数学(文)一轮教学案:第二章第3讲 函数的奇偶性与周期性 Word版含解析
- 格式:doc
- 大小:472.50 KB
- 文档页数:21
高考数学一轮总复习知识梳理:第三讲 函数的奇偶性与周期性知 识 梳 理知识点一 函数的奇偶性 偶函数 奇函数定义 如果对于函数f (x )的定义域内任意一个x 都有 f (-x )=f (x ) ,那么函数f (x )是偶函数 都有 f (-x )=-f (x ) ,那么函数f (x )是奇函数图象特征 关于 y 轴 对称关于 原点 对称 知识点二 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 f (x +T )=f (x ) ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个 最小的正数 ,那么这个 最小正数 就叫做f (x )的最小正周期.归 纳 拓 展1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f -xf x =1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f -xf x =-1(f (x )≠0)⇔f (x )为奇函数.2.若y =f (x )为奇函数,y =g (x )为奇函数,在公共定义域内(1)y =f (x )±g (x )为奇函数;(2)y =f (x )g (x )与y =f xg x 为偶函数;(3)y =f [g (x )]与y =g [f (x )]为奇函数.同理若y =f (x )与y =g (x )在公共定义域内均为偶函数,则y =f (x )±g (x ),y =f (x )g (x ),y =f xg x ,y =f [g (x )],y =g [f (x )]均为偶函数.若y =f (x )为奇函数,y =g (x )为偶函数,则在公共定义域内y =f (x )g (x )与y =f xg x 均为奇函数,y =f [g (x )]与y =g [f (x )]为偶函数.3.对f (x )的定义域内任一自变量的值x ,最小正周期为T(1)若f (x +a )=-f (x ),则T =2|a |;(2)若f (x +a )=1f x ,则T =2|a |;(3)若f (x +a )=f (x +b ),则T =|a -b |.4.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b 2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称.5.一些重要类型的奇偶函数(1)函数f (x )=a x +a -x 为偶函数,函数f (x )=a x -a -x为奇函数; (2)函数f (x )=a x -a -x a x +a -x =a 2x -1a 2x +1为奇函数;(3)函数f (x )=log a b -xb +x 为奇函数;(4)函数f (x )=log a (x +x 2+1)为奇函数.双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =x 2,x ∈(-2,2]是偶函数.( × )(2)若函数f (x )是奇函数,则必有f (0)=0.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.( √ )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b,0)中心对称.( √ )(5)2π是函数f (x )=sin x ,x ∈(0,+∞)的一个周期.( × )(6)周期为T 的奇函数f (x ),一定有f ⎝ ⎛⎭⎪⎫T 2=0.( × )[解析] (6)举反例.函数f (x )=tan x ,T =π,f (T )=f (π)=0,f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫π2无意义,所以f ⎝ ⎛⎭⎪⎫T 2=0不对.题组二 走进教材2.(多选题)(必修1P 85T2改编)给出下列函数,其中是奇函数的为( BC )A .f (x )=x 4B .f (x )=x 5C .f (x )=x +1xD .f (x )=1x 2[解析] 对于f (x )=x 4,f (x )的定义域为R ,由f (-x )=(-x )4=x 4=f (x ),可知f (x )=x 4是偶函数,同理可知f (x )=x 5,f (x )=x +1x 是奇函数,f (x )=1x 2是偶函数. 3.(必修1P 85T3改编)若函数y =f (x )(x ∈(a ,b ))为奇函数,则a +b = 0 .4.(必修1P 85T1改编)若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B )A .(a ,-f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.5. (必修1P 87T12改编)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为_(-2,0)∪(2,5]__.[解析] 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].6.(必修1P 87T11改编)定义在R 上的奇函数f (x )以2为周期,则f (1)+f (2)+f (3)的值是( A )A .0B .1C .2D .3[解析] 根据函数的周期性和奇偶性得到f (3)=f (-1)=-f (1)、f (2)=f (0)=0,从而可求f (1)+f (2)+f (3).因为函数以2为周期,所以f (3)=f (-1),f (2)=f (0),因为函数是定义在R 上的奇函数,所以f (-1)=-f (1),f (0)=0,所以f (1)+f (2)+f (3)=f (1)+f (0)-f (1)=0,故选A.7.(必修1P 86T3改编)已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-3)= -7 .[解析] 因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,故f (x )=2x-1(x ≥0),则f (-3)=-f (3)=-(23-1)=-7.题组三 走向高考8.(2023·新课标Ⅱ,4,5分)若f (x )=(x +a )·ln 2x -12x +1为偶函数,则a =( B )A .-1B .0 C.12 D .1 [解析] f (-x )=(-x +a )ln -2x -1-2x +1=(-x +a )ln 2x +12x -1=(x -a )ln 2x -12x +1,∵f (x )为偶函数,∴f (x )=f (-x ),∴x +a =x -a ,∴a =0.9.(2021·全国乙,4)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( B )A. f ()x -1-1B . f ()x -1+1 C. f ()x +1-1 D . f ()x +1+1[解析] 思路一:将函数f (x )的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f (x )的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.解法一:f (x )=-1+2x +1,其图象的对称中心为(-1,-1),将y =f (x )的图象沿x 轴向右平移1个单位,再沿y 轴向上平移1个单位可得函数f (x -1)+1的图象,关于(0,0)对称,所以函数f (x -1)+1是奇函数,故选B.解法二:选项A ,f (x -1)-1=2x -2,此函数为非奇非偶函数;选项B ,f (x -1)+1=2x ,此函数为奇函数;选项C ,f (x +1)-1=-2x -2x +2,此函数为非奇非偶函数;选项D ,f (x +1)+1=2x +2,此函数为非奇非偶函数,故选B.。
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
分层精练)数周期性转化求值即可.【详解】因为()()110f x f x -++=,所以()()110f f -+=,且()()21log 111f =+=,则()11f -=-,又可得()()20f x f x ++=,()()240f x f x +++=,故()()4f x f x +=,所以函数()f x 是周期4T =的周期函数,()()()47412111f f f =⨯-=-=-.故选:D .4.(2023·内蒙古赤峰·统考模拟预测)函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =()A .0B .1-C .2D .1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则()()157f f =,根据已知得出(7)(3)1f f =-=-,即可得出答案.【详解】 函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,()()()4f x f x f x ∴+=-=-,()()()()4484f x f x f x f x ∴++=+=-+=,则函数()y f x =是周期为8的周期函数,则()()()151587f f f =-=,令3x =-,则(43)(3)1f f +=-=-,(15)1f ∴=-,故选:B.5.(2023上·山东烟台·高一校考期末)函数e x y =-与e x y -=的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称【答案】C【分析】画出函数图像即可判断.【详解】根据如下图像即可判断出函数图像关于原点对称.故选:C10,10由上图知:增区间为[2,1),[0,1)--,减区间为零点为2,0,2x =-共3个;最大值为1,最小值为(2)由题设()7.5(80.5)(0.5)f f f =-=-=(3)令[]21,22[1,1]1n n x x n ∈⇒-∈--+且,且存在常数若()()20h x t h x t -⋅+=有8个不同的实数解,令则20n tn t -+=有两个不等的实数根2Δ400t t t ⎧=->⎪>⎪。
第三节函数的奇偶性及周期性[最新考纲][考情分析][核心素养]1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.以理解函数的奇偶性、会用函数的奇偶性为主,其中与函数的单调性、周期性交汇的问题仍将是2021年高考考查的热点.题型以选择题、填空题为主,中等偏上难度,分值为5分到10分.1.逻辑推理2.数学抽象3.数学运算1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有1f(-x)=f(x),那么函数f(x)是偶函数关于2y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有3f(-x)=-f(x),那么函数f(x)是奇函数关于4原点对称►常用结论(1)函数奇偶性的几个重要结论①如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.②如果函数f(x)是偶函数,那么f(x)=f(|x|).③既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.④奇函数在两个关于原点对称的区间上具有相同的单调性;偶函数在两个关于原点对称的区间上具有相反的单调性.(2)有关对称性的结论①若函数y=f(x+a)为偶函数,则函数y=f(x)的图象关于直线x=a对称.若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)中心对称.②若对于R上的任意x都有f(x)=f(2a-x),则函数f(x)的图象关于直线x=a对称;若f(x)+f (2a -x )=2b ,则函数f (x )关于点(a ,b )中心对称.2.函数的周期性 (1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,+T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )f (x )的最小正周期.►常用结论定义式f (x +T )=f (x )对定义域内的x 是恒成立的.若f (x +a )=f (x +b ),则函数f (x )的周期为T =|a -b |;若在定义域内满足f (x +a )=-f (x ),f (x +a )=1f (x ),f (x +a )=-1f (x )(a >0),则f (x )为周期函数,且T =2a 为它的一个周期.对称性与周期的关系:(1)若函数f (x )的图象关于直线x =a 和直线x =b 对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(2)若函数f (x )的图象关于点(a ,0)和点(b ,0)对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(3)若函数f (x )的图象关于点(a ,0)和直线x =b 对称,则函数f (x )必为周期函数,4|a -b |是它的一个周期.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”). (1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( ) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ 二、走进教材2.(必修1P 35例5改编)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案:B3.