半导体物理_第十章综述
- 格式:ppt
- 大小:2.54 MB
- 文档页数:107
§10.5 半导体发光一、辐射复合半导体中电子从高能量状态向较低能量状态跃迁并伴随发射光子的过程。
主要有两种:1、本征辐射复合(带-带复合)导带电子跃迁到价带与空穴复合的过程称为本征跃迁,本征跃迁伴随发射光子的过程称为本征辐射复合。
对于直接禁带半导体,本征跃迁为直接辐射复合,全过程只涉及一个电子-空穴对和一个光子,辐射效率较高。
II-VI 族和具有直接禁带的部分III-V 族化合物的主要发光过程属于这种类型。
对于间接禁带半导体,本征跃迁必须借助声子,因而是间接复合。
其中包含不发射光子的多声子无辐射复合过程和同时发射光子和声子的间接辐射复合过程。
因此,间接禁带半导体中发生本征辐射复合的几率较小,辐射效率低。
Ge 、Si 、SiC 和具有间接禁带的部分III-Ⅴ族化合物的本征复合发光属于这种类型,发光比较微弱。
因为带内高能状态是非稳状态,载流子即便受激进入这些状态也会很快通过“热化”过程加入导带底或价带顶。
显然,带间跃迁所发射的光子能量与E g 有关。
对直接跃迁,发射光子的能量满足g E h =ν对间接跃迁,在发射光子的同时,还要发射声子,因而光子能量应满足p g E E h -=ν其中E p 是声子能量。
2、非本征辐射复合涉及杂质能级的辐射复合称为非本征辐射复合。
在这种过程中,电子从导带跃迁到杂质能级,或从杂质能级跃迁到价带,或仅仅在杂质能级之间跃迁。
由于这种跃迁不受选择定则的限制,发生的几率也很高,是间接禁带半导体,特别是宽禁带发光材料中的主要辐射复合机构。
下面着重讨论电子在施主与受主杂质之间的跃迁,如图10-22所示。
当半导体中同时存在施主和受主杂质时,两者之间的库仑作用力使受激态能量增大,其增量△E 与施主和受主杂质之间距离r 成反比。
当电子从施主向受主跃迁时,若没有声子参与,发射光子能量为)4/()(02r q E E E h r A D g επεν++-=式中E D 和E A 分别代表施主和受主的束缚能,εr 是发光材料的相对介电常数。
Chapter 1010.1(a) p-type; inversion (b) p-type; depletion (c) p-type; accumulation (d) n-type; inversion_______________________________________ 10.2(a) (i) ⎪⎪⎭⎫⎝⎛=i a t fp n N V ln φ ()⎪⎪⎭⎫ ⎝⎛⨯⨯=1015105.1107ln 0259.0 3381.0=V 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/1151914107106.13381.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--51054.3-⨯=cm or μ354.0=dT x m(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1103ln 0259.0fp φ3758.0=V ()()()()()2/1161914103106.13758.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dTx51080.1-⨯=cmor μ180.0=dT x m(b) ()03022.03003500259.0=⎪⎭⎫⎝⎛=kT V⎪⎪⎭⎫⎝⎛-=kT E N N n g c i exp 2υ ()()319193003501004.1108.2⎪⎭⎫⎝⎛⨯⨯=⎪⎭⎫⎝⎛-⨯03022.012.1exp221071.3⨯=so 111093.1⨯=i n cm 3-(i)()⎪⎪⎭⎫⎝⎛⨯⨯=11151093.1107ln 03022.0fp φ3173.0=V()()()()()2/1151914107106.13173.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x51043.3-⨯=cm or μ343.0=dT x m(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=11161093.1103ln 03022.0fp φ3613.0=V()()()()()2/1161914103106.13613.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x51077.1-⨯=cm or μ177.0=dT x m_______________________________________ 10.3(a) ()2/14m ax ⎥⎦⎤⎢⎣⎡∈=='d fn s d dT d SDeN eN x eN Q φ()()[]2/14fns d eN φ∈=1st approximation: Let 30.0=fn φV Then()281025.1-⨯()()()()()()[]30.01085.87.114106.11419--⨯⨯=dN 141086.7⨯=⇒d N cm 3-2nd approximation:()2814.0105.11086.7ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV Then ()281025.1-⨯()()()()()()[]2814.01085.87.114106.11419--⨯⨯=d N 141038.8⨯=⇒d N cm 3-(b) ()2831.0105.11038.8ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV()566.02831.022===fn s φφV _______________________________________10.4 p-type silicon (a) Aluminum gate ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++'-'=fp g m ms e E φχφφ2 We have ⎪⎪⎭⎫ ⎝⎛=i a t fp n N V ln φ ()334.0105.1106ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=V Then()[]334.056.025.320.3++-=ms φ or 944.0-=ms φV (b) +n polysilicon gate ⎪⎪⎭⎫⎝⎛+-=fp g ms e E φφ2()334.056.0+-= or 894.0-=ms φV (c) +p polysilicon gate ()334.056.02-=⎪⎪⎭⎫⎝⎛-=fp g ms e E φφ or226.0+=ms φV_______________________________________ 10.5()3832.0105.1104ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV ⎪⎪⎭⎫⎝⎛++'-'=fp g m ms e E φχφφ2 ()3832.056.025.320.3++-= 9932.0-=ms φV _______________________________________10.6 (a) 17102⨯≅d N cm 3- (b) Not possible - ms φ is always positive.