7 用二元一次方程组确定一次函数表达式 教学设计
- 格式:doc
- 大小:113.00 KB
- 文档页数:6
当我们在日常办公时 ,经常会遇到一些不太好编辑和制作的资料 .这些资料因为用的比拟少 ,所以在全网范围内 ,都不易被找到 .您看到的资料 ,制作于2021年 ,是根据最|新版课本编辑而成 .我们集合了衡中、洋思、毛毯厂等知名学校的多位名师 ,进行集体创作 ,将日常教学中的一些珍贵资料 ,融合以后进行再制作 ,形成了本套作品 .本套作品是集合了多位教学大咖的创作经验 ,经过创作、审核、优化、发布等环节 ,最|终形成了本作品 .本作品为珍贵资源 ,如果您现在不用 ,请您收藏一下吧 .因为下次再搜索到我的时机不多哦 !第五章 二元一次方程组【教学目标】1、使学生初步理解二元一次方程与一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解.3、能利用二元一次方程组确定一次函数的表达式【教学重点】1、二元一次方程和一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解【教学难点】方程和函数之间的对应关系即数形结合的意识和能力【教学过程】 忆一忆同学们:什么叫二元一次方程的解?一次函数的图像是什么?如图,求一次函数的图像的解析式 试一试问题:方程x +y =5的解有多少个 ?写出其中的几个解来[方程x +y =5的解有无数多个 ,如: 16x y =-⎧⎨=⎩ 05x y =⎧⎨=⎩ 14x y =⎧⎨=⎩ 23x y =⎧⎨=⎩ 32x y =⎧⎨=⎩等 在直角坐标系中分别描出以这些解为坐标的点 ,它们在一次函数y =5-x 的图像上吗 ?在一次函数y =5-x 的图像上任取一点 ,它的坐标适合方程x +y =5吗 ?以方程x +y =5的解为坐标的所有点组成的图象与一次函数y =5-x 的图像相同吗 ? 做一做在同一直角坐标系内分别作出一次函数y =5-x 和y =2x -1的图像 ,这两个图像有交点吗 ?交点的坐标与方程组521x y x y +=⎧⎨-=⎩ 的解有什么关系 ?你能说明理由吗 ?x[一次函数y =5-x 和y =2x -1的图像的交点为 (2 ,3 ) ,因此 ,23x y =⎧⎨=⎩就是方程组521x y x y +=⎧⎨-=⎩的解 .] 例1、用作图象的方法解方程组2222x y x y -=-⎧⎨-=⎩解:由x -2y = - 2可得y = 12+x ,同理 , 由2x – y =2可得y =2x – 2 ,在同坐标系中作出一次函数y =12+x 的图像和y =2x – 2的图像 ,观察图像 ,得两直线交于点 (2 ,2 ) ,所以方程组22x y x y -=⎧⎨-=⎩⎩同学们你从此题中感悟到什么 ?原来我们解二元一次方程组除了代入法和加减法 外还可以用图像法 ,那么用作图法来解方程组的步骤如下:把二元一次方程化成一次函数的形式在直角坐标系中画出两个一次函数的图像 ,并标出交点. 交点坐标就是方程组的解 .练一练1、用作图象的方法解方程组242312x y x y +=⎧⎨-=⎩2、在图中的两直线l 1、l 2的交点坐标可以看作 的解 .答案:124y x y x =+⎧⎨=-⎩试一试1、有一组数同时适合方程x +y =2和2、一次函数y =2-x ,y =5-x ? [没有一组数同时适合方程x +y =2和一次函数y =2 –x ,y =5 - x 的图像是两条平等的直线 .我们可以得到:二元一次方程组无解 (无交点 )二元一次方程组有一解有一个交点 )二元一次方程组有无数个解 (有无数个交点 )小结二元一次方程的图像实际上就是一次函数的图像2、用图像法可以解二元一次方程组 ,原来我们还可以用几何的图像法来解代数问题 .本课教学反思本节课主要采用过程教案法训练学生的听说读写.过程教案法的理论根底是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为.它包括写前阶段,写作阶段和写后修改编辑阶段.在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务.课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反应或修改意见, 学生不断进行写作, 修改和再写作.在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力.学生由于能得到教师的及时帮助和指导,所以,即使是英语根底薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。
