01 水力发电的原理和水电站的类型
- 格式:ppt
- 大小:3.49 MB
- 文档页数:52
水力发电原理及水电站概况
水力发电是利用水流动的动能将水的动能转化为电能的一种方法。
其基本原理是利用水流的动能驱动水轮机或涡轮机转动,通过机械传动将转动的动能转化为发电机的转动动能,再由发电机将机械能转化为电能。
水电站是进行水力发电的场所,主要由水库、电站建筑物、水轮发电机组、输变电设备等构成。
水流进入水库后,经过引水系统引流到水轮发电机组上,驱动水轮转动,再经过机械传动将转动的动能转化为电能,最后由输变电设备将电能输送到用户。
水电站按规模可分为大型水电站和小型水电站。
大型水电站通常具有较大的装机容量和电站建筑物规模,可以满足大范围的电力需求。
小型水电站则主要用于满足区域性或个别用户的电力供应需求,装机容量较小。
水电站的建设需要考虑水资源的丰富程度、水位变化情况以及对环境和生态的影响等因素。
水利工程师需要进行水资源勘察分析,确定最佳的水电站建设方案。
同时,水电站的建设还需要考虑水电站周边地区的社会和经济发展状况,合理安置受影响的地方居民,保护和改善生态环境。
水力发电在世界各地广泛应用,特别是在拥有丰富水资源的地区。
中国是世界上水力发电规模最大的国家之一,拥有大量的水力资源。
中国的水电站分布于南北方各个地区,其中以三峡水电站、长江水电站、黄河水电站等具有代表性。
水力发电的介绍范文水力发电是通过利用水的动能转换成机械能,然后再转换成电能的一种可再生能源发电方式。
它是目前世界上使用最广泛的清洁能源之一,具有储能性强、排放少以及对环境影响小等优点。
下面将详细介绍水力发电的原理、分类、应用以及发展趋势。
一、水力发电的原理1.水库式发电:主要通过建设水库、调整水位来控制水流,利用水流的垂直落差和流速将水的动能转换为机械能,最终再转换为电能。
水库式发电具有储能性强的优势,能够更好地适应电力负荷的需求。
2.溪流式发电:适用于山区或河流流速较快的地区,通过设置大坝或引导设施,将水流引导至水轮机上,利用引入的动能将水轮机转动,再利用发电机将机械能转化为电能。
溪流式发电适合于小规模的分散式发电,对生态环境的影响较小,但需满足一定的水流量和高度要求。
3.潮汐式发电:利用潮汐涨落的规律,建设堤坝或涵闸,控制水流进入和排出,从而驱动涡轮机或水轮机发电。
潮汐式发电适用于沿海地区,具有周期性强、可预测性好的特点。
二、水力发电的分类根据水力发电的装机规模、水利工程的类型以及利用水资源的方式,水力发电可分为大型水电站、小型水电站和微型水电站。
1.大型水电站:通常装有数台水轮机和发电机组,于河流中建设大规模的水电站。
这种发电方式能够大规模地储能,满足城市和工业用电的需求,但对水利工程的建设要求较高,且造价较为昂贵。
2.小型水电站:装机容量较小,适合于利用中小型河流水流资源进行发电。
小型水电站的建造相对简单,投资省、效益高,较好地解决了农村电力供应的问题。
3.微型水电站:通常装机容量在10kW以下,适用于村庄和小型农田的电力供应。
在水流资源丰富的地区,微型水电站能够提供可靠的电力供应,满足当地居民的生活需求。
三、水力发电的应用水力发电被广泛应用于城市供电、农村电化等领域。
它可以满足大规模、中小规模和微型的电力供应需求,对经济社会发展具有重要作用。
1.城市供电:大型水电站是城市主要的电力供应方式之一,它能够提供大规模的稳定电力供应,为城市的发展提供保障。
水力发电水力发电(hydroelectric power) 是指利用河流、湖泊等位于高处具有位能的水流至低处,将其中所含的位能转换成水轮机的动能,然后再以水轮机为原动力,推动发电机产生电能。
