嵌入式系统RTEOSμCOSII的移植
- 格式:ppt
- 大小:1.35 MB
- 文档页数:101
uC/OS-II是源码开放、可固化、可移植、可裁剪、可剥夺的实时多任务OS 内核,适用于任务多、对实时性要求较高的场合。
uC/OS-II适合小型系统,具有执行效率高、占用空间小、实时性优良和可扩展性等特点,最小内核可编译至2K。
uC/OS-II内核提供任务调度与管理、时间管理、任务间同步与通信、内存管理和中断服务等功能。
所谓RTOS移植,就是使一个实时内核能在某个微处理器或微控制器上运行。
大部分的uC/OS-II代码试用C写的,但仍需要用C和ASM写一些与处理器相关的代码,这是因为uC/OS-II在读写处理器寄存器时只能通过ASM实现。
要是uC/OS-II正常运行,处理器必须满足一定的条件:处理器的C编译器能产生可重入代码;用C语言就可以打开和关闭中断;处理器支持中断,并能产生定时中断;处理器支持能够容纳一定量数据的硬件堆栈;处理器有将SP和其他CPU reg读出和存储到堆栈或内存中的指令;uC/OS-II移植工作主要包括以下三个方面的内容:(1)修改与处理器核编译器相关的代码:主要在includes.h中,修改数据类型定义说明,OS_ENTER_CRITICAL()、OS_EXIT_CRITICAL()和堆栈增长方向定义OS_STK_GROWTH。
(2)用C语言编写10个移植相关的函数:主要在OS_CPU_C.C中,包括堆栈初始化OSTaskStkInit()和各种回调函数。
(3)编写4个汇编语言函数:主要在OS_CPU_A.ASM中,包括:_OSTickISR //时钟中断处理函数_OSIntCtxSW //从ISR中调用的任务切换函数_OSCtxSW //从任务中调用的任务切换函数_OSStartHighRdy //启动最高优先级的任务uC/OS-II移植的关键问题:(1)临界区访问:uC/OS-II需要先禁止中断再访问代码临界段,并且在访问完毕后重新允许中断,这就使得uC/OS-II能够保护临界段代码免受多任务或ISR的破坏。
Ucos_II移植总结:之前已经基本算是成功的移植过ucos-II(内存管理部分没有处理),但是由于可恶的硬盘故障,让我的劳动成果付诸东流。
其间的一些移植经验没有及时总结,现在想来颇有点从头再来的悲壮!鉴于之前的教训,这次,边移植边总结,以防重蹈覆辙。
还好之前的移植过程已经解决了部分棘手的难题,现在复现一下权当是复习一下arm和ucos_II了。
这次的移植还是基于SEP4020芯片,其中的一些引导代码和中断处理代码还是照搬已经写好的代码吧,现在已经没有自己动手写的激情了!下面按照自己的移植步骤一步步总结吧:第一步:创建工程,将基本的启动代码照搬过来,建立一个最小系统,能够在开发板上运行成功。
第二步:将ucos-II源代码copy过来。
第三步:对基本的语法错误进行改正。
对工程进行编译,根据提示进行基本语法的改正。
主要包括:INCLUDES.h中头文件的调用第四步:对需要自己手动编写的函数首先要清空,防止编译报错,然后一步步手动编写代码。
1、临界段代码:os_cpu.h中OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()两个宏重新定义为我们自己写的开关中断函数。
Os_cpu_a.s文件添加如下代码:AREA MCUINIT , CODE, READONLYENTRY;/* 开启IRQ中断*/;voidEnableInterrupt(void);{EXPORT EnableInterruptEnableInterruptmrs r0,CPSRbic r0, r0, #0x80 ;set bit7 to 0msr CPSR_cxsf,r0movpc,lr ;Return to caller;};/* 关闭IRQ中断*/;voidDisableInterrupt(void);{EXPORT DisableInterruptDisableInterruptmrs r0,CPSRorr r0, r0, #0x80 ;set bit7 to 1msr CPSR_cxsf,r0movpc,lr ;Return to caller;}END2、OS_CPU_A.S文件代码编写AREA MCUINIT , CODE, READONLYENTRY;/* 开启IRQ中断*/;voidEnableInterrupt(void);{EXPORT EnableInterruptEnableInterruptmrs r0,CPSRbic r0, r0, #0x80 ;set bit7 to 0msr CPSR_cxsf,r0movpc,lr ;Return to caller;};/* 关闭IRQ中断*/;voidDisableInterrupt(void);{EXPORT DisableInterruptDisableInterruptmrs r0,CPSRorr r0, r0, #0x80 ;set bit7 to 1msr CPSR_cxsf,r0movpc,lr ;Return to caller;};任务切换代码OSCTXSWEXPORT OS_TASK_SW_ARMOS_TASK_SW_ARMSTMFD sp!, {lr} ; save pcSTMFD sp!, {lr} ; save lrMRS r14, SPSRSTMFD sp!, {r14} ; save current PSRSTMFD sp!, {r0-r12} ; save register file and