(c) 15102⨯≅d N cm 3-_______________________________________10.7 From Problem 10.5, 9932.0-=ms φV ox ssms FB C Q V '-=φ (a) ()()814102001085.89.3--⨯⨯=∈=ox ox ox t C 710726.1-⨯=F/cm 2()()7191010726.1106.11059932.0--⨯⨯⨯--=FB V 040.1-=V (b) ()()81410801085.89.3--⨯⨯=ox C 710314.4-⨯=F/cm 2 ()()7191010314.4106.11059932.0--⨯⨯⨯--=FB V012.1-=V _______________________________________10.8 (a) 42.0-≅ms φV 42.0-==ms FB V φV(b) ()()781410726.1102001085.89.3---⨯=⨯⨯=ox C F/cm 2 (i)()()7191010726.1106.1104--⨯⨯⨯-='-=∆ox ss FB C Q V 0371.0-=V (ii)()()7191110726.1106.110--⨯⨯-=∆FB V 0927.0-=V(c) 42.0-==ms FB V φV ()()781410876.2101201085.89.3---⨯=⨯⨯=ox C F/cm 2 (i)()()7191010876.2106.1104--⨯⨯⨯-=∆FB V 0223.0-=V (ii)()()7191110876.2106.110--⨯⨯-=∆FB V0556.0-=V _______________________________________10.9 ⎪⎪⎭⎫ ⎝⎛++'-'=fp g mms e E φχφφ2 where()365.0105.1102ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV Then ()365.056.025.320.3++-=ms φor975.0-=ms φVNowox ss ms FB C Q V '-=φor ()ox FB ms ss C V Q -='φ We have()()814104501085.89.3--⨯⨯=∈=ox ox ox t C or 81067.7-⨯=ox C F/cm 2 So now ()[]()81067.71975.0-⨯⋅---='ssQ 91092.1-⨯=C/cm 2or10102.1⨯='e Q ss cm 2- _______________________________________10.10 ()3653.0105.1102ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV ()()()()()2/1161914102106.13653.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510174.2-⨯=cm()dT a SDx eN Q ='m ax ()()()5161910174.2102106.1--⨯⨯⨯=810958.6-⨯=C/cm 2()()781410301.2101501085.89.3---⨯=⨯⨯=ox C F/cm 2()fp ms ox ss SDTN C Q Q V φφ2max ++'-'= ()()71910810301.2106.110710958.6---⨯⨯⨯-⨯= ()3653.02++ms φ ms φ+=9843.0(a) n + poly gate on p-type: 12.1-≅ms φV 136.012.19843.0-=-=TN V V(b) p + poly gate on p-type: 28.0+≅ms φV 26.128.09843.0+=+=TN V V (c) Al gate on p-type: 95.0-≅ms φV0343.095.09843.0+=-=TN V V_______________________________________10.11 ()3161.0105.1103ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=fn φV ()()()()()2/1151914103106.13161.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 510223.5-⨯=cm ()dT d SDx eN Q ='m ax ()()()5151910223.5103106.1--⨯⨯⨯= 810507.2-⨯=C/cm 2 ()()781410301.2101501085.89.3---⨯=⨯⨯=ox C F/cm 2 ()fn ms ox ss SDTP C Q Q V φφ2m ax -+⎥⎥⎦⎤⎢⎢⎣⎡'+'-= ()()⎥⎦⎤⎢⎣⎡⨯⨯⨯+⨯-=---71019810301.2107106.110507.2 ()3161.02-+ms φ ms TP V φ+-=7898.0(a) n + poly gate on n-type: 41.0-≅ms φV 20.141.07898.0-=--=TP V V(b) p + poly gate on n-type: 0.1+≅ms φV 210.00.17898.0+=+-=TP V V (c) Al gate on n-type: 29.0-≅ms φV 08.129.07898.0-=--=TP V V _______________________________________10.12()3294.0105.1105ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯⨯=fp φV The surface potential is ()659.03294.022===fp s φφV We have 90.0-='-=oxssms FB C Q V φV Now()FB s oxSDT V C Q V ++'=φmaxWe obtain 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/1151914105106.13294.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=-- or410413.0-⨯=dT x cm Then()()()()4151910413.0105106.1m ax --⨯⨯⨯='SDQ or()810304.3m ax -⨯='SDQ C/cm 2 We also find()()814104001085.89.3--⨯⨯=∈=ox ox ox t C or810629.8-⨯=ox C F/cm 2 Then90.0659.010629.810304.388-+⨯⨯=--T Vor142.0+=T V V_______________________________________10.13()()814102201085.89.3--⨯⨯=∈=ox ox ox t C 710569.1-⨯=F/cm 2()()1019104106.1⨯⨯='-ssQ 9104.6-⨯=C/cm 2By trial and error, let 16104⨯=a N cm 3-.Now ()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1104ln 0259.0fp φ3832.0=V()()()()()2/1161914104106.13832.