利用水力(具有水头)推动水力机械(水轮机)转动,将水能转变为机械能,如果在水轮机上接上发电机,随着水轮机转动便可发出电来,这时机械能又转变为电能。
因此,水力发电在某种意义上讲是水的位能转变成机械能,再转变成电能的过程。
科学家们依据水位落差的天然条件,有效地利用流体力学工程及机械物理等,使发电量达到最高,供人们使用既经济又无污染的电力。
水力发电的整个流程如下:1 水力发电特点水力发电主要有以下几个特点:(1) 发电成本低。
水力发电是利用河流所携带的水能,不需要再消耗其他的动力资源。
而且上一级水电站使用过的水流仍可为下一级水电站所利用,梯级电站的发即是这个道理。
另外,水电站的设备也比较简单,其检修、维护费用也较同容量的火电厂低很多。
如果把消耗的燃料费用计算在内,火电厂的年运行费用约为同容量水电站的10至15倍。
因此,水力发电的成本较低,可以提供较经济的电能。
(2) 高效而灵活。
水力发电主要动力设备的水轮发电机组,不仅效率较高而且启动、操作比较灵活。
它可以在几分钟内从静止状态迅速启动投入运行;在几秒钟内完成增减负荷的任务,适应电力负荷变化的需要,而且不会造成能源损失。
因此,利用水电承担电力系统的调峰、调频、负荷备用和事故备用等任务,可以提高整个系统的经济效益。
(3) 工程效益的综合性。
水电工程是一项复杂的综合性工程,具有防洪、灌概、航运、给水以及旅游等多种功能。
水电站建设后,可能会出现泥沙齡积、良田、森林和文化古迹等被掩没,鱼类生活和繁衍被打乱等各种不利现象。
库区周围地下水位的大幅度提高会对周边的果树、作物的生长产生不良影响,建设大型水电站还可能影响流域的气候,导致干旱或洪错,甚至诱发地震、泥石流、滑坡等地质灾害。
水力发电的原理和水电站的类型水力发电主要包括以下几个步骤:1.水库调度:通过对水库的调度,控制水位高低,实现在需要时释放水量,以满足发电需求。
2.水塔引水:水塔引水是指将水库中的水通过下泄洞引入高位的水塔,以形成一定的水头,保证水能够产生足够大的压力来驱动水轮机。
3.水轮机转动:当水通过水塔进入水轮机时,由于水的动能(水流的速度和水头的高度),水轮机叶片会被推动,使水轮机转动。
4.发电机发电:水轮机转动带动发电机的转子旋转,使发电机产生交流电,并将其输出。
5.变电站输送电能:发电机产生的电能通过变电站经过升压、输电等处理,最终输送到用户。
水电站的类型:根据水电站的不同特点和建设要求,可以分为以下几种类型:1.水库式水电站:水库是水电站的核心组成部分,其主要功能是在负荷需求低的时候储存水源,通过发电机进行发电。
水库式水电站通常有较大的水库容量,可以有效控制和调节水源的供应能力,从而稳定电网的负荷。
2.流水式水电站:流水式水电站依托于自然的水流,不需要人工地形改造。
它利用河流或水流的流速和水头,通过安装在河道或水流上的水轮机来发电。
这种水电站的优点是建设成本较低,对环境影响较小,但电力输出受水流的季节性和变化性限制。
3.压力式水电站:压力式水电站一般建在山区,利用山区地势高差形成的压力能来发电。
主要是通过引导、集水系统将水源引至高处的水轮机,利用水头压力做功,并转化为电能。
4.潮汐式水电站:潮汐式水电站利用潮汐变化来发电。
它将潮汐的涨落高度和水流速度利用起来,通过水轮机的旋转来发电。
5.抽水蓄能式水电站:抽水蓄能式水电站是一种特殊的水电站类型。
它利用谷底机组在低负荷时低峰期抽水将水从下水库抽向上水库,高负荷时高峰期通过下泄水由上水库向下水库返流,使水轮机发电。
这种水电站具有调峰稳定电网负荷的功能。
综上所述,水力发电原理是通过水能转化为电能,而水电站根据水源的不同特点和建设要求,可以采用不同的类型。
每种类型的水电站都有自己的特点和适用范围,但都以水流的动力为基础,实现能源转换。