第七章二元一次方程组4.二元一次方程与一次函数(2)一、教材分析本节内容主要是通过对作图象方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图象解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识.二、学情分析学生已经熟练掌握了二元一次方程组的解法,同时在第六章也学习了确定一次函数的表达式的基本方法,在上一节课又学习了二元一次方程组的图象解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图象法上停留,因为图象法很直观,容易接受,因此本节课对代数方法的渗透应有一个循序渐进的过程.三、目标分析教学目标知识与技能目标1.理解作函数图象的方法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系.过程与方法目标:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略.2.在对作图象解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化.3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.情感与态度目标:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.教学重点利用二元一次方程组确定一次函数的表达式.教学难点建立数形结合的思想.四、教法学法1.教学方法启发引导与自主探究相结合.2.课前准备教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本,坐标纸.五、教学过程本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.第一环节复习引入内容:(1)二元一次方程组与一次函数有何联系?(2)二元一次方程组有哪些解法?意图:通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图象的交点坐标;反之,两个一次函数图象的交点也是它们所对应的二元一次方程组的解;所以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方法的多样性和知识之间是互相联系的,为后面利用作图象方法和代数方法解决议一议的问题作铺垫.效果:回忆旧知,为本节课学习新的知识做铺垫.第二环节 设计实际问题情境,导入新课内容:教材议一议A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇?意图:通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图象方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系. 通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容.效果:通过引例的分组探索,深刻理解图象方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.第三环节 典型例题,探究一次函数解析式的确定内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1) 写出y 与x 之间的函数表达式;(2) 旅客最多可免费携带多少千克的行李?解:(1)设b kx y +=,根据题意,可得方程组⎩⎨⎧+=+=.9010,605b k b k解该方程组,得⎪⎩⎪⎨⎧-==.5,61b k 所以.561-=x y (2)当x =30时,y =0. 所以旅客最多可免费携带30千克的行李. 例 2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;(2) 若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?解:(1)当0≤x ≤15时,设x k y 1=,根据题意得11527k =,解得591=k 所以当0≤x ≤15时,x y 59=; 当x >15时,设b x k y +=2,根据题意,可得方程组⎩⎨⎧+=+=.2039,152722b k b k 解这个方程组,得⎪⎩⎪⎨⎧-==.9,5122b k所以当x >15时,9512-=x y . (2)当x =10时,代入x y 59=中,得y =18. 当y =51时,代入9512-=x y 中,得x =25. 意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图象提供的信息,补充例2主要是承接第六章,一次函数图象的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.