(必修4P 46A 10改编)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 答案:1 三、易错自纠4.设奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x [f (x )-f (-x )]<0的解集为( )A .{x |-1<x <0或x >1}B .{x |x <-1或0<x <1}C .{x |x <-1或x >1}D .{x |-1<x <0或0<x <1}解析:选D 由题意,得f (-x )=-f (x ),∵x [f (x )-f (-x )]<0,∴xf (x )<0,又f (1)=0,∴f (-1)=0.奇函数f (x )在(0,+∞)上是增函数,从而函数f (x )在(-∞,0)∪(0,+∞)的大致图象如图所示: 则不等式x [f (x )-f (-x )]<0的解集为{x |-1<x <0或0<x <1},故选D .5.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是__________.解析:由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).答案:(-∞,1]∪[3,+∞)6.若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________.解析:因为函数f (x )是定义在R 上的周期为2的奇函数,所以f (0)=0,f (x +2)=f (x ),所以f ⎝⎛⎭⎫-52+f (2)=f ⎝⎛⎭⎫-52+2+f (0)=f ⎝⎛⎭⎫-12+0=-f ⎝⎛⎭⎫12=-412=-2. 答案:-2考点一函数奇偶性的判断与应用|题组突破|1.(2019届山东青岛二模)下列函数是偶函数的是( ) A .f (x )=x sin x B .f (x )=x 2+4x +4 C .f (x )=sin x +cos xD .f (x )=log 3(x 2+1+x )解析:选A 选项A 、B 、C 、D 中函数的定义域均为R .对于选项A ,f (-x )=(-x )sin(-x )=(-x )(-sin x )=x sin x =f (x ),所以函数是偶函数;对于选项B ,f (-x )=x 2-4x +4≠f (x ),所以函数不是偶函数;对于选项C ,f (-x )=sin(-x )+cos(-x )=-sin x +cos x ≠f (x ),所以函数不是偶函数; 对于选项D ,f (-x )=log 3(x 2+1-x )=log 31x 2+1+x =-log 3(x 2+1+x )=-f (x ),所以函数是奇函数,不是偶函数.故选A .2.已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .-1 B .1 C .-5D .5解析:选D 设F (x )=f (x )+x ,由已知函数y =f (x )+x 是偶函数,得F (x )=F (-x ),即f (x )+x =f (-x )-x ,∴f (-x )=f (x )+2x ,∴f (-2)=f (2)+2×2=5.3.(2020届贵阳摸底)若f (x )=a -22x +1是奇函数,则a =________. 解析:解法一:因为函数f (x )是奇函数,所以f (-x )=-f (x ),即a -22-x+1=-a +22x +1⇒a =12x +1+12-x +1=12x +1+2x2x +1=1. 解法二:因为函数f (x )是奇函数且x ∈R ,所以f (0)=0,即a -21+1=0⇒a =1.答案:1 ►名师点津应用函数奇偶性可解决的3类问题(1)判定函数奇偶性 ①定义法 ②图象法 ③性质法设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(2)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(3)利用函数的奇偶性求值首先判断函数解析式或解析式的一部分的奇偶性,然后结合已知条件通过化简、转换求值.考点二函数周期性的判断及应用|题组突破|4.已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2015)=________. 解析:∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数,则f (2015)=f (671×3+2)=f (2)=f (-1)=-f (1)=-2. 答案:-25.函数y =f (x )满足对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2016)+f (2017)+f (2018)的值为________.解析:∵函数y =f (x -1)的图象关于点(1,0)对称, ∴f (x )是R 上的奇函数.又f (x +2)=f (-x ), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),故f (x )的周期为4, ∴f (2017)=f (504×4+1)=f (1)=4,∴f (2016)+f (2018)=f (2016)+f (2016+2)=f (2016)-f (2016)=0,∴f (2016)+f (2017)+f (2018)=4.答案:4 ►名师点津函数周期性问题的求解策略(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.考点 函数性质的综合应用——多维探究函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主,多以选择题、填空题形式出现.常见的命题角度有:(1)单调性与奇偶性结合;(2)周期性与奇偶性结合;(3)单调性、奇偶性与周期性结合.●命题角度一单调性与奇偶性结合【例1】(2019年全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)上单调递减,则( )A .f ⎝⎛⎭⎫log 314>f (2-32)>f (2-23) B .f ⎝⎛⎭⎫log 314>f (2-23)>f (2-32)C .f (2-32)>f (2-23)>f ⎝⎛⎭⎫log 314 D .f (2-23)>f (2-32)>f ⎝⎛⎭⎫log 314 [解析]∵f (x )是定义域为R 的偶函数, ∴f ⎝⎛⎭⎫log 314=f (log 34). ∵log 34>log 33=1,0<2-32<2-23<20=1, ∴0<2-32<2-23<log 34.∵f (x )在(0,+∞)上单调递减, ∴f (2-32)>f (2-23)>f ⎝⎛⎭⎫log 314,故选C . [答案]C●命题角度二周期性与奇偶性结合【例2】(2020届四川五校联考)已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),当x ∈(0,1]时,f (x )=2x +ln x ,则f (2019)=________.[解析]由f (x )=f (x +4)得f (x )是周期为4的函数,故f (2019)=f (4×505-1)=f (-1).又f (x )为奇函数,所以f (-1)=-f (1)=-(2+ln1)=-2.[答案]-2●命题角度三单调性、奇偶性与周期性结合【例3】已知函数f (x )的定义域为R ,且满足下列三个条件: ①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x ); ③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2017),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <bD .c <b <a[解析]由①得,f (x )在[4,8]上单调递增;由②得,f (x +8)=-f (x +4)=f (x ),故f (x )是周期为8的周期函数,所以c =f (2017)=f (252×8+1)=f (1),b =f (11)=f (3);由③得,f (x )的图象关于直线x =4对称,所以b =f (3)=f (5),c =f (1)=f (7).结合f (x )在[4,8]上单调递增可知,f (5)<f (6)<f (7),即b <a <c .故选B .[答案]B ►名师点津函数性质综合问题的求解方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)函数周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)解决函数的奇偶性、周期性、单调性的综合问题通常先利用周期性转化到自变量所在的区间,然后利用奇偶性和单调性求解.|跟踪训练|1.(2019届石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选BA 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故D 错误.故选B .2.(2019届四川达州模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减,设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b解析:选D ∵偶函数f (x )满足f (x +2)=f (x ),∴函数的周期为2.∴a =f (-2.8)=f (-0.8),b =f (-1.6)=f (0.4)=f (-0.4),c =f (0.5)=f (-0.5).∵-0.8<-0.5<-0.4,且函数f (x )在[-1,0]上单调递减,∴a >c >b ,故选D .考点 函数性质的创新探究应用【例】已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m[解析] y =x +1x =1+1x ,其图象如图,关于点(0,1)对称.又f (-x )=2-f (x ),即f (-x )+f (x )=2,∴y =f (x )的图象也关于点(0,1)对称.又∵y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),∴由图象对称性可知,这些交点也关于点(0,1)对称.不妨设点(x 1,y 1)与(x m ,y m )关于点(0,1)对称.点(x 2,y 2)与(x m -1,y m -1)关于点(0,1)对称,….由对称性可知x 1+x m =0,x 2+x m -1=0,…,y 1+y m =2,y 2+y m -1=2,….∴∑m i =1(x i +y i )=∑m i =1x i +∑m i =1y i =0+2×m2=m .故选B .[答案]B ►名师点津求解函数对称性问题的关键是利用条件判断出函数的对称中心或对称轴.|跟踪训练|(2019届江西南昌模拟)已知定义在R 上的函数f (x )满足f (x )+f (-x +2)=4,g (x )=sin πx +2.若函数f (x )的图象与g (x )的图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则∑ni =1(x i +y i )=( )A .nB .2nC .3nD .4n解析:选C因为f(x)+f(-x+2)=4,所以函数f(x)的图象关于(1,2)中心对称.因为g(x)=sinπx+2,所以g(x)的图象也关于(1,2)对称,所以∑ni=1x i=n,∑ni=1y i=2n,所以∑ni=1(x i+y i)=3n,故选C.。
第三节 函数的奇偶性与周期性考试要求:1.了解函数的奇偶性的概念及几何意义.2.结合三角函数,了解函数的周期性、对称性及其几何意义.一、教材概念·结论·性质重现1.函数的奇偶性的定义奇偶性偶函数奇函数条件一般地,设函数y=f(x)的定义域为I,如果∀x∈I,都有-x∈I结论f(-x)=f(x)f(-x)=-f(x)图象特点关于y轴对称关于原点对称1.函数的定义域关于原点对称是函数具有奇偶性的前提条件.2.函数图象的对称性(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.3.函数的周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T 就叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期(若不加特别说明,T一般都是指最小正周期).4.对称性与周期的关系(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a -b|是它的一个周期.5.常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,那么一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)若f(x+a)=-f(x),则T=2a(a>0).(4)若f(x+a)=,则T=2a(a>0).(5)若f(x+a)=-,则T=2a(a>0).二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若函数f(x)为奇函数,则一定有f(0)=0.( × )(2)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( √ )(3)如果函数f(x),g(x)是定义域相同的偶函数,那么F(x)=f(x)+g(x)是偶函数.( √ )(4)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.( × ) 2.