性值的对象可能属于不同的类别。
因此,通过粗糙集的方法,可以通过对不同属性的划分来处理数据中的不确定性和不完备性。
信息熵是信息论中的一个概念,用来度量一个随机变量所包含的信息量。
信息熵的值越大,表示随机变量的不确定性越高,信息量越大。
信息熵的计算公式为:H(X) = -ΣP(xi)log2P(xi)其中,H(X)表示随机变量X的信息熵,P(xi)表示随机变量X取值为xi的概率。
粗糙集和信息熵在数据分析和机器学习中有广泛的应用。
首先,粗糙集可以用来处理数据中的不确定性和不完备性。
通过粗糙集的方法,可以将数据划分成不同的等价类,从而减少数据中的不确定性。
这对于数据挖掘和决策支持系统等领域非常有用。
其次,信息熵可以用来衡量数据中的不确定性和信息量。
在数据分析中,可以利用信息熵来评估数据的纯度和不确定性。
例如,在决策树算法中,可以使用信息熵来选择最佳的划分属性,从而构建一个更加准确和可解释的决策树模型。
此外,粗糙集和信息熵还可以结合使用,提高数据挖掘和机器学习的性能。
例如,可以将粗糙集的方法用于对数据进行处理和划分,然后使用信息熵来评估划分的纯度和不确定性。
这种结合可以使数据分析和机器学习算法更加准确和可靠。
综上所述,粗糙集和信息熵是数据分析和机器学习中的重要概念。
粗糙集用来处理数据中的不确定性和不完备性,而信息熵用来衡量数据中的不确定性和信息量。
粗糙集理论的使用方法和步骤粗糙集理论是一种用于处理不完全、不确定和模糊信息的数学工具,它在决策分析、数据挖掘和模式识别等领域具有广泛的应用。
本文将介绍粗糙集理论的使用方法和步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak于1982年提出的,它的核心思想是通过对数据集进行粗糙化处理,找出数据集中的重要信息,从而进行决策和分析。
在粗糙集理论中,数据集由属性和决策组成,属性是描述对象的特征,决策是对对象进行分类或判断的结果。
二、粗糙集理论的步骤1. 数据预处理:在使用粗糙集理论之前,需要对原始数据进行预处理。
预处理包括数据清洗、数据变换和数据归一化等步骤,旨在提高数据的质量和可用性。
2. 属性约简:属性约简是粗糙集理论的核心步骤之一。
在属性约简过程中,需要根据属性的重要性对属性进行选择和优化。
常用的属性约简方法有基于信息熵的属性约简和基于模糊熵的属性约简等。
3. 决策规则的生成:在属性约简完成后,可以根据属性和决策之间的关系生成决策规则。
决策规则是对数据集中的决策进行描述和判断的规则,可以帮助决策者进行决策和分析。
4. 决策规则的评价:生成的决策规则需要进行评价和优化。
常用的决策规则评价方法有支持度和置信度等指标,通过对决策规则进行评价,可以提高决策的准确性和可靠性。
5. 决策与分析:最后一步是根据生成的决策规则进行决策和分析。
根据决策规则,可以对新的数据进行分类和判断,从而帮助决策者做出正确的决策。
三、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。
以电商平台为例,可以使用粗糙集理论对用户行为进行分析和预测。
首先,对用户的行为数据进行预处理,包括清洗和归一化等步骤。
然后,通过属性约简找出用户行为中的关键属性,如浏览时间、购买频率等。
接下来,根据属性和决策之间的关系生成决策规则,如用户购买商品的决策规则。
最后,根据生成的决策规则对新的用户行为进行分类和分析,从而提供个性化的推荐和服务。
粗糙集理论简介及基本原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰数学家Pawlak于1982年提出。
粗糙集理论的核心思想是通过对数据进行粗糙化,将数据集划分为不同的等价类,以便更好地理解和描述数据的特征和规律。
粗糙集理论的基本原理是基于信息的不完备性和不确定性。
在现实世界中,我们往往无法获取到完整和精确的信息,数据中可能存在噪声、缺失或冲突等问题。
粗糙集理论通过对数据进行粗糙化,将不确定的数据转化为一组等价类,从而更好地处理这些问题。
粗糙集理论的核心概念是粗糙集和约简。
粗糙集是指在数据集中,存在一些元素无法被确定地分类到某个等价类中,即存在不确定性。
而约简则是指通过消除冗余和保留核心信息,将原始数据集简化为一个更小的等价类集合。
通过约简,我们可以减少数据集的复杂性,提取出数据中的关键特征和规律。
在粗糙集理论中,最常用的方法是基于属性约简。
属性约简是指通过选择一部分重要的属性,来代表整个数据集的特征和规律。
在实际应用中,数据集往往包含大量的属性,其中某些属性可能是冗余的或无关的。