水力发电原理及水电站概况水力发电原理及水电站概况水力发电是一种常见而重要的能源发电方式。
它通过水力涡轮机/发电机组来将水流动的能量转化为电能。
水流动的能量是由水的重力势能与动能所组成的。
而水力发电的核心就是将水的重力与动能转化为机械能,然后由机械能转化为电能。
水力发电分为水坝水电和泄水水电两种类型。
水坝水电是指在河流上搭建水坝,通过控制水位而形成的水头差来驱动水轮发电机。
而泄水水电则是直接利用河流本身的水流来驱动水轮发电机。
水电站的概念是指建立在水流较为平缓的河流中以及水流较为急速的山区河流之上的大型发电站。
水电站首先要挑选位置,一般规划建在落差高度较大的河流上,这样可以更好地摄取水流动能,并降低成本。
其次,水电站建设需要考虑水资源的充足性,尤其是在干旱季节时,水资源的供应是否能够满足电网的需求。
在水电站建设后,为了保证水资源的稳定供应和水轮发电机的稳定运行,水电站一般都会对水流进行控制。
水电站实施水流控制的方式有很多种,其中最常见的是利用水坝控制水位与水流。
此外,也有一些新型的水电站采用分布式水流控制的方式,通过对河道层次结构形态进行优化设计和流量控制,实现对水流的稳定控制。
除此以外,水电站还需要进行水轮发电机的维护和检修。
由于水轮发电机经常在水下运转,因此其维护和检修难度较大,在进行维护和检修时一定要采取安全可靠的措施。
总之,水力发电是一种能源发电方式,其原理是将水流动的能量转化为电能。
而水电站则是实现水力发电的基础设施之一,它通过控制水流,驱动水轮发电机来产生电能。
在水电站的建设中,需要选择合适的位置和实施水流控制,同时维护和检修也是十分关键的环节。
随着科技的不断进步,水力发电在未来将拥有更广阔的发展前景。
第一章 绪论一、 水电站的类型根据集中水头方式的不同,水电站分为:坝式水电站,引水式水电站和混合式水电站 二、水力发电原理:水能→水轮机→机械能→发电机→电能→输变线路→用户 三、水轮机概念:水流能量转换成旋转机械能的动力机械。
四、水轮机的基本工作参数 ㈠工作水头H1、定义 :水轮机进口断面和出口断面之间单位重量水流能量的差值。
设计水头Hr 、最大水头Hmax 、最小水头Hmin2、公式:水能由位置水头、压力水头、速度水头组成。
图1-1 立式水轮机的水头示意图⎪⎪⎭⎫⎝⎛++-⎪⎪⎭⎫ ⎝⎛++=-=gV P Z g V P Z E E H ⅡⅡⅡⅡⅠⅠⅠⅠⅡⅠ2222αγαγ (1-1)式中 E ——单位重量水体的能量,m ;Z ——相对某一基准的位置高度,m ; P ——相对压力,N/m 2或Pa ; V ——断面平均流速,m/s ; α——断面动能不均匀系数;γ——水的重度,其值为9810N/m 3;g ——重力加速度,m/s 2。
式(1-1)中,计算常取g V ⅡⅠ2,12ααα==称为某截面的水流单位动能,即比动能(m );γP 称为某截面的水流单位压力势能,即比压能(m );Z 称为某截面的水流单位位置势能,即比位能(m )。
g V 22α、γP 与Z 的三项之和为某水流截面水的总比能。
水轮机水头H 又称净水头,是水轮机做功的有效水头。
上游水库的水流经过进水口拦污栅、闸门和压力水管进入水轮机,水流通过水轮机做功后,由尾水管排至下游。
上、下游水位差值称为水电站的毛水头g H ,其单位为m 。
水轮机的工作水头又可表示为1-∆-=A g h H H (1-2) 式中gH ——水电站毛水头,m ;h ∆——水电站引水建筑物中的水力损失,m 。
从式(1-2)可知,水轮机的水头随着水电站的上下水位的变化而改变,常用取几个特征水头表示水轮机水头的范围。
特征水头包括最大水头Hmax 、最小水头Hmin 、加权平均水头Ha 、设计水头Hr 等,这些特征水头由水能计算给出。