函数f(x)=-x的图象关于( )A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称C 解析:因为函数f(x)的定义域为(-∞,0)∪(0,+∞),f(-x)=-+x=-=-f(x),所以f(x)为奇函数.所以f(x)的图象关于坐标原点对称.3.已知f(x)满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x,则f等于( )A. B. C. D.1B 解析:由f(x+2)=f(x),知函数f(x)的周期T=2,所以f=f=2=.4.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )A.- B. C. D.-B 解析:因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,所以a-1+2a=0,所以a=. 又f(-x)=f(x),所以b=0,所以a+b=.5.(多选题)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( ) A.y=f(|x|)B.y=f(-x)C.y=xf(x)D.y=f(x)+xBD 解析:由奇函数的定义f(-x)=-f(x)验证.对于选项A,f(|-x|)=f(|x|),为偶函数;对于选项B,f(-(-x))=f(x)=-f(-x),为奇函数;对于选项C,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;对于选项D,f(-x)+(-x)=-[f(x)+x],为奇函数.故选BD.考点1 函数的奇偶性——基础性1.(多选题)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则下列结论中正确的是( )A.函数f(g(x))是偶函数B.函数g(f(x))是偶函数C.函数f(x)·g(x)是奇函数D.函数f(x)+g(x)是奇函数ABC 解析:对于选项A,f(g(x))是偶函数,A正确;对于选项B,g(f(x))是偶函数,B正确;对于选项C,设h(x)=f(x)g(x),h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x)是奇函数;对于选项D,f(x)+g(x)不一定具备奇偶性.故选ABC.2.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=( )A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1D 解析:当x<0时,-x>0.因为当x≥0时,f(x)=e x-1,所以 f(-x)=e-x-1. 又因为 f(x)为奇函数,所以 f(x)=-f(-x)=-e-x+1.3.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=( ) A.e x-e-x B.(e x+e-x)C.(e-x-e x)D.(e x-e-x)D 解析:因为f(x)+g(x)=e x,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=(e x-e-x).4.已知函数f(x)=则该函数的奇偶性是_________.奇函数 解析:当x>0时,-x<0,所以f(-x)=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(-x)=-x2-x=-(x2+x)=-f(x),所以f(x)是奇函数.(1)解决这类问题要优先考虑用定义法,然后考虑用图象法.考点2 函数的周期性——综合性(1)设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=______.当-2≤x≤0时,f(x)=________.7 2x+9 解析:因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.(2)若定义在R上的偶函数f(x)满足f(x)>0,f(x+2)=对任意x∈R恒成立,则f(2 023)=________.1 解析:因为f(x)>0,f(x+2)=,所以f(x+4)=f[(x+2)+2]===f(x),则函数f(x)的周期为4,所以f(2 023)=f(506×4-1)=f(-1).因为函数f(x)为偶函数,所以f(2 023)=f(-1)=f(1).当x=-1时,f(-1+2)=,得f(1)=.由f(x)>0,得f(1)=1,所以f(2 023)=f(1)=1.(3)设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1.则f+f(1)+f+f(2)+f=__________.-1 解析:依题意知函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.所以f+f(1)+f+f(2)+f=f+0+f+f(0)+f=f-f+f(0)+f=f+f(0)=2-1+20-1=-1.1.(2021·长春质量监测)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为( ) A.6B.7C.8D.9B 解析:因为f(x)是最小正周期为2的周期函数,且0≤x<2时,f(x)=x3-x=x(x -1)(x+1),所以当0≤x<2时,f(x)=0有两个根,即x1=0,x2=1.由周期函数的性质知,当2≤x<4时,f(x)=0有两个根,即x3=2,x4=3;当4≤x≤6时,f(x)=0有三个根,即x5=4,x6=5,x7=6,故f(x)的图象在区间[0,6]上与x轴的交点个数为7.2.(多选题)(2022·长春质检)已知定义在R上的奇函数f(x)满足f(x)+f(2-x)=0,则下列结论正确的是( )A.f(x)的图象关于点(1,0)对称B.f(x+2)=f(x)C.f(3-x)=f(x-1)D.f(x-2)=f(x)ABD 解析:对于A,由f(x)+f(2-x)=0得f(x)的图象关于点(1,0)对称,选项A正确;对于B,用-x替换f(x)+f(2-x)=0中的x,得f(-x)+f(2+x)=0,所以f(x+2)=-f(-x)=f(x),选项B正确;对于C,用x-1替换f(x)+f(2-x)=0中的x,得f(3-x)=-f(x-1),选项C错误;对于D,用x-2替换f(x+2)=f(x)中的x,得f(x-2)=f(x),选项D正确.3.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.6 解析:因为f(x+4)=f(x-2),所以f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),所以f(x)是周期为6的周期函数,所以f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,所以f(1)=f(-1)=6,即f(919)=6.考点3 函数性质的综合应用——应用性考向1 函数的单调性与奇偶性综合(1)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.a<b<c B.c<b<aC.b<a<c D.b<c<aC 解析:易知g(x)=xf(x)在R上为偶函数.因为奇函数f(x)在R上单调递增,且f(0)=0,所以g(x)在(0,+∞)上单调递增.又3>log25.1>2>20.8,且a=g(-log25.1)=g(log25.1),所以g(3)>g(log25.1)>g(20.8),即c>a>b.(2)(2020·全国Ⅱ卷)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)( )A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减D 解析:f(x)=ln|2x+1|-ln|2x-1|的定义域为x≠±.又f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),所以f(x)为奇函数,故排除A,C.又当x∈时,f(x)=ln(-2x-1)-ln(1-2x)=ln =ln =ln.因为y=1+在上单调递减,由复合函数的单调性可得f(x)在上单调递减.考向2 函数的奇偶性与周期性结合(1)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+4)=f(x).当x∈[0,2]时,f(x)=2x-x2,则f(2 023)=________.-1 解析:因为f(x+4)=f(x),所以函数f(x)的周期T=4. 又f(1)=1,所以f(2 023)=f(-1+4×506)=f(-1)=-f(1)=-1.(2)设f(x)是定义在实数集R上的函数,且满足f(1+x)=f(1-x),f(2+x)=-f(2-x),则f(x)是( )A.偶函数,又是周期函数B.偶函数,但不是周期函数C.奇函数,又是周期函数D.奇函数,但不是周期函数A 解析:由f(x+1)=-f(x-1),可得f(x+2)=-f(x),则f(x+4)=f(x),故函数f(x)的周期为4,则f(5)=f(1)=a2-2a-4.又因为f(x)是定义在R上的奇函数,f(-1)>1,所以f(1)<-1,所以a2-2a-4<-1,解得-1<a<3.若本例(1)中的条件不变,当x∈[2,4]时,f(x)的解析式是____________.f(x)=x2-6x+8 解析:当x∈[-2,0]时,-x∈[0,2].由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2. 所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.函数周期性有关问题的求解方法(1)求解与函数的周期性有关的问题,应根据题目特征及周期的定义求出函数的周期.(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.考向3 函数的单调性、奇偶性与周期性结合定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-1,0]上单调递减.设a =f(-2.8),b=f(-1.6),c=f(0.5),则a,b,c的大小关系是( )A.a>b>c B.c>a>bC.b>c>a D.a>c>bD 解析:因为偶函数f(x)满足f(x+2)=f(x),所以函数f(x)的周期为2.所以a=f(-2.8)=f(-0.8),b=f(-1.6)=f(0.4)=f(-0.4),c=f(0.5)=f(-0.5).因为-0.8<-0.5<-0.4,且函数f(x)在[-1,0]上单调递减,所以a>c>b.故选D.1.解决这类问题一定要1.已知函数f(x)的图象关于原点对称,且周期为4.若f(-2)=2,则f(2 022)=( )A.2B.0C.-2D.-4C 解析:因为函数f(x)的图象关于原点对称,且周期为4,所以f(x)为奇函数,所以f(2 022)=f(505×4+2)=f(2)=-f(-2)=-2.故选C.2.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为( )A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)D 解析:因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.3.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.2 解析:根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x).又函数f(x)为奇函数,则f(-x)=-f(x),所以f(x)=-f(6-x)=f(x-12).所以f(x)的最小正周期是12.故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.4.定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确的序号是________.①②③ 解析:由f(x)+f(x+2)=0,得f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),即4是f(x)的一个周期,8也是f(x)的一个周期,故①正确;由f(4-x)=f(x),得f(x)的图象关于直线x=2对称,故②正确;由f(4-x)=f(x)与f(x+4)=f(x),得f(4-x)=f(-x),f(-x)=f(x),即函数f(x)为偶函数,故③正确.。
《函数的奇偶性与周期性》教案教案:函数的奇偶性与周期性一、教学内容本节课主要内容为函数的奇偶性与周期性。
1.函数的奇偶性概念及判断方法;2.函数的周期性概念及判断方法;3.综合应用题。
二、教学目标1.理解函数的奇偶性的定义;2.掌握函数奇偶性的判断方法;3.了解函数周期的概念,掌握函数周期的判断方法;4.能够应用函数的奇偶性与周期性解决综合问题。
三、教学过程1.导入(5分钟)教师通过提问与学生交流,引出函数的奇偶性与周期性的概念,比如“大家了解什么是函数的奇偶性吗?可以举几个例子来说明一下。
”“函数的周期性是什么意思呢?”等等。
2.讲解(25分钟)通过投影仪展示PPT,讲解函数的奇偶性与周期性的概念。
1)函数的奇偶性概念及判断方法:函数f(x)为奇函数,当且仅当对于任意x∈D,f(-x)=-f(x);函数f(x)为偶函数,当且仅当对于任意x∈D,f(-x)=f(x);判断奇偶性的方法为将函数代入定义进行验证。
2)函数的周期性概念及判断方法:函数f(x)的周期为T,当且仅当对于任意x∈D,有f(x+T)=f(x);判断函数周期的方法为找出函数的一次性表达式,并将其化简为f(x+T)=f(x)。
3)综合应用题解析:通过一些例题的解析,让学生能够运用奇偶性和周期性的知识解决问题。