ret address ;; OSPrioCur = OSPrioHighRdyIMPORT OSPrioCurIMPORT OSPrioHighRdyLDR r4, =OSPrioCurLDR r5, =OSPrioHighRdyLDRB r6, [r5]STRB r6, [r4]; Get current task TCB addressIMPORT OSTCBCurLDR r4, =OSTCBCurLDR r5, [r4]STR sp, [r5] ; store sp in preempted taskss TCB; Get highest priority task TCB addressIMPORT OSTCBHighRdyLDR r6, =OSTCBHighRdyLDR r6, [r6]LDR sp, [r6] ; get new tasks stack pointer; OSTCBCur = OSTCBHighRdySTR r6, [r4] ; set new current task TCB address;LDMFD sp!, {r0-r12} ; YYY+LDMFD sp!, {r14} ; YYY+; LDR r14, =0x000000D3MSR CPSR_cxsf, r14 ; YYY+;调试时屏掉此句才会跑的通,待解决LDMFD sp!, {lr,pc} ; YYY+;OS启动时开始运行创建的最高优先级任务; void OSStartHighRdy(void); ; Start the task with the highest priority;;EXPORT OSStartHighRdyOSStartHighRdyIMPORT OSTCBCurIMPORT OSTCBHighRdyIMPORT OSRunningLDR r4, =OSTCBCur ; Get current task TCB addressLDR r5, =OSTCBHighRdy ; Get highest priority task TCB addressLDR r5, [r5] ; get stack pointerLDR sp, [r5] ; switch to the new stackSTR r5, [r4] ; set new current task TCB address;OSRunning = 1 'TURE'LDR r4, =0x01 ; Get current task TCB addressLDR r5, =OSRunning ; Get highest priority task TCB addressSTRB r4, [r5];LDMFD sp!, {r0-r12} ; start the new taskLDMFD sp!, {r14} ; get new state from top of the stackMSR CPSR_cxsf, r14 ; CPSR should be SVC32ModeLDMFD sp!, {lr,pc};中断级任务切换EXPORT OSIntCtxSwOSIntCtxSwIMPORT OSTCBCurIMPORT OSPrioCurIMPORT OSTCBHighRdyIMPORT OSPrioHighRdyIMPORT OSTaskSwHookBL OSTaskSwHook;OSTCBCur = OSTCBHighRdyLDR r4, =OSTCBCurLDR r5, =OSTCBHighRdyLDR r6, [r5]STR r6, [r4];OSPrioCur = OSPrioHighRdyLDR r4, =OSPrioCurLDR r5, =OSPrioHighRdyLDRB r6, [r5]STRB r6, [r4];sp = OSTCBHighRdy->OSTCBStkPtrLDR r6, =OSTCBHighRdyLDR r6, [r6]LDR sp, [r6] ; get new tasks stack pointerLDMFD sp!,{r0, r1};在timedly中断服务程序中,函数开始压栈两个寄存器,为保证堆栈中数据一致,需出栈对齐;resume registersLDMFD sp!, {r0-r12} ; start the new taskLDMFD sp!, {r14} ; get new state from top of the stack; LDR r14, =0x000000D3MSR CPSR_cxsf, r14 ; CPSR SVC32Mode调试时屏掉此句才会跑的通,待解决LDMFD sp!, {lr,pc}END中断服务程序代码IRQ_DOstmfd sp!, {r0,r1}ldr r0, =IRQ_R1str r1, [r0]ldmfd sp!, {r0}ldr r1, =IRQ_R0str r0, [r1] ;保存R0和R1寄存器(因为这两个寄存器再后面要用到)add r13, r13, #4 ;restore the sp_irq top to original irq topsub r14, r14, #4mov r0, r14 ;LR_irq(R14)减4并保存在R0mrs r1, spsrorr r1, r1, #0x80 ;将SPSR_irq的中断屏蔽位置‘1’(屏蔽中断),并保存再R1 中msr cpsr_cxsf, r1 ;将模式切换到中断前的模式;---------------------------------------------------------------------------------------------bic