效果:通过两个例题的讲解,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的一般步骤与方法,使学生有知识迁移的基础.第四环节 练习与提高内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组 的解答案:⎩⎨⎧-=-=+.12,4y x y x 2. 在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案:5.145.0+=x y当x =4是,y =5.163. 教材例2的再探索: 我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶,如图所示,1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.当时间t 等于多少分钟时,我边防快艇B 能够追赶上A .答案:直线1l 的解析式:x y 531=,直线2l 的解析式:6512+=x y 15分钟意图:通过练习1,强化函数与方程的关系,同时也是利用二元一次方程组确定一次函数解析式这一方法的训练;练习2是配合例1出的一个练习,目的是强化本节知识的重点“利用二元一次方程组确定一次函数解析式”;练习3是第六章“一次函数图象的应用”一节中的例2,目的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的.效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.第五环节 课堂小结内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:b kx y +=()0≠k ;2.将已知条件代入上述表达式中得k ,b 的二元一次方程组;3.解这个二元一次方程组得k ,b ,进而得到一次函数的表达式.意图和效果:让学生对本节课的内容作概括的归纳与整理.1l2l第六环节布置作业习题7.8六、课后反思(1)设计理念事物之间是存在普遍联系的,研究二元一次方程组与一次函数之间的关系应证了辨证唯物主义的这一观点.同时利用二元一次方程组解决一次函数问题也是初中阶段数学学习的一个重要内容.教材通过引例对图象方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图象方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.通过一个具体的例子,让学生掌握用二元一次方程组解决一次函数问题的一般步骤与方法.(2)突出重点、突破难点的策略本节课是二元一次方程组和一次函数关系的第二节课,主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题,关于这方面的练习,以老师的讲解为主,在此基础上,还要让学生动手、动脑去解决问题,在技能上作出强化.作为第二节课,在内容上要让学生进一步理解它们之间的联系的同时,要让学生理解为什么要用二元一次方程组去求解一次函数的解析式的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解图象方法和代数方法解决问题的优点和缺点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,让学生理解解决问题方法的多样性的,结合函数的图象,进一步理解数形结合的思想在数学学习中的重要性.(3)评价方式根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对问题的理解水平和解决过程中的表述水平,关注的是学生对基本知识技能的掌握情况和应用二元一次方程组解决一次函数的解析式的相关问题的提高.教学中可通过学生对“做一做”的探究情况和学生对反馈练习的完成情况分析学生的认识状况和解决问题的意识和能力水平.对于学生的回答教师应给予恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能.附:板书设计。
数学八年级上北师大版5.7用二元一次方程组确定一次函数表达式教学设计作者姓名:任雅勤学校:西北中学5.7用二元一次方程组确定一次函数表达式任雅勤一、学情分析知识基础:学生已经掌握二元一次方程组和一次函数的基础知识,在作一次函数图象时,通过一次函数表达式和直线之间的对应关系,初步形成了数、形结合的意识.能力基础:学生能够较准确的用图象表达两个变量之间的关系,能够较准确地解读图象上各点的实际意义。