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 510575.1-⨯=cm ()m ax SDQ ' ()()()5161910575.1104106.1--⨯⨯⨯= 710008.1-⨯=C/cm 294.0-≅ms φV Then()fp ms oxss SDTN C Q Q V φφ2max ++'-'=79710569.1104.610008.1---⨯⨯-⨯=()3832.0294.0+- Then 428.0=TN V V 45.0≅V_______________________________________10.14()()814101801085.89.3--⨯⨯=∈=ox ox ox t C 7109175.1-⨯=F/cm 3- ()()1019104106.1⨯⨯='-ssQ 9104.6-⨯=C/cm 2By trial and error, let 16105⨯=d N cm 3- Now()⎪⎪⎭⎫⎝⎛⨯⨯=1016105.1105ln 0259.0fn φ3890.0=V()()()()()2/1161914105106.13890.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510419.1-⨯=cm()m ax SDQ ' ()()()5161910419.1105106.1--⨯⨯⨯= 710135.1-⨯=C/cm 3-10.1+≅ms φV Then()()fn ms ox ss SDTP C Q Q V φφ2max -+'+'-= ()797109175.1104.610135.1---⨯⨯+⨯-= ()3890.0210.1-+Then 303.0-=TP V V, which is within thespecified value. _______________________________________ 10.15 We have 710569.1-⨯=ox C F/cm 2 9104.6-⨯='ssQ C/cm 2 By trial and error, let 14105⨯=d N cm 3-Now()⎪⎪⎭⎫⎝⎛⨯⨯=1014105.1105ln 0259.0fn φ 2697.0=V()()()()()2/1141914105106.12697.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 410182.1-⨯=cm ()m ax SDQ ' ()()()4141910182.1105106.1--⨯⨯⨯= 910456.9-⨯=C/cm 233.0-≅ms φVThen ()()fn ms oxss SDTP C Q Q V φφ2max -+'+'-= ⎪⎪⎭⎫⎝⎛⨯⨯+⨯-=---79910569.1104.610456.9 ()2697.0233.0--970.0=V Then 970.0-=TP V V 975.0-≅ V which meets the specification._______________________________________ 10.16(a) 03.1-≅ms φV()()814101801085.89.3--⨯⨯=ox C 7109175.1-⨯=F/cm 2Now oxss ms FB C Q V '-=φ()()71019109175.1106106.103.1--⨯⨯⨯--= 08.1-=FB V V(b) ()⎪⎪⎭⎫ ⎝⎛⨯=1015105.110ln 0259.0fp φ 2877.0=V ()()()()()2/115191410106.12877.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT x 510630.8-⨯=cm()m ax SDQ ' ()()()5151910630.810106.1--⨯⨯= 810381.1-⨯=C/cm 2 Now ()fp FB oxSDTN V C Q V φ2max ++'=()2877.0208.1109175.110381.178+-⨯⨯=-- or 433.0-=TN V V_______________________________________10.17 (a) We have n-type material under the gate, so2/14⎥⎦⎤⎢⎣⎡∈==d fn s C dT eN t x φ where()288.0105.110ln 0259.01015=⎪⎪⎭⎫ ⎝⎛⨯=fn φVThen()()()()()2/115191410106.1288.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT x or 410863.0-⨯==C dT t x cm μ863.0=m (b)()()fn ms ox ox ss SD T t Q Q V φφ2max -+⎪⎪⎭⎫⎝⎛∈'+'-= For an +n polysilicon gate, ()288.056.02--=⎪⎪⎭⎫ ⎝⎛--=fn g ms e E φφ or272.0-=ms φV Now ()()()()4151910863.010106.1m ax --⨯⨯='SD Q or ()81038.1m ax -⨯='SDQ C/cm 2 We have()()91019106.110106.1--⨯=⨯='ssQ C/cm 2 We now find ()()()()81498105001085.89.3106.11038.1----⨯⨯⨯+⨯-=T V ()288.02272.0--or 07.1-=T V V _______________________________________ 10.18 (b) ⎪⎪⎭⎫⎝⎛++'-'=fp g m ms e E φχφφ2 where 20.0-='-'χφm V and()3473.0105.110ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯=fp φV Then()3473.056.020.0+--=ms φ or 107.1-=ms φV (c) For 0='ss Q ()fp ms ox ox SDTN t Q V φφ2max ++⎪⎪⎭⎫⎝⎛∈'= We find()()()()()2/116191410106.13473.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dT xor 41030.0-⨯=dT x cm μ30.0=m Now()()()()416191030.010106.1m ax --⨯⨯='SDQ or ()810797.4m ax -⨯='SDQ C/cm 2Then()()()()14881085.89.31030010797.4---⨯⨯⨯=T V()3473.02107.1+- or00455.0+=T V V 0≅V _______________________________________ 10.19Plot _______________________________________ 10.20 Plot_______________________________________ 10.21 Plot _______________________________________10.22 Plot_______________________________________10.23 (a) For 1=f Hz (low freq), ()()814101201085.89.3--⨯⨯=∈=ox ox ox t C 710876.2-⨯=F/cm 2a st s ox ox oxFB eNV t C ∈⎪⎪⎭⎫ ⎝⎛∈∈+∈=' ()()()()()()()16191481410106.11085.87.110259.07.119.3101201085.89.3----⨯⨯⎪⎭⎫ ⎝⎛+⨯⨯= 710346.1-⨯='FB C F/cm 2 dTs ox ox oxx t C ⋅⎪⎪⎭⎫ ⎝⎛∈∈+∈='minNow ()3473.0105.110ln 0259.01016=⎪⎪⎭⎫ ⎝⎛⨯=fp φV ()()()()()2/116191410106.13473.