通过属性约简,我们可以提取出最具代表性的属性,从而减少数据集的维度和复杂性。
粗糙集理论在各个领域都有广泛的应用。
在数据挖掘领域,粗糙集理论可以用于特征选择、分类和聚类等任务。
通过约简,我们可以选择出最具代表性的特征,从而提高分类和聚类的准确性和效率。
在决策支持系统中,粗糙集理论可以用于帮助决策者进行决策分析和风险评估。
通过对数据进行粗糙化和约简,我们可以更好地理解和描述决策问题,从而提供决策支持。
总之,粗糙集理论是一种处理不确定性和模糊性问题的有效工具。
它通过对数据进行粗糙化和约简,提取出数据的核心特征和规律,从而帮助我们更好地理解和处理现实世界中的复杂问题。
粗糙集理论在各个领域都有广泛的应用,为我们提供了一种全新的思维方式和分析工具。
粗糙集理论的使用方法与建模步骤详解粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具。
它是由波兰数学家Pawlak于1982年提出的,被广泛应用于数据挖掘、模式识别、决策分析等领域。
本文将详细介绍粗糙集理论的使用方法和建模步骤。
一、粗糙集理论的基本概念粗糙集理论的核心思想是通过对数据进行粗糙划分,找出数据之间的相似性和差异性,从而进行有效的分类和决策。
在使用粗糙集理论进行建模之前,我们首先需要了解一些基本概念。
1.1 上近似集和下近似集上近似集是指在给定条件下,能够包含所有与目标属性有关的样本的集合;下近似集是指在给定条件下,能够完全确定与目标属性有关的样本的集合。
1.2 等价类和不可区分关系等价类是指在相同条件下,具有相同目标属性的样本所构成的集合;不可区分关系是指在给定条件下,无法通过已有的属性来区分不同的样本。
二、粗糙集建模的步骤在使用粗糙集理论进行建模时,我们可以按照以下步骤进行操作。
2.1 数据预处理在进行粗糙集建模之前,我们需要对原始数据进行预处理。
预处理包括数据清洗、数据转换、数据归一化等操作,以确保数据的质量和可用性。
2.2 属性约简属性约简是粗糙集建模中的关键步骤。
通过属性约简,我们可以从原始数据中选择出最具代表性的属性,减少冗余信息,提高模型的效率和准确性。
2.3 确定目标属性在进行粗糙集建模时,我们需要明确目标属性。
目标属性是我们希望通过建模来预测或分类的属性。
2.4 确定条件属性条件属性是用来描述和区分不同样本的属性。
在确定条件属性时,我们需要根据实际问题和数据特点选择合适的属性。
2.5 构建上近似集和下近似集通过已知的条件属性和目标属性,我们可以构建上近似集和下近似集。
上近似集包含了所有与目标属性有关的样本,下近似集则包含了能够完全确定与目标属性有关的样本。
2.6 确定等价类和不可区分关系根据上近似集和下近似集,我们可以确定等价类和不可区分关系。
等价类是具有相同目标属性的样本集合,不可区分关系则是无法通过已有的属性来区分不同的样本。
粗糙集理论简介及应用案例解析引言:在信息时代的背景下,数据的爆炸式增长给人们的决策和分析带来了巨大的挑战。
而粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。
本文将对粗糙集理论进行简要介绍,并通过实际案例来解析其应用。
一、粗糙集理论的基本原理粗糙集理论是由波兰学者Pawlak于1982年提出的一种数据分析方法,它主要通过对数据集中的不确定性进行处理,从而提取出其中的规律和知识。
粗糙集理论的核心思想是基于近似和不确定性,通过构建等价关系和约简操作来实现对数据的分析。
二、粗糙集理论的应用案例解析1. 医学领域在医学领域,粗糙集理论可以用于辅助医生进行疾病诊断和预测。
例如,通过对患者的病历数据进行分析,可以建立一个疾病与症状之间的关联模型。
通过这个模型,医生可以根据患者的症状快速判断出可能的疾病,并采取相应的治疗措施。
2. 金融领域在金融领域,粗糙集理论可以用于风险评估和投资决策。
例如,通过对股票市场的历史数据进行分析,可以建立一个股票价格与各种因素之间的关联模型。
通过这个模型,投资者可以根据市场的变化预测股票的价格走势,并做出相应的投资决策。
3. 交通领域在交通领域,粗糙集理论可以用于交通流量预测和交通优化。
例如,通过对交通数据进行分析,可以建立一个交通流量与各种因素之间的关联模型。
通过这个模型,交通管理者可以根据不同的因素预测交通流量的变化,并采取相应的措施来优化交通。
4. 教育领域在教育领域,粗糙集理论可以用于学生评估和课程推荐。
例如,通过对学生的学习数据进行分析,可以建立一个学生能力与学习成绩之间的关联模型。
通过这个模型,教育者可以根据学生的能力评估学生的学习状况,并推荐适合的课程来提高学生的学习效果。