技能基础:学生已经熟练掌握了二元一次方程组的解法,同时在第四章也学习了一些确定一次函数表达式的基本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作了很好的铺垫.活动经验基础:在上一节课的学习中,学生已经经历了在平面直角坐标系中通过图象法解二元一次方程组的解的活动,学生对二元一次方程组和一次函数的关系认识更加深刻,进一步感受到了数与形结合是一种重要的数学思想。
也经历了很多合作学习的过程,具备了合作学习的经验,具备了一定合作交流的能力.二、教材分析本节课时的地位:上一节课时探究了函数与方程之间的关系,并获得了方程组的图象解法,因此本节课时是上一节内容的自然发展,也是第四章一次函数与图像关系的自然应用,并且为今后利用反比例函数、二次函数及其图像之间关系解决实际问题奠定了基础。
本节课时的作用:本节课时通过两类方法(用代数方法解决实际问题、建立一次函数模型并利用其图象解决实际问题)的对比学习,让学生能够更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。
本节课时的主要内容:本节课主要研究利用二元一次方程组确定一次函数的表达式;通过两类方法(用代数方法解决实际问题、建立一次函数模型并利用其图象解决实际问题)的对比学习过程,体会数形结合的准确性和直观性。
三、 教学目标1.知识与能力目标:(1)掌握利用二元一次方程组确定一次函数的表达式的方法.(2)理解图象法和代数法各自的特点.能够有意识用数形结合的方法解决实际问题。
北师大版八年级数学上册《用二元一次方程组确定一次函数表达式》优秀说课稿一. 教材分析北师大版八年级数学上册《用二元一次方程组确定一次函数表达式》这一节主要让学生掌握利用二元一次方程组来确定一次函数表达式的方法。
学生在之前的学习中已经掌握了二元一次方程组的知识,也接触过一次函数的表达式,但是还不太清楚如何将二元一次方程组转化为一次函数表达式。
这一节就是通过实例来引导学生掌握这个方法。
教材通过引入“总价=单价×数量”这个实际问题,让学生理解二元一次方程组和一次函数表达式之间的关系,从而掌握如何用二元一次方程组确定一次函数表达式。
二. 学情分析学生在之前的学习中已经掌握了二元一次方程组的知识,也接触过一次函数的表达式,但是还不太清楚如何将二元一次方程组转化为一次函数表达式。
因此,在教学过程中,我需要通过实例来引导学生掌握这个方法,让学生在实际问题中感受二元一次方程组和一次函数表达式之间的关系。
三. 说教学目标1.让学生掌握利用二元一次方程组来确定一次函数表达式的方法。
2.培养学生解决实际问题的能力,让学生在实际问题中感受二元一次方程组和一次函数表达式之间的关系。
四. 说教学重难点教学重点:让学生掌握利用二元一次方程组来确定一次函数表达式的方法。
教学难点:如何将二元一次方程组转化为一次函数表达式,以及在实际问题中如何应用这个方法。
五. 说教学方法与手段采用讲授法、引导法、探究法、案例分析法等教学方法,结合多媒体演示、板书、PPT等教学手段,引导学生掌握利用二元一次方程组确定一次函数表达式的方法。
六. 说教学过程1.引入实例:通过引入“总价=单价×数量”这个实际问题,让学生理解二元一次方程组和一次函数表达式之间的关系。
2.引导学生列出二元一次方程组:让学生根据实际问题,列出二元一次方程组。
3.引导学生将二元一次方程组转化为一次函数表达式:让学生通过解二元一次方程组,得到一次函数表达式。
5.7 用二元一次方程组确定一次函数表达式1.能利用二元一次方程组确定一次函数的表达式.(难点)一、情境导入 在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似满足一次函数关系.下(1)(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度约为多少摄氏度?二、合作探究探究点一:利用二元一次方程组确定一次函数的表达式已知直线l1经过点A(0,3)及点B(3,0),l 2经过点M(1,2)及点N(-2,-3).求l 1、l 2的交点坐标.解析:先用待定系数法确定l 1、l 2的表达式,再列方程组求解.解:设直线l 1的方程为y =k 1x +b 1,则⎩⎪⎨⎪⎧k 1·0+b 1=3,3k 1+b 1=0,解得⎩⎪⎨⎪⎧b 1=3,k 1=-1.故有l 1:y =-x +3,即x +y =3.①设直线l 2的方程为y =k 2x +b 2,则⎩⎪⎨⎪⎧k 2+b 2=2,-2k 2+b 2=-3.解得⎩⎪⎨⎪⎧k 2=53,b 2=13.故有l 2:y =53x +13,即5x -3y +1=0.②由①②得方程组⎩⎪⎨⎪⎧x +y =3,5x -3y =-1.解得⎩⎪⎨⎪⎧x =1,y =2.故直线l 1、l 2的交点坐标是(1,2).方法总结:先用待定系数法求出两条直线的表达式,再把它们组成二元一次方程组求解.