3.锻炼与拓展(20分钟)举一些例题进行训练,可以分小组进行讨论与比赛,以增加学生的参与度。
1)设f(x)是定义域为R的周期函数,且f(0)=3,f(1)=2,f(2)=4,f(3)=-1,f(4)=-2,f(5)=-4,求f(2005)的值。
2)已知函数f(x)是定义域为R的奇函数,且f(2)=3,f(4)=-1,求f(x)的表达式。
3)设f(x)=x^3-3x,则f(x)是奇函数还是偶函数?。
4.巩固与评价(10分钟)布置一些练习题,要求学生自主完成,并互相批改答案,提升学生的综合应用能力。
1)设f(x)为周期函数,且f(x)=2x^2-x+1,周期为T,求T的值。
1.函数的单调性(1)单调函数的定义增函数减函数定义在函数f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1〈x2时,都有f(x1)〈f(x2),那么,就称函数f(x)在区间A上是增加的当x1〈x2时,都有f(x1)>f(x2),那么,就称函数f(x)在区间A上是减少的图像描自左向右看图像是上自左向右看图像是下如果函数y=f(x)在区间A上是增加的或是减少的,那么就称A为单调区间。
2。
函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两数”改为“存在两数".( ×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f (x1)-f(x2)]〉0,则函数f(x)在D上是增函数.( √)(3)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ×)(4)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞)。
( ×)(5)所有的单调函数都有最值。
( ×)(6)对于函数y=f(x),若f(1)〈f(3),则f(x)为增函数。
( ×)1。
下列函数中,在区间(0,+∞)内单调递减的是( )A。
y=错误!-x B。
y=x2-xC.y=ln x-xD.y=e x-x答案A解析对于A,y1=错误!在(0,+∞)内是减函数,y2=x 在(0,+∞)内是增函数,则y=错误!-x在(0,+∞)内是减函数;B,C,D选项中的函数在(0,+∞)上均不单调.故选A.2。
若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为( )A.-2B.2 C。
-6 D。
6答案C解析由图像易知函数f(x)=|2x+a|的单调增区间是[-错误!,+∞),令-错误!=3,∴a=-6。
3.若函数y=ax与y=-错误!在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A。
函数的奇偶性与周期性教案教案标题:函数的奇偶性与周期性教案教学目标:1. 理解函数的奇偶性与周期性的概念;2. 掌握判断函数奇偶性和周期性的方法;3. 能够应用函数的奇偶性和周期性解决相关问题。
教学准备:1. 教师准备:教学课件、教学素材、教学实例;2. 学生准备:笔记本、教科书、计算器。
教学过程:一、导入(5分钟)1. 引入函数的概念,回顾函数的定义和基本性质;2. 提问学生是否了解函数的奇偶性和周期性。
二、概念解释与讲解(15分钟)1. 介绍函数的奇偶性的概念:奇函数和偶函数的定义;2. 介绍函数的周期性的概念:周期函数的定义;3. 通过图像和数学表达式的比较,让学生理解奇函数、偶函数和周期函数的特点。
三、判断函数的奇偶性(20分钟)1. 引导学生通过函数图像的对称性来判断函数的奇偶性;2. 指导学生通过函数表达式的特点来判断函数的奇偶性;3. 给出一些实例,让学生通过观察函数图像或计算函数表达式的值来判断函数的奇偶性。
四、判断函数的周期性(20分钟)1. 介绍周期函数的概念和周期的定义;2. 引导学生通过观察函数图像来判断函数的周期性;3. 指导学生通过计算函数表达式的值来判断函数的周期性;4. 给出一些实例,让学生通过观察函数图像或计算函数表达式的值来判断函数的周期性。
五、应用与拓展(15分钟)1. 给出一些实际问题,让学生应用函数的奇偶性和周期性解决问题;2. 提供一些拓展问题,让学生进一步思考和探索函数的奇偶性和周期性的应用场景。
六、总结与评价(10分钟)1. 总结函数的奇偶性和周期性的概念和判断方法;2. 检查学生对函数的奇偶性和周期性的掌握情况,提供必要的补充和指导。
教学延伸:1. 学生可以通过自主学习更多的函数奇偶性和周期性的例题,巩固所学知识;2. 学生可以尝试设计一些函数图像,通过观察图像来判断函数的奇偶性和周期性。
评估方式:1. 课堂练习:布置一些练习题,检查学生对函数奇偶性和周期性的理解和应用能力;2. 个人作业:布置一些作业题,让学生在课后进一步巩固和拓展所学知识。
§2.3 函数的奇偶性与周期性要点梳理1. 奇、偶函数的概念一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫作偶函数. 一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫作奇函数. 奇函数的图像关于原点对称;偶函数的图像关于y 轴对称. 2. 奇、偶函数的性质(1)定义域关于原点对称(2)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (3)若奇函数f (x )在x =0处有定义,则f (0)=0.(4)在公共定义域内,奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. 3. 对称性若对于R 上的任意的x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. 若对于R 上的任意的x 都有f (x )+f (2a -x )=2b ,则y =f (x )的图象关于(a ,b )对称。
4. 周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫作f (x )的最小正周期.(3)若若f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=- 1f (x ),那么函数f (x )的周期为T =2a ;基础自测1. 已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.2. 设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )= x -1,则满足f (x )>0的x 的取值范围是________.3. 设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52等于________. 4.f (x )=1x-x 的图象关于( ).A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称 5.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.6、函数f (x )在R 上为奇函数,且当x >0时,(1f x ,则x<0时的解析式为f (x )=________.题型分类 深度解析题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f(x )=x 2+1 (2)f (x )=xx 1+ (3)f (x )=9-x 2+x 2-9; (4)f (x )=(x +1)1-x 1+x ; (5)f (x )=4-x 2|x +3|-3.下列函数:①f (x )=1-x 2+x 2-1;②f (x )=x 3-x ;③f (x )=3x -3-x2;④f (x )=x 2-|x |⑤f (x )=⎪⎩⎪⎨⎧<--->+-0,10,122x x x x x x ⑥f (x )=ln(x +x 2+1); ⑦f (x )=lg 1-x 1+x .其中奇函数的序号是 。
第3讲函数的奇偶性与周期性考纲展示命题探究奇偶性的定义及图象特点奇函数偶函数定义如果对于函数f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么函数f(x)是奇函数都有f(-x)=f(x),那么函数f(x)是偶函数图象特点关于原点对称关于y轴对称注意点判断函数的奇偶性时需注意两点(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.1.思维辨析(1)函数具备奇偶性的必要条件是函数的定义域在x轴上是关于坐标原点对称的.()(2)若函数f(x)为奇函数,则一定有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.()(5)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.()(6)若函数f(x)=x(x-2)(x+a)为奇函数,则a=2.() 答案(1)√(2)×(3)√(4)√(5)×(6)√2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13C.12 D .-12答案 B解析 由已知得a -1+2a =0,得a =13,又f (x )为偶函数,f (-x )=f (x ),∴b =0,所以a +b =13.3.下列函数为奇函数的是( ) A .y =2x-12xB .y =x 3sin xC .y =2cos x +1D .y =x 2+2x答案 A解析 由函数奇偶性的定义知,B 、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有A 中的函数为奇函数,故选A.[考法综述] 判断函数的奇偶性是比较基础的问题,难度不大,常与函数单调性相结合解决求值和求参数问题,也与函数的周期性、图象对称性在同一个题目中出现.主要以选择题和填空题形式出现,属于基础或中档题目.命题法 判断函数的奇偶性及奇偶性的应用 典例 (1)下列函数为奇函数的是( ) A .y =x B .y =|sin x | C .y =cos xD .y =e x -e -x(2)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 [解析] (1)因为函数y =x 的定义域为[0,+∞),不关于原点对称,所以函数y =x 为非奇非偶函数,排除A ;因为y =|sin x |为偶函数,所以排除B ;因为y =cos x 为偶函数,所以排除C ;因为y =f (x )=e x -e -x ,f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以函数y =e x -e -x为奇函数,故选D.(2)由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.[答案] (1)D (2)C【解题法】 判断函数奇偶性的方法 (1)定义法 (2)图象法1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x-a,即1-a ·2x =-2x +a ,化简得a ·(1+2x )=1+2x ,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2)=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1. 解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x+e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立, 令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立. 因此实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x+1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x-1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x . 令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1. 1 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.注意点 常见的有关周期的结论 周期函数y =f (x )满足:(1)若f (x +a )=f (x -a ),则函数的周期为2a . (2)若f (x +a )=-f (x ),则函数的周期为2a .(3)若f (x +a )=-1f (x ),则函数的周期为2a .1.思维辨析(1)若函数f (x )满足f (0)=f (5)=f (10),则它的周期T =5.( ) (2)若函数f (x )的周期T =5,则f (-5)=f (0)=f (5).( ) (3)若函数f (x )关于x =a 对称,也关于x =b 对称,则函数f (x )的周期为2|b -a |.( )(4)函数f (x )在定义域上满足f (x +a )=-f (x )(a >0),则f (x )是周期为a 的周期函数.( )(5)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2016)=0.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f (2014)等于( )A .0B .3C .4D .6答案 A解析 ∵f (x )是定义在R 上的偶函数, ∴f (-2)=f (2),∴f (-2+4)=f (2)=f (-2)+f (2)=2f (2), ∴f (2)=0,f (2014)=f (4×503+2)=f (2)+503×f (2)=f (2)=0,故选A. 3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.