r1, r1, #0x80 ;将原先保存的SPSR_irq的R1的中断屏蔽位清零(允许中断)stmfd sp!, {r0}stmfd sp!, {r14}stmfd sp!, {r1} ;依次将R0,R14,R1的值压入中断前模式下的堆栈(当前R0,R14,R1中存放的分别是LR_irq-4,中断前模式下的LR,SPSR_irq)ldr r0, =IRQ_R1ldr r1, [r0]stmfd sp!, {r1}ldr r1, =IRQ_R0ldr r0, [r1]stmfd sp!, {r0}ldmfd sp!, {r0,r1} ;恢复原先保存的R0和R1stmfd sp!, {r0-r12} ;将r0--r12全部压入中断以前模式下的堆栈;; Get current task TCB addressIMPORT OSTCBCurLDR r4, =OSTCBCur;及时保存当前任务中断,因为可能会进行任务切换LDR r5, [r4]STR sp, [r5] ; store sp in preempted taskss TCB;-----------------------------IMPORT int_vector_handlerbl int_vector_handler ;跳转到中断源判断和中断处理程序;----------------------------- ;restore the registerldmfd sp!, {r0-r12} ;恢复原先保存的R0-R12ldmfd sp!, {r14}msr cpsr_cxsf, r14ldmfd sp!, {r14} ;将原先保存的SPSR_irq恢复到CPSR中ldmfd sp!, {pc}3、堆栈初始化函数OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U opt) {unsignedint *stk;opt = opt; /* 'opt' is not used, prevent warning */stk = (unsigned int *)ptos; /* Load stack pointer *//* build a context for the new task */*--stk = (unsigned int) task; /* pc */*--stk = (unsigned int) task; /* lr */*--stk = (0x60000053); /* cpsr IRQ, FIQ disable*/*--stk = 0; /* r12 */*--stk = 0; /* r11 */*--stk = 0; /* r10 */*--stk = 0; /* r9 */*--stk = 0; /* r8 */*--stk = 0; /* r7 */*--stk = 0; /* r6 */*--stk = 0; /* r5 */*--stk = 0; /* r4 */*--stk = 0; /* r3 */*--stk = 0; /* r2 */*--stk = 0; /* r1 */*--stk = (unsigned int) pdata; /* r0 */// *--stk = (0x0); /* spsr IRQ, FIQ disable */return ((void *)stk);}4、timertick函数void Timer_IRQ_Service1(void){U32 dummyread;U8 y;dummyread = *(RP)TIMER_T1ISCR;/* timerflag = 1;*///OSIntNesting = OSIntNesting + 1;clear_reg( TIMER_T1CR, 0);//关闭通道1中断OSTimeTick ();set_reg( TIMER_T1CR, 0);//使能通道1中断OS_ENTER_CRITICAL();if ((OSIntNesting == 0) && (OSLockNesting == 0)) { /* Sched. only if all ISRs done & not locked */y = OSUnMapTbl[OSRdyGrp]; /* Get pointer to HPT ready to run */OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);if (OSPrioHighRdy != OSPrioCur) { /* No CtxSw if current task is highest rdy */OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];OSCtxSwCtr++; /* Increment context switch counter *///OS_TASK_SW(); /* Perform a context switch */OSIntCtxSw();}}OS_EXIT_CRITICAL();}第五步:对移植好的代码进行调试。
嵌入式实时操作系统μCOS-Ⅱ的移植1、引言嵌入式系统由于它具有软件代码小、高度自动化、响应速度快等特点已经使它在许多领域得到广泛的应用[3]。
从家里的洗衣机、电冰箱,到作为交通工具的自行车、小汽车,到办公室里的远程会议系统等。
嵌入式系统通常由硬件环境和操作系统构成。