也可以用图象法解题,但代数法要比图象法解题准确.探究点二:利用二元一次方程组与一次函数解决实际问题A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行,假设他们都保持匀速行驶,则他们各自与A 地的距离s(千米)都是时间t(时)的一次函数,已知1小时后乙距离A 地80千米,2小时后甲距离A 地30千米.问甲、乙两人出发后多长时间相遇.解析:甲、乙两人相遇时,他们与A 地距离相等,结合函数图象经过点坐标(0,0),(2,30),(0,100),(1,80)分别运用待定系数法确定甲、乙的函数表达式.根据函数表达式,构造方程组求解,可得出交点坐标,即是两人出发的相遇时间.解:根据题意画图,如图.设乙的函数表达式为s =kt +b.把t =0时,s =100;t =1时,s =80代入s =kt +b ,联立方程组解得⎩⎪⎨⎪⎧b =100,k =-20.所以s =-20t +100.设甲的函数表达式为s =mt.把t =2时,s =30代入s =mt ,得m =15,所以s =15t.联立这两个函数表达式,得⎩⎪⎨⎪⎧s =15t ,s =-20t +100,解得⎩⎪⎨⎪⎧t =207,s =3007.因此甲、乙两人出发207小时后相遇.方法总结:利用二元一次方程(组)与一次函数图象的联系解决实际问题,如果确定交点坐标,那么常用两个函数表达式构造方程组求解.探究点三:利用二元一次方程组和一次函数解决几何问题在平面直角坐标系中,直线l1经过点(2,3)和(-1,-3),直线l 2经过原点,且与直线l 1交于点(-2,a).(1)试求a 的值;(2)试问(-2,a)可看成是怎样的二元一次方程组的解?(3)设交点坐标为P ,直线l 1与y 轴交于点A ,你能求出△APO 的面积吗?试试看.解析:(1)利用待定系数法先求出直线l 1的关系式,因为点(-2,a)为l 1和l 2的交点,所以把⎩⎪⎨⎪⎧x =-2,y =a 代入直线l 1的关系式,可求出a ;(2)要想知道(-2,a)是怎样的二元一次方程组的解,已知(-2,a)是直线l 1和直线l 2的交点坐标,故需求出直线l 2的关系式;(3)在直角坐标系内画出直线l 1的图象,利用三角形面积计算公式,进一步求出△APO 面积.解:(1)设直线l 1对应的函数关系式为y =k 1x +b.由题意,得⎩⎪⎨⎪⎧2k 1+b =3,-k 1+b =-3,解得⎩⎪⎨⎪⎧k 1=2,b =-1.故直线l 1对应的函数关系式为y =2x -1.又因为点(-2,a)是直线l 1和直线l 2的交点,所以把⎩⎪⎨⎪⎧x =-2,y =a 代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2对应的函数关系式为y =k 2x(因为直线l 2过原点).因为(-2,-5)是直线l 1和直线l 2的交点,故把⎩⎪⎨⎪⎧x =-2,y =-5代入y =k 2x ,解得k 2=52.故直线l 2对应的函数关系式为y =52x.故(-2,-5)可看成是二元一次方程组⎩⎪⎨⎪⎧5x -2y =0,2x -y =1的解.(3)在平面直角坐标系内画出直线l 1,l 2的图象如图,可知点A(0,-1),故S △APO =12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计(这节课适合使用思维导图方式设计)利用二元一次方程组确定一次函数表达式的一般步骤:三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y =kx +b(k≠0); 2.将已知条件代入上述表达式中得k ,b 的二元一次方程组;3.解这个二元一次方程组得k ,b 的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a ∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF 与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》教案1一. 教材分析《用二元一次方程组确定一次函数表达式》是北师大版数学八年级上册7的一节内容。
本节课的主要内容是让学生掌握利用二元一次方程组确定一次函数表达式的方法,培养学生解决实际问题的能力。
教材通过引入实际问题,让学生经历从实际问题中建立数学模型的过程,从而加深对一次函数的理解。
二. 学情分析学生在学习本节课之前,已经学习了了一次函数的基本概念和相关性质,对一次函数有一定的了解。
但是,对于如何利用二元一次方程组确定一次函数表达式,可能还存在一定的困难。
因此,在教学过程中,需要引导学生从实际问题中抽象出数学模型,理解并掌握利用二元一次方程组确定一次函数表达式的方法。