答案 -12解析 ∵f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. [考法综述] 函数周期性的考查在高考中主要以选择题、填空题形式出现.常与函数的奇偶性、图象对称性结合考查,难度中档.命题法 判断函数的周期性,利用周期性求值典例 (1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0D .-12[解析] (1)由于f (x )周期为5,且为奇函数,∴f (8)=f (5+3)=f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (8)-f (4)=-2-(-1)=-1.(2)因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π.又因为当0≤x ≤π时,f (x )=0,所以f ⎝⎛⎭⎪⎫5π6=0,即f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0, 所以f ⎝⎛⎭⎪⎫-π6=12,所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12.[答案] (1)A (2)A【解题法】 函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .-1 B.45 C .1 D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A.2.函数f (x )=lg |sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,则f (2013)+f (2014)的值为( )A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124B.112C.16D.13答案 A解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A. 6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( )A .既是周期函数,又是奇函数B.既是周期函数,又是偶函数C.不是周期函数,但是奇函数D.不是周期函数,但是偶函数答案 B解析因为y=f(x)是周期函数,设其周期为T,则有f(x+T)=f(x),两边同时求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函数为周期函数.因为y=f(x)是奇函数,所以f(-x)=-f(x),两边同时求导,得f′(-x)(-x)′=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),即导函数为偶函数,选B.判断f(x)=x2+1,x∈[-2,2)的奇偶性.[错解][错因分析]忽视判断函数的奇偶性时对定义域的要求.[正解]由于x∈[-2,2),所以f(x)=x2+1的定义域不关于原点对称,所以函数f(x)=x2+1是非奇非偶函数.[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是()A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x答案 C解析函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( ) A .2018B .-2009C .2013D .-2013答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝ ⎛⎭⎪⎫lg 12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f (y )x +f (x )y 成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=f (1)1+f (1)1,∴f (1)=0.令x =y =-1,则f (1)=f (-1)-1+f (-1)-1,∴f (-1)=0. 令y =-1,则f (-x )=f (-1)x +f (x )-1, ∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧ x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0, 解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[2016·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________. 答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. 9.[2016·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________.答案 4解析 由f (x )=(x +a )(x -4),得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[2016·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,23解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1,∴2a -3a +1<-1,解得-1<a <23. 11.[2016·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足:①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2.(1)判断函数f (x )是否为周期函数;(2)求f解 (1)由⎩⎪⎨⎪⎧f (x )=f (2-x ),f (x )=f (-x )⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)fffff12.[2016·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧ -2<x -1<2,-2<3-2x <2,∴⎩⎨⎧ -1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52. (2)由g (x )≤0得f (x -1)+f (3-2x )≤0.∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎨⎧ x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[2016·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( ) A .c <b <aB .c <a <bC .a <c <bD .a <b <c答案 B 解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),①因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),②所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b . 14.[2016·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数,则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2,∴f (-1)+1=-f (1)-1,∴f (-1)=-3,∴g (-1)=f (-1)+2=-1.15. [2016·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. ∴实数m 的取值范围是[0,1).16.[2016·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性;(2)求证:f (x )是R 上的减函数;(3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围.解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数,∴f (x 1)>f (x 2).∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6,∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6].(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。
第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;闭区间上连续函数性质的应用.第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求某些简单函数的n阶导数。
4、会求分段函数的导数。
5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。
第三节函数的奇偶性及周期性1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[小题体验]1.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+错误!,则f(-1)=________。
答案:-22.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________。
答案:-13.若函数f(x)=(a-1)x2+(a+1)x+a2-1是奇函数,则实数a的值是________.解析:由于函数f(x)的定义域为R,又函数f(x)是奇函数,故f(0)=0,解得a=1或a=-1(舍去),经检验a=1时符合题意.答案:11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-x)=f(x),而不能说存在x0使f(-x0)=-f(x0)或f(-x0)=f(x0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b=________。
解析:因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,所以a-1+2a=0,所以a=错误!.又f(-x)=f(x),所以b=0,所以a+b =错误!.答案:错误!2.函数f(x)=错误!的奇偶性为________.解析:因为x≠0,故f(x)的定义域关于原点对称.当x>0时,-x<0,所以f(-x)=log2x=f(x).当x<0时,-x>0,所以f(-x)=log2(-x)=f(x).故f(-x)=f(x),所以f(x)为偶函数.答案:偶函数错误!错误![题组练透]判断下列函数的奇偶性:(1)f(x)=1-x2+x2-1;(2)f(x)=错误!+错误!;(3)f(x)=3x-3-x;(4)f(x)=错误!;(5)(易错题)f(x)=错误!解:(1)因为由错误!得x=±1,所以f(x)的定义域为{-1,1}.又f(1)+f(-1)=0,f(1)-f(-1)=0,即f(x)=±f(-x).所以f(x)既是奇函数又是偶函数.(2)因为函数f(x)=错误!+错误!的定义域为错误!,不关于坐标原点对称,所以函数f(x)既不是奇函数,也不是偶函数.(3)因为f(x)的定义域为R,所以f(-x)=3-x-3x=-(3x-3-x)=-f(x),所以f(x)为奇函数.(4)因为由错误!得-2≤x≤2且x≠0。