在嵌入式操作系统的统一调度管理下实现对所有系统资源的合理利用和分配,达到提高系统性能和有效利用有限资源的目的。
μCOS-Ⅱ作为一个源码开放的嵌入式实时操作系统,同时具有良好的可移植性、可裁剪性、可剥夺性、稳定性和可靠性等优点,使其成为许多嵌入式操作系统的首选。
本文将μCOS-Ⅱ在Freescale的8位处理器芯片HC9S08上移植实现。
2、μCOS-Ⅱ系统结构μCOS-Ⅱ是一个完整的可移植可固化可裁剪的抢占式实时多任务内核。
可以在不需要做很大修改的基础上方便的移植到多种处理器上。
条件是:该处理器要具有一定数量的堆栈,能够使用软件中断,产生定时器中断,此外,编译器要支持可重入代码,并且要能使用汇编实现对处理器内部寄存器的相关操作[2][4]。
通过μCOS-Ⅱ的管理,使多个任务之间相互协调,分时的占用CPU,实现充分利用资源和实时等相应的功能。
任务通常是一个死循环,用来完成某一特定的功能;一个任务相当于一个线程。
μCOS-Ⅱ可以管理多达64个任务,每个任务都具有一个唯一的合法优先级。
但是,优先级最低的那个任务已经被系统定义为空闲任务,用户不能使用。
用户可以通过函数OSTaskCreate()来创建任务,通过OSTaskDel()来删除任务。
任务可能有以下五种状态:睡眠态、就绪态、运行态、等待状态、中断服务态。
利用不同的系统函数可以实现任务在各状态之间的转换。
μCOS-Ⅱ通过对就绪表的操作总是选择在就绪任务中优。
UCOS-II的详细移植笔记两种处理器的移植比较(S1C33209S3C44BOX)UC/OS-II的详细移植笔记两种处理器的移植比较(S1C33209&&S3C44BOX) [原创 2007-05-20 23:03:21] 字号:大中小UC/OS-II的移植步骤分析zqcumt 07-4-15关于UC/OS-II的移植网上介绍的已经很多了,比较流行的几款处理器(例如ARM)在网上都可以直接下载移植好的代码。
由于最近选修了一门嵌入式系统的课,用的处理器是EPSON公司的S1C33系列,做实验的时候要进行操作系统的移植,这个周末花了一天半的时间学习了一下,因为毕业设计的时候做过ARM上的移植,于是将两者比较了一下,给出一般的移植要点。
由于将来实验还要设计到GUI的移植以及文件系统的移植和网络协议的移植,我会将自己的学习笔记都记录下来。
大家下载到源码后,针对Intel 80x86的代码在uCOS-II\Ix86L目录下。
代码是80x86实模式,且在编译器大模式下编译的。
移植部分的代码可在下述文件中找到:OS_CPU.H, OS_CPU_C.C, 和OS_CPU_A.ASM。
大家可以参考这个例子,对它进行修改。
INCLUDES.H 是主头文件,在所有后缀名为.C的文件的开始都包含INCLUDES.H文件。
使用INCLUDES.H的好处是所有的.C文件都只包含一个头文件,程序简洁,可读性强。
缺点是.C文件可能会包含一些它并不需要的头文件,额外的增加编译时间。
与优点相比,多一些编译时间还是可以接受的。
用户可以改写INCLUDES.H文件,增加自己的头文件,但必须加在文件末尾。
/////////////////////////////////////////////////////////////////// ////////////一、(1)OS_CPU.H文件的移植 (针对S1C33209)//////////////////////////////////////////////////////////////////////////OS_CPU.H 文件中包含与处理器相关的常量,宏和结构体的定义。
u C/OS-II移植总结RTOS移植牵涉到软件平台—编译器、硬件平台—CPU,移植前需要了解CPU及编译器的一些基本特点。
1、编译器a、堆栈运行原理本次移植的软件平台为CodeVision编译器,它的堆栈由两部分组成:硬件堆栈(HardStack)用来保存中断及函数调用的返回地址,它的大小将影响函数调用嵌套的深度,实际大小应根据中断及函数嵌套的深度来决定,并留有一定的裕度。
硬件堆栈由CPU中的指针SP实现。
软件堆栈(SoftStack)用来分配局部变量及传递参数。
在此次移植中,由CPU中的Y指针模拟实现。
b、堆栈指针所指向的单元是否为可用单元大多数编译器生成的代码,其堆栈指针所指向的单元为可用单元,也就是说在将数据压入堆栈前不用再调整堆栈指针,堆栈指针在上一次使用完后已经调整好了。
前面所说的硬件堆栈(HardStack)即为这种类型。
还有一种堆栈,其指针所指向的单元为不可用单元,在向堆栈压入数据前需调整堆栈指针,软件堆栈(SoftStack)即为这种类型。
软件堆栈设计为这种形式完全是为了适应A VR指令和软件堆栈增长方向与硬件堆栈增长方向相同。
软件堆栈(SoftStack)由Y指针模拟实现,但在A VR的指令集中只有:LD Rd,Y+ LD Rd,–Y ST Y+,Rr ST –Y,Rr要实现向下增长的堆栈就只能使用ST –Y,Rr和LD Rd,Y+。
指针指向的单元已压入数据,因此使用前需调整指针,而ST –Y,Rr正好能完成这个动作。
c、多字节变量在宽度为单字节的存储器中的分配规则多字节变量指定义为int、long int、float、double等类型的变量。
在CodeVision编译器遵循的原则是:变量低字节部分分配在内存的低地址单元,变量高字节部分分配在内存高地址单元。
如:int a a为双字节变量,其低字节保存在内存的0x24H,则高字节保存在内存的0x25H。
了解这些变量在内存中存储形式是为了能够在在线汇编中正确操作它们。