结论:粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。
通过对数据集中的不确定性进行处理,粗糙集理论可以提取出其中的规律和知识,为决策和分析提供有力的支持。
粗糙集理论的入门指南粗糙集理论是数学领域中的一种理论,它源于20世纪80年代的波兰学者Zdzisław Pawlak的研究工作。
粗糙集理论被广泛应用于数据挖掘、模式识别、决策分析等领域,它提供了一种处理不完备、模糊和不确定信息的方法。
一、粗糙集理论的基本概念在了解粗糙集理论之前,我们需要了解一些基本概念。
粗糙集理论主要涉及到以下几个概念:1. 上近似和下近似:粗糙集理论中的一个核心概念是近似。
给定一个数据集,上近似是指用最少的信息来描述数据集中的对象,下近似是指用最多的信息来描述数据集中的对象。
2. 等价关系:在粗糙集理论中,等价关系是指将数据集中的对象划分为不同的等价类。
等价关系可以用来描述数据集中的相似性。
3. 决策属性:决策属性是指在数据集中用来区分不同类别的属性。
在粗糙集理论中,决策属性是决策规则的基础。
二、粗糙集理论的应用粗糙集理论在实际应用中具有广泛的应用价值。
以下是一些常见的应用领域:1. 数据挖掘:粗糙集理论可以用于数据挖掘中的特征选择和分类问题。
通过分析数据集中的属性之间的关系,可以找到最具有代表性的属性,从而提高数据挖掘的效果。
2. 模式识别:粗糙集理论可以用于模式识别中的特征提取和模式分类。
通过对数据集中的特征进行分析,可以提取出最具有代表性的特征,从而实现模式的识别。
3. 决策分析:粗糙集理论可以用于决策分析中的决策规则的生成和评估。
通过对数据集中的属性进行分析,可以生成一组决策规则,从而帮助决策者做出正确的决策。
三、粗糙集理论的优点和局限性粗糙集理论作为一种处理不完备、模糊和不确定信息的方法,具有以下优点:1. 简单易懂:粗糙集理论的基本概念和方法相对简单,易于理解和应用。
2. 适用范围广:粗糙集理论可以应用于各种领域,包括数据挖掘、模式识别、决策分析等。
然而,粗糙集理论也存在一些局限性:1. 计算复杂度高:在处理大规模数据集时,粗糙集理论的计算复杂度较高,需要消耗大量的计算资源。
粗糙集理论介绍面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的学问?我们如何将所学到的学问去粗取精?什么是对事物的粗线条描述什么是细线条描述?粗糙集合论Pl答了上面的这些问题。
要想了解粗糙集合论的思想,我们先要了解一下什么叫做学问?假设有8个积木构成了一个集合A,我们记:A={xl,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,根据颜色的不同,我们能够把这积累木分成Rl={红,黄,兰} 三个大类,那么全部红颜色的积木构成集合Xl = {xl,x2,x6},黄颜色的积木构成集合X2={x3,x4},兰颜色的积木是:X3={x5,x7,x8}o根据颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必定属于且仅属于一个分类),那么我们就说颜色属性就是一种学问。
在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个学问,假如还有其他的属性,比如还有外形R2={三角,方块,圆形},大小R3={大,中,小},这样加上Rl 属性对A 构成的划分分别为:A/R1={X1 ,X2,X3}={(X1 ,x2,x6},{x3,x4)4x5,x7,x8},(颜色分类) A∕R2={Yl,Y2,Y3}={{xl,x2},{x5,x8},{x3,x4,x6,x7}}(外形分类)A∕R3={Z1,Z2,Z3)={{x1,x2,x5},{x6,x8},{x3,x4,x7}}(大小分类) 上面这些全部的分类合在•起就形成了•个基本的学问库。
那么这个基本学问库能表示什么概念呢?除了红的{xl,x2,x6}、大的{xl,x2,x5}、三角形的{xl,x2)这样的概念以外还可以表达例如大的且是三角形的{xl,x2,x5}∩{xl,x2)={xl,x2}, 大三角{xl,x2,x5}∩{xl,x2}={xl,x2},兰色的小的圆形({x5,x7,x8)∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},兰色的或者中的积木{x5,x7,x8} U {x6,x8)={×5,x6,x7,x8}β而类似这样的概念可以通过求交运算得到,比如Xl与Yl的交就表示红色的三角。