三. 教学目标1.知识与技能:让学生掌握利用二元一次方程组确定一次函数表达式的方法。
2.过程与方法:培养学生从实际问题中建立数学模型的能力,提高解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:让学生掌握利用二元一次方程组确定一次函数表达式的方法。
2.难点:如何引导学生从实际问题中抽象出数学模型,理解并掌握利用二元一次方程组确定一次函数表达式的过程。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例教学法:通过分析具体案例,让学生理解并掌握利用二元一次方程组确定一次函数表达式的方法。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神和沟通能力。
六. 教学准备1.教师准备:准备好相关案例和教学PPT。
2.学生准备:预习一次函数的基本概念和相关性质。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.呈现(10分钟)教师通过PPT呈现具体案例,引导学生从实际问题中抽象出数学模型。
3.操练(10分钟)教师引导学生分组讨论,让学生动手解二元一次方程组,确定一次函数表达式。
各位评委:大家上午好,我是初中数学科目第*组第*号,今天我要说课的课题是《用二元一次方程组确定一次函数的表达式》。
从小我的心里就有一个梦想,就是长大后可以做一名教师,为祖国的教育事业贡献自己的一份力量。
下面我首先对《用二元一次方程组确定一次函数的表达式》本节教材进行一些分析,《用二元一次方程组确定一次函数的表达式》是北京师范大学出版社出版的八年级上册第五章第七节的教学内容。
本节课一方面,是在学生学习了二元一次方程的基础上,对方程和方程组的进一步深入和拓展;一次函数的基础上用二元一次方程组确初步理解另一方面,本节课也是学习了定一次函数的表达式的特定关系,为九年级函数部分的学习打下一定的基础,因此本节课在教材中具有承上启下的作用。
根据上述教材分析,考虑到学生已有的认知结构心理特征:我设计了本节课的教学目标如下:知识与能力目标:能利用二元一次方程组确定一次函数的表达式。
过程与方法目标:在利用一次函数图象求二元一次方程组近似解和利用二元一次方程组确定一次函数的表达式的过程中,体会数形结合法研究数学问题的方法。
情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
针对明确的教学目标:我确定本课中重点为:掌握用二元一次方程组确定一次函数的表达式。
1难点:利用待定系数法确定二元一次方程组和一次函数的表达式。
学情分析中:刚进入初二的学生观察,操作,猜想能力较强,蛋归纳,运用数学意识的思想比较薄弱,思维的广阔性,敏捷性,灵活性比较欠缺,所以需要在课堂教学中进一步加强引导。
教学方法分析中对教法的分析:本节课我将采用讲授法,直观演示法,练习法。
学法分析中我采用自主学习教学法和合作学习教学法。
下面我着重讲一下教学过程,本节课我将围绕情境导入,新课讲解,拓展与应用,课堂小结,学生作业,这五个环节展示我的教学:第一个环节:情景导入,通过创设情景,用多媒体课件演示教材第126页的内容:A ,B两地相距100千米,甲、乙两人骑自行车分别从A,B两地相向而行。
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》教案2一. 教材分析《用二元一次方程组确定一次函数表达式》是人教版初中数学八年级上册第7章的内容,本节课的主要任务是让学生掌握如何利用二元一次方程组来确定一次函数的表达式。
学生在之前的学习中已经掌握了二元一次方程组的解法和一次函数的性质,本节课将这两个知识点结合起来,进一步深化学生对函数的理解。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二元一次方程组和一次函数的知识点有一定的了解。
但学生在实际操作中,可能对如何将实际问题转化为二元一次方程组,并进一步确定一次函数表达式还存在一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的动手能力和解决问题的能力。
三. 教学目标1.理解用二元一次方程组确定一次函数表达式的原理。
2.能够将实际问题转化为二元一次方程组,并确定一次函数表达式。
3.提高学生的动手能力和解决问题的能力。
四. 教学重难点1.教学重点:如何利用二元一次方程组确定一次函数表达式。
2.教学难点:如何将实际问题转化为二元一次方程组,并进一步确定一次函数表达式。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,提高学生的动手能力和解决问题的能力。