函数的奇偶性与周期性教学案 1一、一、 三维教学目标三维教学目标1.1.知识目标:知识目标:知识目标:了解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法掌握函数的奇偶性的定义及图象特征;方法掌握函数的奇偶性的定义及图象特征;2.2.能力目标:能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题能力目标:能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题能力目标:能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题3.情感目标:进一步强化学生努力探索的能力;.情感目标:进一步强化学生努力探索的能力;二、考试目标二、考试目标 主词填空主词填空主词填空 1.f(x)1.f(x)是奇函数的充要条件是任取是奇函数的充要条件是任取__,必有____且_____,奇函数的图像关于_______成______对称函数的图像关于_______成______对称. .2.f(x)2.f(x)是偶函数的充要条件是任取是偶函数的充要条件是任取____,必有____且___,偶函数的图像关于______成轴对称成轴对称..3.3.奇函数之和是______奇函数之和是______奇函数之和是______..偶函数之和是__________偶函数之和是__________4.4.对于函数对于函数y =f (x ),且x ∈A ,当此函数满足条件______,T 是非零常数且_________时,称y =f (x )是A 上的周期函数上的周期函数. .三 题型示例题型示例 归纳点拨归纳点拨归纳点拨 1、判断函数奇偶性的步骤与方法、判断函数奇偶性的步骤与方法1 .判断下列函数的奇偶性:判断下列函数的奇偶性:判断下列函数的奇偶性: (1)x x x x f -+-=11)1()( (2)2|2|)1lg()(22---=x x x f (3)ïîïíì>+-<+=00)(22x xx x x x x f ,(4) f (x )=x x x x --+-7777; 2. 对于定义域为R 的任意奇函数)(x f 都有都有( ) ( ) A.0)()(=--x f x f B.0)()(£--x f x fC.0)()(£-x f x f D.0)()(>-x f x f3.若)(x f y =在),0[+¥Îx 时的表达式)1(x x y -=且)(x f 为奇函数为奇函数,,则 ]0,(-¥Îx 时,)(x f =( )A.)1(x x -- B.)1(x x + C.)1(x x +- D.)1(-x x4.设)()1221()(x f x F x -+=是偶函数是偶函数,,且0)(¹x f ,则)(x f 奇偶性为奇偶性为 . 5.已知2)(7+-=bx ax x f ,且17)5(=-f ,则=)5(f .6.已知b a bx ax x f +++=3)(2是偶函数,且定义域为[]a a 2,1-,则a = ,b =7. 7. 已知已知)0)(21121()(¹+-=x x x f x .(1)判断)(x f 的奇偶性的奇偶性;;(2)证明0)(>x f .8. 已知)(x f 是以p 2为周期的奇函数为周期的奇函数,,且1)2(-=-p f ,那么=)25(p f .9. (天津卷)设)(x f 是定义在R 上的奇函数,上的奇函数,且)(x f y =的图象关于直线21=x 对称,则对称,则)5()4()3()2()1(f f f f f ++++=_________.7. 已知函数)(x f y =满足)()(2)()(y f x f y x f y x f =-++),(R y R x ÎÎ且 0)0(¹f ,证明,证明 )(x f 为偶函数.为偶函数.四、对应训练四、对应训练 分阶提升分阶提升分阶提升1.1.若若f (x )在[在[--a ,a ](a >0)>0)上是单调奇函数,且上是单调奇函数,且f(2a )>f(3a ),则下列各式一定成立的是一定成立的是A.f(-4a )>f(-5a )B.f(-4a )<f(-5a)C.f(0)<f(-2a )D.(2a )>f(a)2.2.已知已知f(x)=a 0+a 1x+a 2x 2+…a 2004x 2004,若f (1)=100(1)=100,则,则f (-1)= ( )A.100B.-100C.20D.-203.f (x )是奇函数,当x ∈R +时,时,f(x)f(x)f(x)∈∈(]m ,¥-(m<0)(m<0),则,则f (x )的值域可能是的值域可能是A.A.[[m ,-m -m]]B.(]m ,¥-C.[)+¥-,mD.(]m ,¥-∪[)+¥-,m4.4.设设y =f (x )是R 上的奇函数,一定在y =f (x )的图像上的点是的图像上的点是 ( ) ( )A.(a A.(a,,f(-a))B.(-a ,-f(a))C.(-a C.(-a,,-f(-a))D.(a 1,-f (a 1))5.5.如果奇函数如果奇函数f (x )当1≤x ≤4时的解析式为f (x )=x 2-4x +5+5,,则当则当-4-4-4≤≤x ≤-1时,f (x )的最大值为的最大值为 ( ) ( )A.5B.-5C.-2D.-1 6.6.设设f (x )是R 上的奇函数,且x ∈R +时,f (x )=log 2(2x +1)+1),则当,则当x ∈R - 时,f (x )= ( )A.log 2(2x +1)B.-log 2(2x +1)C.log 2(1-2x )D.-log 2(1-2x )7.7.已知奇函数已知奇函数f (x )在区间[-b ,-a ]上单调减且最小值为20042004,则,则g (x )=-|f (x )|)|在[在[a ,b ]上]上 ( ) ( )A.A.单调减且最大值为单调减且最大值为单调减且最大值为-2004-2004B.单调增且最小值为增且最小值为-2004-2004C.C.单调减且最小值为单调减且最小值为单调减且最小值为-2004-2004D.单调增且最大值为单调增且最大值为-2004 -2004 8.8.已知已知f (x )=x 3+bx 2+c x 是R 上的奇函数,动点P (b ,c )描绘的图形是描绘的图形是A.A.椭圆椭圆椭圆B. B.抛物线抛物线C. C.直线直线D. D.双曲线9.9.偶函数偶函数f (x )在[在[00,3]上单调增,则下列各式成立的是]上单调增,则下列各式成立的是 ( ) ( )A.f (-1)<f (2)<f (3)B.f (2)<f (3)<f (1)C.f (2)<f (-1)<f (3)D.f (-1)<f (3)<f (2) 10.10.若若y =g(x )是偶函数,那么f 1(x )=g(x )-1和f 2(x )=g (x -1) ( )A.A.都不是偶函数都不是偶函数都不是偶函数B. B.都不是奇函数 C.C.都是偶函数都是偶函数都是偶函数 D. D.只有一个是偶函数只有一个是偶函数五、总结与反思五、总结与反思1.1.要从数和形两个角度函数的奇偶性,要从数和形两个角度函数的奇偶性,充分利用)(x f 与)(x f -之间的转化和图象特征解决有关问题;解题中注意以下性质的运用:图象特征解决有关问题;解题中注意以下性质的运用:①)(x f 为偶函数Û|)(|)(x f x f =,②若奇函数)(x f 的定义域含0,则0)0(=f .2.2.利用函数的周期性,可转化为求函数值的问题;利用函数的周期性,可转化为求函数值的问题;利用函数的周期性,可转化为求函数值的问题;3.3.判断函数奇偶性时首先要看定义域是否关于原点对称判断函数奇偶性时首先要看定义域是否关于原点对称判断函数奇偶性时首先要看定义域是否关于原点对称. .函数的奇偶性与周期性教学案同步测试 21、若)(x f )(R x Î是奇函数,则下列各点中,在曲线)(x f y =上的点是上的点是(A )))(,(a f a - (B )))sin (,sin (a --a -f (C )))1(lg ,lg (af a -- (D )))(,(a f a --2、已知)(x f 是定义在R 上的奇函数,且为周期函数,若它的最小正周期为T ,则=-)2(Tf(A )0 (B )2T (C )T (D )2T - 3、已知)()()(y f x f y x f +=+对任意实数y x ,都成立,则函数)(x f 是(A )奇函数)奇函数 (B )偶函数)偶函数(C )可以是奇函数也可以是偶函数)可以是奇函数也可以是偶函数 (D )不能判定奇偶性)不能判定奇偶性4、(05福建卷))(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间(在区间(00,6)内解的个数的最小值是)内解的个数的最小值是 A .5 B .4 C .3 D .25、 (05山东卷)下列函数既是奇函数,又在区间[]1,1-上单调递减的是上单调递减的是(A )()sin f x x =(B )()1f x x =-+(C )()1()2x xf x a a -=+(D )2()ln 2xf x x -=+ 6、(04年全国卷一年全国卷一..理2)已知函数=-=+-=)(.)(.11lg )(a f b a f x x x f 则若 A .b B .-.-b C b C .b 1 D .-b1 7、(04年福建卷年福建卷..理1111))定义在R 上的偶函数f(x)f(x)满足满足f(x)=f(x+2)f(x)=f(x+2),,当x ∈[3[3,,5]5]时,时,时,f(x)=2-|x-4|f(x)=2-|x-4|f(x)=2-|x-4|,则,则,则(A )f(sin6p )<f(cos 6p ) (B )f(sin1)>f(cos1) (C )f(cos 32p )<f(sin 32p ) (D )f(cos2)>f(sin2) 8、(97(97理科理科理科))定义在区间定义在区间(-(-(-∞∞,+,+∞∞)的奇函数的奇函数f(x)f(x)f(x)为增函数;为增函数;偶函数偶函数g(x)g(x)g(x)在区间在区间[0,+0,+∞∞)的图象与的图象与f(x)f(x)f(x)的图象重合的图象重合设a>b>0,a>b>0,给出下列不等式给出下列不等式给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④(a)-f(-b)<g(b)-g(-a), 其中成立的是其中成立的是(A)(A)①与④①与④①与④ (B) (B)②与③②与③②与③ (C)(C)①与③①与③①与③ (D)(D)②与④②与④②与④9、已知函数)(x f y =在R 是奇函数,且当0³x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为的解析式为_______________ _______________1010、定义在、定义在)1,1(-上的奇函数1)(2+++=nx x mxx f ,则常数=m ____,=n _____1111、下列函数的奇偶性为、下列函数的奇偶性为、下列函数的奇偶性为 (1) ;(2) .(1)x e x f x -+=)1ln()(2 (2)îíì<+³-=)0()1()0()1()(x x x x x x x f1212、已知、已知)21121()(+-=x x x f ,(1)判断)(x f 的奇偶性;(2)证明:0)(>x f13、定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围的范围. .1414、设、设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意]21,0[,21Îx x,都有)()()(2121x f x f x x f =+. (I)设2)1(=f ,求)41(),21(f f ;(II)(II)证明证明)(x f 是周期函数是周期函数. .。
第3讲函数的奇偶性与周期性[考纲解读] 1.了解函数奇偶性的含义.2.会运用基本初等函数的图象分析函数的奇偶性.(重点)3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.(重点)[考向预测]从近三年高考情况来看,函数的奇偶性与周期性是高考的一个热点.预测2021年高考会侧重以下三点:①函数奇偶性的判断及应用;②函数周期性的判断及应用;③综合利用函数奇偶性、周期性和单调性求参数的值或解不等式.1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有错误!f(-x)=f(x),那么函数f(x)就叫做偶函数关于错误!y轴对称奇函一般地,如果对于函数f关于错误!原点数(x)的定义域内任意一个对称x,都有错误!f(-x)=-f(x),那么函数f(x)就叫做奇函数2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有错误!f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个错误!最小的正数,那么这个错误!最小正数就叫做f(x)的最小正周期.1.概念辨析(1)“a+b=0”是“函数f(x)在区间[a,b](a≠b)上具有奇偶性”的必要条件.()(2)若函数f(x)是奇函数,则必有f(0)=0。
()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.()(5)已知函数y=f(x)是定义在R上的偶函数,若在(-∞,0)上是减函数,则在(0,+∞)上是增函数.()(6)若T为y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期.()答案(1)√(2)×(3)√(4)√(5)√(6)×2.小题热身(1)下列函数中为奇函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案A解析A是奇函数,B是偶函数,C,D是非奇非偶函数.(2)若f(x)是R上周期为2的函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________。
2.3函数的奇偶性与周期性考情分析1.判断函数的奇偶性.2.利用函数奇偶性、周期性求函数值及求参数值.3.考查函数的单调性与奇偶性的综合应用.基础知识1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.注意事项1.。
奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.2.。
(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.3.。
判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.4.。