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=--dTx51000.3-⨯=cmThen ()()()5814min 1000.37.119.3101201085.89.3---⨯⎪⎭⎫ ⎝⎛+⨯⨯='C 810083.3-⨯=F/cm 2 C '(inv)710876.2-⨯==ox C F/cm 2 (b) 1=f MHz (high freq), 710876.2-⨯=ox C F/cm 2 (unchanged) 710346.1-⨯='FBC F/cm 2 (unchanged) 8min10083.3-⨯='C F/cm 2 (unchanged) C '(inv)8min10083.3-⨯='=C F/cm 2 (c) 10.1-≅==ms FB V φV()fp FB oxSDTN V C Q V φ2max ++'=Now()dT a SDx eN Q ='m ax ()()()516191000.310106.1--⨯⨯=81080.4-⨯=C/cm 2 ()3473.0210.110876.21080.478+-⨯⨯=--TN V 2385.0-=TN V V_______________________________________10.24(a) 1=f Hz (low freq), ()()814101201085.89.3--⨯⨯=∈=ox ox oxt C 710876.2-⨯=F/cm 2a st s ox ox oxFB eNV t C ∈⎪⎪⎭⎫ ⎝⎛∈∈+∈='()()()()()()()141914814105106.11085.87.110259.07.119.3101201085.89.3⨯⨯⨯⎪⎭⎫ ⎝⎛+⨯⨯=---- 810726.4-⨯='FBC F/cm 2 dTs ox ox oxx t C ⋅⎪⎪⎭⎫⎝⎛∈∈+∈='minNow()2697.0105.1105ln 0259.01014=⎪⎪⎭⎫⎝⎛⨯⨯=fn φV()()()()()2/1141914105106.12697.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x 410182.1-⨯=cmThen()()()4814min 10182.17.119.3101201085.89.3---⨯⎪⎭⎫ ⎝⎛+⨯⨯='C 910504.8-⨯=F/cm 2C '(inv)710876.2-⨯==ox C F/cm 2(b) 1=f MHz (high freq),710876.2-⨯=ox C F/cm 2 (unchanged)810726.4-⨯='FBC F/cm 2 (unchanged) 9min10504.8-⨯='C F/cm 2 (unchanged) C '(inv)9min10504.8-⨯='=C F/cm 2 (c) 95.0≅=ms FB V φV()fn FB oxSDTP V C Q V φ2max -+'-=Now()dT d SDx eN Q ='m ax ()()()4141910182.1105106.1--⨯⨯⨯= 910456.9-⨯=C/cm 2Then()2697.0295.010876.210456.979-+⨯⨯-=--TP V378.0+=TP V V_______________________________________10.25The amount of fixed oxide charge at x is ()x x ∆ρ C/cm 2By lever action, the effect of this oxide charge on the flatband voltage is()x x t x C V ox ox FB ∆⎪⎪⎭⎫⎝⎛-=∆ρ1 If we add the effect at each point, we must integrate so that ()dx t x x C V oxt oxoxFB⎰-=∆01ρ _______________________________________10.26 (a) We have ρx Q t SS ()='∆ Then∆V C x x t dx FB ox ox ox t=-()z 10ρ ≈-'F H G I K J F H I K-z 1C t t Q t dx ox ox oxox oxSSt t t ∆∆b g =-'--=-'F H I K 1C Q t t t t Q C ox SS ox ox SSox ∆∆a for ∆V Q t FB SS ox ox=-'∈F H G I K J =-⨯⨯⨯⨯---()16108102001039885101910814...b g b g b gb gor∆V FB =-00742.V(b) We have ρx Q t SS ox()='=⨯⨯⨯--16108102001019108.b g b g =⨯=-64103.ρONow ∆V C x x t dx C t xdx FB oxox oxOox oxoxt t =-=-()zz10ρρor ∆V t FB O oxox=-∈ρ22=-⨯⨯⨯---()6410200102398851038214...bg b g b gor∆V FB =-00371.V (c) ρρx x t O ox()F H G I KJ =We find12216108102001019108t Q ox O SS O ρρ='⇒=⨯⨯⨯--.b gb g or ρO =⨯-128102. Now ∆V C t x x t dx FB ox ox O ox t ox =-⋅⋅F H G I KJ z110ρ =-⋅z122C t x dx ox O oxox t ρaf which becomes ∆V t t x t FB ox oxO oxox O oxox t =-∈⋅⋅=-∈F H G I KJ 1332302ρρaf Then∆V FB =-⨯⨯⨯---()12810200103398851028214...b g b g b gor 0494.0-=∆FB V V_______________________________________10.27 Sketch_______________________________________10.28 Sketch_______________________________________10.29 (b)⎪⎪⎭⎫⎝⎛-=-=2ln i d a t bi FB n N N V V V ()()()()⎥⎥⎦⎤⎢⎢⎣⎡⨯-=2101616105.11010ln 0259.0or695.0-=FB V V(c) Apply 3-=G V V, 3≅ox V VFor 3+=G V V,sdx d ∈-=Eρ n-side: d eN =ρ1C x eN eN dx d sd s d +∈-=E ⇒∈-=E0=E at n x x -=, then snd x eN C ∈-=1 so()n s dx x eN +∈-=E for 0≤≤-x x n In the oxide, 0=ρ, so=E ⇒=E 0dxd