六. 教学准备1.准备相关案例,用于引导学生分析实际问题。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:某商店同时销售电脑和打印机,电脑每台售价5000元,打印机每台售价1200元。
商店进行一次促销活动,购买电脑和打印机的顾客可以获得一定的优惠。
如果顾客购买了一台电脑和一台打印机,需要支付4800元;如果购买了两台打印机,需要支付3000元。
请问,电脑和打印机的优惠价格分别是多少?2.呈现(10分钟)教师引导学生分析问题,将实际问题转化为数学问题。
子洲三中“双主”高效课堂导学案2014-2015学年第一学期姓名:组名:使用时间2014年月日年级科目课题主备人备课方式负责人(签字)审核领导(签字)序号八(3)数学§第7节用二元一次方程组确定一次函数表达式乔智一、教学目标1、能利用二元一次方程组确定一次函数的表达式。
2、在利用一次函数图象求二元一次方程组近似解和利用二元一次方程组确定一次函数的表达式的过程中,体会探索数形结合研究数学问题的方法。
二、教学过程(一)、学习准备1、以一个二元一次方程的解为组成的图象与相应的的图象。
2、一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的;解一个二元一次方程组相当于确定相应。
3、二元一次方程组的解法:和;它们都是通过使方程组转化为一元一次方程。
(二)问题导入A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?你是怎样做的?与同伴进行交流.典型例题,探究一次函数解析式的确定例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式;(2)旅客最多可免费携带多少千克的行李?三、小结待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数的表达式的方法,叫待定系数法。
待定系数法求函数表达式的一般步骤是:⑴设——设出函数表达式(如y=kx+b(k≠0));⑵代——把已知条件代入表达式中得到关于k、b的方程组;⑶求——解方程组,求未知数k、b;⑷写——写出函数的表达式。
注意:待定系数法的步骤可总结为“、、、”四、本课知识:1、待定系数法:叫待定系数法。
子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期姓名:组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学§7、5、2三角形内角和定理(2)乔智一、学习目标:1.掌握三角形外角的两条性质;2.进一步熟悉和掌握证明的步骤、格式、方法、技巧.3.灵活运用三角形外角和的两条性质解决相关问题。
二、教学过程学新准备:1、三角形的内角和等于 。
2、△ABC 中,∠C=∠B=4∠A ,则∠A= ,∠B= ,∠C= 学习新知:阅读教材P181-182页,完成下列问题:① 三角形的外角定义:结合图形指明外角的特征有三: (1) 顶点在三角形的一个顶点上. (2) 一条边是三角形的 .(3) 另一条边是三角形某条边的 .② 两个推论及其应用 探讨三角形外角的性质:问题1:如图,△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,能由∠A 、∠B 求出∠ACD 吗?如果能,∠ACD 与∠A 、∠B 有什么关系?问题2:任意一个△ABC 的一个外角∠ACD 与∠A 、∠B 的大小会有什么关系呢?学生归纳得出:推论1: 三角形的一个外角等于 推论 2:三角形的一个外角大于 当堂训练:1、已知:∠BAF ,∠CBD ,∠ACE 是△ABC 的三个外角.求证:∠BAF+∠CBD+∠ACE=360°结论:三角形的外角和等于2、已知:如图,在△ABC 中,∠C=∠B ,AD 平分外角∠EAC.3、已知:如图,P 是△ABC 内一点,连接PB 、PC 。
求证:∠BP C >∠A批改日期 月 日CB AED PCBA。
第五章二元一次方程组
7.用二元一次方程组确定一次函数表达式目标:
1.理解作函数图像的方法与代数方法各自的特点.
2.掌握利用二元一次方程组确定一次函数的表达式.
3.进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.
4.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.
三、教学过程设计
本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.
第一环节复习引入
内容:(1)二元一次方程组与一次函数有何联系?
(2) 二元一次方程组有哪些解法?