(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.[:(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b-a)为周期的周期函数.(3)若f(x+a)=-f(x)或f(x+a)=1或f(x+a)=-1,那么函数f(x)是周期函数,其中一个周期为T=2a;(3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=2|a-b|.典型例题题型一 判断函数的奇偶性【例1】下列函数:①f(x)= 1-x 2+ x 2-1;②f(x)=x 3-x ;③f(x)=ln(x +x 2+1);④f(x)=3x -3-x 2;⑤f(x)=lg 1-x 1+x .其中奇函数的个数是( ).A .2B .3C .4D .5解析 ①f(x)=1-x 2+x 2-1的定义域为{-1,1},又f(-x)=±f(x)=0,则f(x)=1-x 2+x 2-1是奇函数,也是偶函数;②f(x)=x 3-x 的定义域为R ,又f(-x)=(-x)3-(-x)=-(x 3-x)=-f(x),则f(x)=x 3-x 是奇函数;③由x +x 2+1>x +|x|≥0知f(x)=ln(x +x 2+1)的定义域为R ,又f(-x)=ln(-x +-2+1)=ln 1x +x 2+1= -ln(x +x 2+1)=-f(x),则f(x)为奇函数; ④f(x)=3x -3-x2的定义域为R , 又f(-x)=3-x -3x 2=-3x -3-x 2=-f(x), 则f(x)为奇函数;⑤由1-x 1+x >0得-1<x<1,f(x)=ln 1-x 1+x 的定义域为(-1,1), 又f(-x)=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫1-x 1+x -1=-ln 1-x 1+x =-f(x), 则f(x)为奇函数.答案 D【变式1】 判断下列函数的奇偶性:(1)f(x)=4-x 2|x +3|-3; (2)f(x)=x 2-|x -a|+2.解 (1)解不等式组⎩⎪⎨⎪⎧ 4-x 2≥0,|x +3|-3≠0,得-2≤x<0,或0<x≤2,因此函数f(x)的定义域是[-2,0)∪(0,2], 则f(x)=4-x 2x.[: f(-x)=4--2-x =-4-x 2x =-f(x),所以f(x)是奇函数.(2)f(x)的定义域是(-∞,+∞).当a =0时,f(x)=x 2-|x|+2,f(-x)=x 2-|-x|+2=x 2-|x|+2=f(x).因此f(x)是偶函数;当a≠0时,f(a)=a 2+2,f(-a)=a 2-|2a|+2,f(-a)≠f(a),且f(-a)≠-f(a).因此f(x)既不是偶函数也不是奇函数.题型二 函数奇偶性的应用【例2】已知f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12(x≠0). (1)判断f(x)的奇偶性;(2)证明:f(x)>0.(1)解 法一 f(x)的定义域是(-∞,0)∪(0,+∞)∵f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12=x 2·2x +12x -1. ∴f(-x)=-x 2·2-x +12-x -1=x 2·2x +12x -1=f(x). 故f(x)是偶函数.法二 f(x)的定义域是(-∞,0)∪(0,+∞),∵f(1)=32,f(-1)=32,∴f(x)不是奇函数. ∵f(x)-f(-x)=x ⎝ ⎛⎭⎪⎫12x -1+12+x ⎝ ⎛⎭⎪⎫12-x -1+12 =x ⎝ ⎛⎭⎪⎫12x -1+2x 1-2x +1=x ⎝ ⎛⎭⎪⎫1-2x 2x -1+1=x(-1+1)=0, ∴f(-x)=f(x),∴f(x)是偶函数.(2)证明 当x >0时,2x >1,2x -1>0, 所以f(x)=x ⎝ ⎛⎭⎪⎫12x -1+12>0. 当x <0时,-x >0,所以f(-x)>0,又f(x)是偶函数,∴f(-x)=f(x),所以f(x)>0.综上,均有f(x)>0.【变式2】 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f(1-m)+f(1-m 2)<0的实数m 的取值范围.解 ∵f(x)的定义域为[-2,2],∴有⎩⎪⎨⎪⎧ -2≤1-m≤2,-2≤1-m 2≤2, 解得-1≤m≤ 3.①又f(x)为奇函数,且在[-2,0]上递减,∴在[-2,2]上递减,∴f(1-m)<-f(1-m2)=f(m2-1)⇒1-m>m2-1,即-2<m<1.②综合①②可知,-1≤m<1.题型三函数的奇偶性与周期性【例3】已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x -1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2018)的值.(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2)解当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].[:(3)解∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.[:∴f(0)+f(1)+f(2)+…+f(2018)=f(2 012)+f(2 013)=f(0)+f(1)=1.【变式3】已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为( ).A.-1 B.1 C.0 D.无法计算解析由题意,得g(-x)=f(-x-1),又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x),∴f(x-1)=-f(x+1),∴f(x)=-f(x+2),∴f(x)=f(x+4),∴f(x)的周期为4,∴f(2 013)=f(1),f(2 015)=f(3)=f(-1),又∵f(1)=f(-1)=g(0)=0,∴f(2 013)+f(2 015)=0.答案 C重难点突破【例4】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间.[解析 (1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x +2)=-f(x),得:f[(x -1)+2]=-f(x -1)=f[-(x -1)],即f(1+x)=f(1-x).故知函数y =f(x)的图象关于直线x =1对称.又0≤x≤1时,f(x)=x ,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4≤x≤4时,f(x)的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4 (3)函数f(x)的单调递增区间为[4k -1,4k +1](k ∈Z),单调递减区间[4k +1,4k +3](k ∈Z).巩固提高1.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f ⎝ ⎛⎭⎪⎫-52=( ). A.-12 B.-14 C.14 D.12解析 因为f(x)是周期为2的奇函数,所以f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫12=-12.故选A. 答案 A2. f(x)=1x-x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称解析 f(x)的定义域为(-∞,0)∪(0,+∞),又f(-x)=1-x -(-x)=-⎝ ⎛⎭⎪⎫1x -x =-f(x),则f(x)为奇函数,图象关于原点对称.答案 C[:数理化]3.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x)+|g(x)|是偶函数B .f(x)-|g(x)|是奇函数C .|f(x) |+g(x)是偶函数D .|f(x)|-g(x)是奇函数解析 由题意知f(x)与|g(x)|均为偶函数,A 项:偶+偶=偶;B 项:偶-偶=偶,B 错;C 项与D 项:分别为偶+奇=偶,偶-奇=奇均不恒成立,故选A.答案 A4.对于函数f(x)=asin x +bx +c(其中,a ,b ∈R ,c ∈Z),选取a ,b ,c 的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( ).A .4和6B .3和1C .2和4D .1和2解析 ∵f(1)=asin 1+b +c ,f(-1)=-asin 1-b +c 且c ∈Z ,∴f(1)+f(-1)=2c 是偶数,只有D 项中两数和为奇数,故不可能是D.答案 D5.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析法一∵f(-x)=f(x)对于x∈R恒成立,∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0.法二由f(-1)=f(1),得|a-1|=|a+1|,得a=0.答案0。
函数的奇偶性和周期性教案教案:函数的奇偶性和周期性教学目标:1.理解函数的奇偶性和周期性的概念;2.掌握判断函数的奇偶性和周期性的方法;3.能够应用奇偶性和周期性的性质解决实际问题。
教学内容:1.函数的奇偶性1.1奇函数的定义:如果对于函数f(x),当x属于定义域时,有f(-x)=-f(x),则称函数f(x)为奇函数。
1.2判断函数的奇偶性方法:1.2.1通过函数的解析式判断,如果函数解析式中只包含奇数次幂的项,则函数为奇函数。
1.2.2通过函数的图像判断,如果函数关于原点对称,则函数为奇函数。
2.函数的周期性2.1周期函数的定义:如果存在正数T,使得对于函数f(x),当x属于定义域时,有f(x+T)=f(x),则称函数f(x)为周期函数,T称为函数的周期。
2.2周期函数的性质:2.2.1周期函数的图像在一个周期内具有相同的性质,如极值点、零点等。
2.2.2 如果函数f(x)是周期为T的周期函数,则f(ax)是周期为T/,a,的周期函数,其中a是非零常数。
教学过程:1.引入函数的奇偶性和周期性的概念,通过例子说明函数的奇偶性和周期性的特点。
2.讲解奇函数的定义,通过例题让学生判断函数的奇偶性。
3.讲解周期函数的定义,通过例题让学生判断函数的周期性。
4.教师带领学生进行小组合作,给定一些函数,要求学生判断其奇偶性和周期性,并给出相应的理由。
5.学生展示自己的判断过程,教师进行点评和指导。
6.学生独立进行练习,通过解答问题和绘制函数图像等方式应用奇偶性和周期性的性质解决实际问题。
7.教师进行总结,概括函数的奇偶性和周期性的判断方法和应用技巧。
教学资源:1.函数的奇偶性和周期性的教学PPT;2.例题和练习题。
评估与反馈:1.课堂练习:提供一些函数,要求学生判断其奇偶性和周期性,并给出相应的理由。
2.课后作业:布置一些与奇偶性和周期性相关的练习题,要求学生独立完成,并在下节课上进行讲解和答疑。
拓展延伸:2.进一步应用函数的奇偶性和周期性解决实际问题,如求解方程、优化问题等;。
第3讲 函数的奇偶性与周期性考纲展示 命题探究考点一 函数的奇偶性奇偶性的定义及图象特点(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.1.思维辨析(1)函数具备奇偶性的必要条件是函数的定义域在x 轴上是关于坐标原点对称的.( )(2)若函数f (x )为奇函数,则一定有f (0)=0.( )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( )(5)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( ) (6)若函数f (x )=x(x -2)(x +a )为奇函数,则a =2.( )答案 (1)√ (2)× (3)√ (4)√ (5)× (6)√2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-12答案 B解析 由已知得a -1+2a =0,得a =13,又f (x )为偶函数,f (-x )=f (x ),∴b =0,所以a +b =13.3.下列函数为奇函数的是( ) A .y =2x-12xB .y =x 3sin xC .y =2cos x +1D .y =x 2+2x答案 A解析 由函数奇偶性的定义知,B 、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有A 中的函数为奇函数,故选A.[考法综述] 判断函数的奇偶性是比较基础的问题,难度不大,常与函数单调性相结合解决求值和求参数问题,也与函数的周期性、图象对称性在同一个题目中出现.主要以选择题和填空题形式出现,属于基础或中档题目.命题法 判断函数的奇偶性及奇偶性的应用 典例 (1)下列函数为奇函数的是( )A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x(2)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数[解析](1)因为函数y=x的定义域为[0,+∞),不关于原点对称,所以函数y=x为非奇非偶函数,排除A;因为y=|sin x|为偶函数,所以排除B;因为y=cos x为偶函数,所以排除C;因为y=f(x)=e x-e-x,f(-x)=e-x-e x=-(e x-e-x)=-f(x),所以函数y=e x-e-x为奇函数,故选D.(2)由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.[答案](1)D(2)C【解题法】判断函数奇偶性的方法(1)定义法(2)图象法1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x -a,即1-a ·2x =-2x +a ,化简得a ·(1+2x )=1+2x,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3 答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.12(e x +e -x )C.12(e -x -e x) D.12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2)=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1. 解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; ②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x+e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立, 令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立. 