constant. From the boundary conditions, in the oxidesn d x eN ∈-=E In the p-region,2C x eN eN dx d sa sa s+∈=E ⇒∈+=∈-=Eρ 0=E at ()p ox x t x +=, then ()[]x x teN p oxsa-+∈-=EAt ox t x =, snd sp a x eN x eN ∈-=∈-=E So that n d p a x N x N = Since d a N N =, then p n x x = The potential is ⎰E -=dx φFor zero bias, we can write bi p ox n V V V V =++where p ox n V V V ,, are the voltage drops acrossthe n-region, the oxide, and the p-region, respectively. For the oxide:soxn d ox ox t x eN t V ∈=⋅E =For the n-region:()C x x x eN x V n s d n '+⎪⎪⎭⎫ ⎝⎛⋅+∈=22Arbitrarily, set 0=n V at n x x -=, thensnd x eN C ∈='22so that()()22n sdn x x eN x V +∈=At 0=x , snd n x eN V ∈=22which is the voltagedrop across the n-region. Because ofsymmetry, p n V V =. Then for zero bias, wehavebi ox n V V V =+2 which can be written as bi sox n d s n d V t x eN x eN =∈+∈2or 02=∈-+ds bi ox n n eN V t x x Solving for n x , we obtain dbis ox ox n eN V t t x ∈+⎪⎪⎭⎫ ⎝⎛+-=222 If we apply a voltage G V , then replace bi V by G bi V V +, so ()dG bi s ox ox p n eN V V t t x x +∈+⎪⎪⎭⎫ ⎝⎛+-==222 We find2105008-⨯-==p n x x()()()()()1619142810106.1695.31085.87.11210500---⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯+ which yields510646.4-⨯==p n x x cmNow soxn d ox t x eN V ∈=()()()()()()148516191085.87.111050010646.410106.1----⨯⨯⨯⨯=or359.0=ox V V We also findsnd p n x eN V V ∈==22()()()()()142516191085.87.11210646.410106.1---⨯⨯⨯=or67.1==p n V V V_______________________________________10.30(a) n-type (b) We have731210110210200---⨯=⨯⨯=ox C F/cm 2Also ()()7141011085.89.3--⨯⨯=∈=⇒∈=ox ox ox ox ox ox C t t C or 61045.3-⨯=ox t cm 5.34=nm o A 345= (c)oxssms FB C Q V '-=φ or 71050.080.0-'--=-ssQwhich yields8103-⨯='ssQ C/cm 21110875.1⨯=cm 2- (d) ⎪⎪⎭⎫ ⎝⎛∈⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∈∈+∈='d s s ox ox ox FB eN e kT t C()()[][6141045.31085.89.3--⨯÷⨯= ()()()()()⎥⎥⎦⎤⨯⨯⨯⎪⎭⎫ ⎝⎛+--161914102106.11085.87.110259.07.119.3 which yields81082.7-⨯='FBC F/cm 2 or156=FB C pF_______________________________________10.31 (a) Point 1: Inversion 2: Threshold3: Depletion4: Flat-band5: Accumulation_______________________________________10.32 We have ()()[]fp ms x GS ox nV V C Q φφ2+---=' ()()max SD ssQ Q '+'- Now let DS x V V =, so ()⎩⎨⎧--='DS GS ox n V V C Q ()()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡+-'+'+fp ms ox ss SD C Q Q φφ2m ax For a p-type substrate, ()max SDQ ' is a negative value, so we can write()⎩⎨⎧--='DS GS ox n V V C Q()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡++'-'-fp ms ox ss SD C Q Q φφ2m ax Using the definition of threshold voltage T V ,we have()[]T DS GS ox nV V V C Q ---=' At saturation()T GS DS DS V V sat V V -== which then makes nQ 'equal to zero at the drain terminal._______________________________________10.33(a) ()[]222DS DS T GS n D V V V V L W k I --⋅'= ()()()()[]22.02.04.08.028218.0--⎪⎭⎫ ⎝⎛= 0864.0=mA (b) ()22T GS n D V V LW k I -⋅'= ()()24.08.08218.0-⎪⎭⎫ ⎝⎛= 1152.0=mA(c) Same as (b), 1152.0=D I mA(d) ()22T GS n D V V L W k I -⋅'=()()24.02.18218.0-⎪⎭⎫ ⎝⎛= 4608.0=mA _______________________________________ 10.34 (a) ()[]222SDSD T SG p D V V V V LW k I -+⋅'= ()()()()[]225.025.04.08.0215210.0--⎪⎭⎫ ⎝⎛= 103.0=D I mA(b) ()22T SG p D V V LW k I +⋅'= ()()24.08.015210.0-⎪⎭⎫ ⎝⎛= 12.0=mA(c) ()22T SG p D V V L W k I +⋅'=()()24.02.115210.0-⎪⎭⎫ ⎝⎛=48.0=mA(d) Same as (c), 48.0=D I