意图:通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图像的交点坐标;反之,两个一次函数图像的交点也是它们所对应的二元一次方程组的解;所以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方法的多样性和知识之间是互相联系的,为后面利用作图像方法和代数方法解决议一议的问题作铺垫.
效果:回忆旧知,为本节课学习新的知识做铺垫.
第二环节设计实际问题情境,导入新课
内容:教材议一议
A ,
B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇?
目的:通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图像方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系. 通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。
效果:通过引例的分组探索,深刻理解图像方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.
第三环节 典型例题,探究一次函数解析式的确定
内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.
(1) 写出y 与x 之间的函数表达式;
(2) 旅客最多可免费携带多少千克的行李?
解:(1)设b kx y +=,根据题意,可得方程组
⎩
⎨⎧+=+=.9010,605b k b k 解该方程组,得⎪⎩⎪⎨⎧-==.
5,61b k 所以.56
1-=x y (2)当x =30时,y =0.
所以旅客最多可免费携带30千克的行李.
例 2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.
(1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;
(2) 若某用户十月份用水量为10吨,则应交水费
多少元?若该用户十一月份交了51元的水
费,则他该月用水多少吨?
解:(1)当0≤x ≤15时,设1y k x =,根据题意得
12715k =,解得195k = 所以当0≤x ≤15时,95y x =; 当x >15时,设2y k x b =+根据题意,可得方程
组
⎩⎨⎧+=+=.
2039,152722b k b k 解这个方程组,得21259k b ⎧=⎪⎨⎪=-⎩
所以当x >15时,1295
y x =
-. (2)当x =10时,代入95
y x =中,得y =18. 当y =51时,代入1295y x =-中,得x =25. 意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图像提供的信息,补充例2主要是承接第六章,一次函数图像的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.
效果:通过两个例题的讲解,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的
一般步骤与方法,使学生有知识迁移的基础.
第四环节 练习与提高
内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组 的解
答案:⎩
⎨⎧-=-=+.12,4y x y x
2. 在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.
答案:5.145.0+=x y 当x =4时,y =16.5
意图:通过练习1,强化函数与方程的关系,同时也是利用二元一次方程组确定一次函数解析式这一方法的训练,目的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的;练习2是配合例1出的一个练习,目的是强化本节知识的重点“利用二元一次方程组确定一次函数解析式” .
效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.
第五环节 课堂小结
内容:
一、函数与方程之间的关系.
二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.
三、掌握利用二元一次方程组求一次函数表达式的一般步骤:
1.用含字母的系数设出一次函数的表达式:b kx y +=()0≠k ;
2.将已知条件代入上述表达式中得k ,b 的二元一次方程组;
3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
意图和效果:让学生对本节课的内容作概括的归纳与整理.
第六环节布置作业:习题5·8
六、教学设计反思
(1)合理使用教材
事物之间是存在普遍联系的,研究二元一次方程组与一次函数之间的关系应证了辨证唯物主义的这一观点.同时利用二元一次方程组解决一次函数问题也是初中阶段数学学习的一个重要内容.教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.对于教材的这一方面的使用,教师应根据自己学生的特点,选择合理的方式去让学生理解不同方法去解决同一问题.
(2)如何突出重点、突破难点
本节课主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题.要让学生理解为什么要用二元一次方程组去求解一次函数的解析式的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解图像方法和代数方法解决问题的特点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,结合教材例题,在补充分段图形题,甚至表格题,让学生充分理解用方程的思想去解决函数问题.
3.需要改进的方面
根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对问题的理解水平和解决过程中的表述水平,关注的是学生对基本知识技能的掌握情况和应用二元一次方程组解决一次函数的解析式的相关问题的提高.教学中可通过学生对“做一做”的探究情况和学生对反馈练习的完成情况分析学生的认识状况和解决问题的意识和能力水平.对于学生的回答教师应给予恰当的评价和鼓励,帮助
学生认识自我,建立自信,发挥评价的教育功能.。