因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ), 则g ′(x )=e x-1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1.考点二 函数的周期性1 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.注意点 常见的有关周期的结论周期函数y =f (x )满足:(1)若f (x +a )=f (x -a ),则函数的周期为2a . (2)若f (x +a )=-f (x ),则函数的周期为2a . (3)若f (x +a )=-1f (x ),则函数的周期为2a .1.思维辨析(1)若函数f (x )满足f (0)=f (5)=f (10),则它的周期T =5.( ) (2)若函数f (x )的周期T =5,则f (-5)=f (0)=f (5).( ) (3)若函数f (x )关于x =a 对称,也关于x =b 对称,则函数f (x )的周期为2|b -a |.( )(4)函数f (x )在定义域上满足f (x +a )=-f (x )(a >0),则f (x )是周期为a 的周期函数.( )(5)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2016)=0.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f (2014)等于( )A .0B .3C .4D .6答案 A解析 ∵f (x )是定义在R 上的偶函数, ∴f (-2)=f (2),∴f (-2+4)=f (2)=f (-2)+f (2)=2f (2), ∴f (2)=0,f (2014)=f (4×503+2)=f (2)+503×f (2)=f (2)=0,故选A. 3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.答案 -12解析 ∵f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),∴f ⎝⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12.[考法综述] 函数周期性的考查在高考中主要以选择题、填空题形式出现.常与函数的奇偶性、图象对称性结合考查,难度中档.命题法 判断函数的周期性,利用周期性求值典例 (1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12[解析] (1)由于f (x )周期为5,且为奇函数,∴f (8)=f (5+3)=f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (8)-f (4)=-2-(-1)=-1.(2)因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π.又因为当0≤x ≤π时,f (x )=0,所以f ⎝ ⎛⎭⎪⎫5π6=0,即f ⎝⎛⎭⎪⎫-π6+π=f ⎝⎛⎭⎪⎫-π6+sin ⎝⎛⎭⎪⎫-π6=0,所以f ⎝ ⎛⎭⎪⎫-π6=12,所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12.[答案] (1)A (2)A【解题法】 函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( )A .-1 B.45 C .1 D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A.2.函数f (x )=lg |sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,则f (2013)+f (2014)的值为( )A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f (2013)+f (2014)=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b=c .故选A.5.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( ) A.124 B.112 C.16 D.13答案 A解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A. 6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( )A .既是周期函数,又是奇函数B .既是周期函数,又是偶函数C .不是周期函数,但是奇函数D .不是周期函数,但是偶函数 答案 B解析 因为y =f (x )是周期函数,设其周期为T ,则有f (x +T )=f (x ),两边同时求导,得f ′(x +T )(x +T )′=f ′(x ),即f ′(x +T )=f ′(x ),所以导函数为周期函数.因为y =f (x )是奇函数,所以f (-x )=-f (x ),两边同时求导,得f ′(-x )(-x )′=-f ′(x ),即-f ′(-x )=-f ′(x ),所以f ′(-x )=f ′(x ),即导函数为偶函数,选B.判断f (x )=x 2+1,x ∈[-2,2)的奇偶性. [错解][错因分析] 忽视判断函数的奇偶性时对定义域的要求. [正解] 由于x ∈[-2,2),所以f (x )=x 2+1的定义域不关于原点对称,所以函数f (x )=x 2+1是非奇非偶函数.[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x答案 C解析 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.2. [2016·衡水中学预测]函数f (x )=a sin 2x +bx 23+4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=2013,则f (lg 2014)=( ) A .2018 B .-2009 C .2013 D .-2013 答案 C解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝ ⎛⎭⎪⎫lg 12014=f (-lg 2014),f (-lg 2014)=g (-lg 2014)+4=g (lg 2014)+4=f (lg 2014)=2013,故选C.3.[2016·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数 答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[2016·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f (y )x +f (x )y 成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数 答案 A解析 令x =y =1,则f (1)=f (1)1+f (1)1,∴f (1)=0. 令x =y =-1,则f (1)=f (-1)-1+f (-1)-1,∴f (-1)=0.令y =-1,则f (-x )=f (-1)x +f (x )-1,∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[2016·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∵f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2,-(x -2)3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧ x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0,解得x >4或x <0.故选B.6. [2016·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[2016·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[2016·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.9.[2016·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________.答案 4解析 由f (x )=(x +a )(x -4), 得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[2016·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f (2014)=2a -3a +1,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-1,23 解析 ∵f (2014)=f (1)=f (-2)=-f (2)<-1, ∴2a -3a +1<-1,解得-1<a <23. 11.[2016·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足:①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2. (1)判断函数f (x )是否为周期函数; (2)求f (5.5)的值.解 (1)由⎩⎪⎨⎪⎧f (x )=f (2-x ),f (x )=f (-x )⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)f (5.5)=f (4+1.5)=f (1.5)=f (2-1.5)=f (0.5)=0.25.12.[2016·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧-2<x -1<2,-2<3-2x <2,∴⎩⎨⎧-1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52.(2)由g (x )≤0得f (x -1)+f (3-2x )≤0. ∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎨⎧x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[2016·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝⎛⎭⎪⎫10615的大小关系是( ) A .c <b <a B .c <a <bC .a <c <bD .a <b <c答案 B解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),① 因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),② 所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝⎛⎭⎪⎫-1415=f ⎝⎛⎭⎪⎫1415,所以f ⎝⎛⎭⎪⎫1415<f ⎝⎛⎭⎪⎫2219<f ⎝⎛⎭⎪⎫3317,即c <a <b . 14.[2016·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数, 则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2, ∴f (-1)+1=-f (1)-1,∴f (-1)=-3, ∴g (-1)=f (-1)+2=-1.15. [2016·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立, ∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立. 又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立, 当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. ∴实数m 的取值范围是[0,1).16.[2016·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性; (2)求证:f (x )是R 上的减函数; (3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围.解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0. 取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数. (2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数, ∴f (x 1)>f (x 2).∴f (x )是R 上的减函数. (3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3), ∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6, ∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6].(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。