mA_______________________________________10.35(a) ()22T GS n D V V LW k I -⋅'=()28.04.126.00.1-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W26.9=⇒LW(b) ()()28.085.126.926.0-⎪⎭⎫ ⎝⎛=D I06.3=mA(c) ()[]222DSDS T GS n D V V V V L W k I --⋅'= ()()()()[]215.015.08.02.1226.926.0--⎪⎭⎫ ⎝⎛=271.0=mA_______________________________________10.36(a) Assume biased in saturation region()22T SG p D V V L W k I +⋅'=()()2020212.010.0T V +⎪⎭⎫ ⎝⎛=289.0+=⇒T V VNote: 0.1=SD V V 289.00+=+>T SG V V V So the transistor is biased in the saturation region.(b) ()()2289.04.020212.0+⎪⎭⎫ ⎝⎛=D I570.0=mA(c) ()()[()15.0289.06.0220212.0+⎪⎭⎫⎝⎛=D I()]215.0-or293.0=D I mA_______________________________________10.37 ()()781410138.3101101085.89.3---⨯=⨯⨯=ox C F/cm 2 ()()()()2.122010138.342527-⨯==L W C K ox n n μ310111.1-⨯=A/V 2=1.111 mA/V 2(a) 0=GS V , 0=D I 6.0=GS V V, ()15.0=sat V DS V, ()()()245.06.0111.1-=sat I D 025.0=mA2.1=GS V V, ()75.0=sat V DS V, ()()()245.02.1111.1-=sat I D 625.0=mA8.1=GS V V, ()35.1=sat V DS V,()()()245.08.1111.1-=sat I D 025.2=mA4.2=GS V V, ()95.1=sat V DS V,()()()245.04.2111.1-=sat I D 225.4=mA (c)0=D I for 45.0≤GS V V 6.0=GS V V,()()()()[]21.01.045.06.02111.1--=D I 0222.0=mA 2.1=GS V V,()()()()[]21.01.045.02.12111.1--=D I 156.0=mA 8.1=GS V V,()()()()[]21.01.045.08.12111.1--=D I 289.0=mA 4.2=GS V V,()()()()[]21.01.045.04.22111.1--=D I 422.0=mA_______________________________________10.38()()814101101085.89.3--⨯⨯=∈=ox ox ox t C 710138.3-⨯=F/cm 2L WC K ox p p 2μ=()()()()2.123510138.32107-⨯=41061.9-⨯=A/V 2=0.961 mA/V 2(a) 0=SG V , 0=D I6.0=SG V V, ()25.0=sat V SD V()()()235.06.0961.0-=sat I D 060.0=mA2.1=SG V V, ()85.0=sat V SD V()()()235.02.1961.0-=sat I D 694.0=mA 8.1=SG V V, ()45.1=sat V SD V()()()235.08.1961.0-=sat I D02.2=mA4.2=SG V V, ()05.2=sat V SD V()()()235.04.2961.0-=sat I D04.4=mA (c)0=D I for 35.0≤SG V V6.0=SG V V()()()()[]21.01.035.06.02961.0--=D I 0384.0=mA 2.1=SG V V ()()()()[]21.01.035.02.12961.0--=D I154.0=mA8.1=SG V V ()()()()[]21.01.035.08.12961.0--=D I 269.0=mA 4.2=SG V V()()()()[]21.01.035.04.22961.0--=D I 384.0=mA_______________________________________10.39(a) From Problem 10.37,111.1=n K mA/V 2 For 8.0-=GS V V, 0=D I0=GS V , ()8.0=sat V DS V()()()28.00111.1+=sat I D 711.0=mA8.0+=GS V V, ()6.1=sat V DS V()()()28.08.0111.1+=sat I D 84.2=mA6.1=GS V V, ()4.2=sat V DS V()()()28.06.1111.1+=sat I D 40.6=mA_______________________________________10.40 Sketch _______________________________________10.41 Sketch _______________________________________ 10.42We have ()T DS T GS DS V V V V sat V -=-=so that()T DS DS V sat V V +=Since ()sat V V DS DS >, the transistor is always biased in the saturation region. Then()2T GS n D V V K I -=where, from Problem 10.37,111.1=n K mA/V 2and 45.0=T V V10.43From Problem 10.38, 961.0=p K mA/V 2()()[]22SD SD T SG p D V V V V K I -+=()T SG p V SDDd V V K V I g SD +=∂∂=→20For 35.0≤SG V V, 0=d g For 35.0>SG V V,()()35.0961.02-=SG d V g For 4.2=SG V V,()()35.04.2961.02-=d g 94.3=mA/V_______________________________________10.44(a) GS D m V I g ∂∂=()()[]{}22DS DS T GS n GSV V V V K V --∂∂=()DS n V K 2=()()05.0225.1n K =5.12=⇒n K mA/V 2(b) ()()()[()]205.005.03.08.025.12--=D I 594.0=mA(c) ()()23.08.05.12-=D I125.3=mA_______________________________________10.45We find that 2.0≅T V V Now ()()T GS oxn D V V LC W sat I -⋅=2μ where ()()814104251085.89.3--⨯⨯=∈=ox ox oxt C or81012.8-⨯=ox C F/cm 2We are given 10=L W . From the graph, for 3=GS V V, we have ()033.0≅sat I D , then ()2.032033.0-⋅=LC W oxn μ or310139.02-⨯=LC W oxn μor()()3810139.01012.81021--⨯=⨯n μwhich yields342=n μcm 2/V-s_______________________________________10.46 (a)()T GS DS V V sat V -= or8.48.04=⇒-=GS GS V V V(b) ()()()sat V K V V K sat I DS n T GS n D 22=-= so()244102n K =⨯- which yields μ5.12=n K A/V 2 (c) ()2.18.02=-=-=T GS DS V V sat V Vso ()sat V V DS DS > ()()()258.021025.1-⨯=-sat I Dor ()μ18=sat I D A(d)()sat V V DS DS <()[]22DS DS T GS n D V V V V K I --= ()()()()[]25118.0321025.1--⨯=-orμ5.42=D I A_______________________________________10.47(a) ()()814101801085.89.3--⨯⨯=ox C 7109175.1-⨯=F/cm 2(i)()()7109175.1450-⨯=='ox n nC k μ 510629.8-⨯=A/V 2 or μ29.86='nk A/V 2 (ii)()()22T GS nD V V L W k sat I -⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'= ()24.02208629.08.0-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W24.7=⇒L W(b) (i) ()()7109175.1210-⨯=='ox p p C k μ 510027.4-⨯=A/V 2or μ27.40='p k A/V 2(ii) ()()22T SG p D V V L W k sat I +⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛'= ()24.02204027.08.0-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=L W5.15=⇒LW_______________________________________ 10.48 From Problem 10.37, 111.1=n K mA/V 2(a) ()()[]{}22DS DS T GS n GS mL V V V V K V g --∂∂= ()()()()1.02111.12==DS n V K so 222.0=mL g mA/V (b) (){}2T GS n GS ms V V K V g -∂∂=()()()45.05.1111.122-=-=T GS n V V K so 33.2=ms g mA/V _______________________________________10.49From Problem 10.38, 961.0=p K mA/V 2(a) ()()[]{}22SD SD T SG p SGmL V V V V K Vg -+∂∂= ()()()()1.02961.02==SD p V K or 192.0=mL g mA/V (b) ()[]2T SG p SGms V V K V g +∂∂=()()()35.05.1961.022-=+=T SG p V V K or 21.2=ms g mA/V_______________________________________10.50 (a) oxa s C N e ∈=2γNow ()()814101501085.89.3--⨯⨯=oxC 710301.2-⨯=F/cm 2 Then()()()()716141910301.21051085.87.11106.12---⨯⨯⨯⨯=γ 5594.0=γV 2/1 (b) ()3890.0105.1105ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯⨯=fpφV (i)()()()()()2/1161914105106.13890.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯⨯=--dT x510419.1-⨯=cm()m ax SDQ ' ()()()5161910419.1105106.1--⨯⨯⨯=710135.1-⨯=C/cm 2 ()fp FB oxSDTO V C Q V φ2max ++'= ()3890.025.010301.210135.177+-⨯⨯=-- 7713.0=VL WC K ox n n 2μ=()()()()2.12810301.24507-⨯=410452.3-⨯=A/V 2 or 3452.0=n K mA/V 2 For 0=D I , 7713.0==TO GS V V V For 5.0=D I ()()27713.03452.0-=GS V 975.1=⇒GS V V (c) (i) For 0=SB V , 7713.0==TO T V V V (ii) 1=SB V V,()()[1389.025594.0+=∆T V()]389.02-2525.0=V024.12525.07713.0=+=T V V (iii) 2=SB V V,()()[2389.025594.0+=∆T V ()]389.02-4390.0=V210.14390.07713.0=+=T V V (iv) 4=SB V V,()()[4389.025594.0+=∆T V()]389.02-7294.0=V501.17294.07713.0=+=T V V _______________________________________10.51()3473.0105.110ln 0259.01016=⎪⎪⎭⎫⎝⎛⨯=fp φ V[]fpSBfpT V V φφγ22-+=∆()()[5.23473.0212.0+=()]3473.02- or114.0=∆T V VNow T TO T V V V ∆+= 114.05.0+=TO V 386.0=⇒TO V V _______________________________________ 10.52 (a) ()()814102001085.89.3--⨯⨯=ox C710726.1-⨯=F/cm 2oxds C N e ∈=2γ ()()()()715141910726.11051085.87.11106.12---⨯⨯⨯⨯= 2358.0=γV 2/1 (b) ()3294.0105.1105ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯⨯=fnφV []fn BS fnT V V φφγ22-+-=∆()()[BS V +-=-3294.022358.022.0()]3294.02- 39.2=⇒BS V V_______________________________________10.53(a) +n poly-to-p-type 0.1-=⇒ms φV ()288.0105.110ln 0259.01015=⎪⎪⎭⎫⎝⎛⨯=fp φValso 2/14⎥⎦⎤⎢⎣⎡∈=a fp s dTeN x φ()()()()()2/115191410106.1288.01085.87.114⎥⎦⎤⎢⎣⎡⨯⨯=-- or410863.0-⨯=dT x cm Now()()()()4151910863.010106.1m ax --⨯⨯='SDQ or()81038.1m ax -⨯='SDQ C/cm 2 Also()()814104001085.89.3--⨯⨯=∈=ox ox ox t C or81063.8-⨯=ox C F/cm 2 We find ()()91019108105106.1--⨯=⨯⨯='ss Q C/cm 2 Then ()fp ms oxss SD T C Q Q V φφ2m ax ++'-'=()288.020.11063.81081038.1898+-⎪⎪⎭⎫ ⎝⎛⨯⨯-⨯=--- or 357.0-=T V V(b) For NMOS, apply SB V and T V shifts in apositive direction, so for 0=T V , we want 357.0+=∆T V V. So[]fp SB fpoxa s T V C N e V φφ222-+∈=∆or()()()()81514191063.8101085.87.11106.12357.0---⨯⨯⨯=+ ()()[]288.02288.02-+⨯SB V or[]576.0576.0211.0357.0-+=SB V which yields 43.5=SB V V_______________________________________10.54 Plot_______________________________________10.55 (a)()T GS oxn m V V L C W g -=μ()T GS oxoxn V V t L W -∈=μ ()()()()()65.0510*******.89.340010814-⨯⨯=--or26.1=m g mS Nowsm m m s m m m r g g g r g g g +=='⇒+='118.01which yields⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=18.0126.1118.011m s g r or 198.0=s r k Ω (b) For 3=GS V V, 683.0=m g mS Then ()()602.0198.0683.01683.0=+='m g mS or 88.0683.0602.0=='m m g g which is a 12% reduction._______________________________________10.56 (a) The ideal cutoff frequency for no overlap capacitance is,()222L V V C g f T GS n gs m T πμπ-==()()()24102275.04400-⨯-=π or 17.5=T f GHz (b) Now ()M gsT m T C C g f +=π2 where ()L m gdT M R g C C +=1 We find()()4410201075.0--⨯⨯=ox gdT C C()()814105001085.89.3--⨯⨯= ()()4410201075.0--⨯⨯⨯ or1410035.1-⨯=gdT C F Also ()T GS oxn m V V LC W g -=μ()()()()()()84144105001021085.89.34001020----⨯⨯⨯⨯= ()75.04-⨯or3108974.0-⨯=m g SThen ()1410035.1-⨯=M C ()()[]331010108974.01⨯⨯+⨯- or 1310032.1-⨯=M C F Now()()W L C C ox gsT 41075.0-⨯+= ()()814105001085.89.3--⨯⨯= ()()44410201075.0102---⨯⨯+⨯⨯ or1410797.3-⨯=gsT C F We now find ()M gsT mTC C g f +=π2 ()1314310032.110797.32108974.0---⨯+⨯⨯=π or 01.1=T f GHz _______________________________________10.57 (a) For the ideal case()4610221042-⨯⨯==ππυL f ds Tor 18.3=T f GHz(b) With overlap capacitance (using the values from Problem 10.56), ()MgdT mT C C g f +=π2 We findds ox m W C g υ= ()()()()86144105001041085.89.31020---⨯⨯⨯⨯= or3105522.0-⨯=m g S We have()L m gdT M R g C C +=1 ()1410035.1-⨯=()()[]331010105522.01⨯⨯+⨯- or 1410750.6-⨯=M C F。
一、半导体物理知识大纲核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在1.3节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在1.6节,介绍Si、Ge的能带结构。
(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理第⼗章1第l0章半导体的光电特性本章讨论光和半导体相互作⽤的⼀般规律,⽤光⼦与晶体中电⼦、原⼦的相互作⽤来研究半导体的光学过程、重点讨论光吸收、光电导和发光,以及这些效应的主要应⽤。
§10.1 半导体的光学常数⼀、折射率和吸收系数(Refractive index & Absorption coefficient )固体与光的相互作⽤过程,通常⽤折射率、消光系数和吸收系数来表征。
在经典理论中,早已建⽴了这些参数与固体的电学常数之间的固定的关系。
1、折射率和消光系数(Extinction coefficient)按电磁波理论,折射率定义为2ωεσεi N r -= 式中,εr 和σ分别是光的传播介质的相对介电常数和电导率,ω是光的⾓频率。
显然,当σ≠0时,N 是复数,因⽽也可记为ik n N -=2 (10-1)两式相⽐,可知222,ωεσε==-nk k n r (10-2) 式中,复折射率N 的实部n 就是通常所说的折射率,是真空光速c 与光波在媒质中的传播速度v 之⽐;k 称为消光系数,是⼀个表征光能衰减程度的参量。
这就是说,光作为⼀种电磁辐射,当其在不带电的、σ≠0的各问同性导电媒质中沿x ⽅向传播时,其传播速度决定于复折射率的实部,为c/n ;其振幅在传播过程中按exp(-ωkx /c )的形式衰减,光的强度I 0则按exp(-2ωkx /c)衰减,即)2exp(0ckx I I ω-= (10-3) 2、吸收系数光在介质中传播⽽有衰减,说明介质对光有吸收。
⽤透射法测定光在介质中传播的衰减情况时,发现介质中光的衰减率与光的强度成正⽐,即I dxdI α-= ⽐例系数α的⼤⼩和光的强度⽆关,称为光的吸收系数。
对上式积分得x e I I α-=0 (10-4)上式反映出α的物理含义是:当光在媒质中传播1/α距离时,其能量减弱到只有原来的1/e 。
将式(10-3)与式(10-4)相⽐,知吸收系数λπωαk c k 42==式中λ是⾃由空间中光的波长。