八年级数学确定一次函数的表达式
- 格式:ppt
- 大小:688.00 KB
- 文档页数:20
数学一次函数表达式
一、定义
1、数学一次函数表达式是指函数y=f(x)满足唯一定义的函数关系,该函数关系中满足y与x的指数相等,并且存在一个定系数k,可以通过解析函数来表达函数的性质。
2、数学一次函数表达式的基本形式为:y = kx + b,其中K为定系数,b为常数,可以通过替换k和b的值来改变函数的表达式。
二、图形
1、一次函数的图形为一条直线,表示两点之间的一对一映射关系,即给定一个点,可以唯一确定另一个点;
2、一次函数的图像受到定系数k和常数b的影响,当k为正数时,它指的是一条从左上角到右下角的斜率正的直线;当k为负数时,则表示一条从右上角到左下角的斜率负的直线;当k=0时,表示一条平行于x轴的直线;
三、求解
1、求解一次函数y=kx + b时,首先定义一次函数的系数k和常数b,然后分别代入x和y的值,将得到的关系式转化为方程,做出定义域,解出方程,就得到了函数的结果。
2、求解一次函数的方法还有图形法,即根据定义域的区间、取值范围画出函数的图形,从图形中可以快速确定函数的结果。
- 1 -。
确定一次函数的表达式——初中数学第三册教案一、教学目标1.让学生理解一次函数的定义和性质。
2.培养学生通过已知条件确定一次函数表达式的能力。
3.培养学生运用一次函数解决实际问题的能力。
二、教学内容1.一次函数的定义与性质2.通过已知条件确定一次函数表达式3.一次函数的实际应用三、教学重点与难点1.教学重点:一次函数的定义与性质,通过已知条件确定一次函数表达式。
2.教学难点:运用一次函数解决实际问题。
四、教学过程(一)导入1.通过复习一次函数的定义和性质,引导学生回顾相关知识。
2.提问:一次函数的一般形式是什么?一次函数的图像有何特点?(二)新课讲解1.讲解一次函数的定义与性质。
(1)一次函数的定义:形如y=kx+b(k≠0,k、b为常数)的函数称为一次函数。
(2)一次函数的性质:一次函数的图像是一条直线,且直线经过一、三象限(k>0)或二、四象限(k<0),与y轴的交点为(0,b)。
2.通过已知条件确定一次函数表达式。
(1)讲解方法:给定两个点,求解一次函数的解析式。
(2)示例:已知点A(1,2)和点B(3,4),求过这两点的一次函数表达式。
(3)引导学生运用待定系数法求解。
3.一次函数的实际应用。
(1)讲解方法:根据实际问题,列出一次函数表达式,求解实际问题。
(2)示例:某商品的原价为10元,售价为x元,若每增加1元,销售量减少2件。
求销售量y与售价x的函数关系式。
(3)引导学生分析实际问题,列出一次函数表达式,并求解。
(三)课堂练习1.已知点A(2,3)和点B(4,5),求过这两点的一次函数表达式。
2.某商品的原价为20元,售价为x元,若每增加1元,销售量减少3件。
求销售量y与售价x的函数关系式。
(四)课堂小结(五)课后作业(课后自主完成)1.已知点C(-1,-2)和点D(3,6),求过这两点的一次函数表达式。
2.某商品的原价为30元,售价为x元,若每增加1元,销售量减少4件。
求销售量y与售价x的函数关系式。
4 确定一次函数的表达式学习目标1. 了解两个条件确定一次函数。
2. 能根据所给信息(图像、表格、实际问题等)确定一次函数的表达式。
知识详解1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式。
(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx(k≠0)中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式。
②一次函数y=kx+b(k≠0)有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值。
用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b(k≠0)的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式。
2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数。
(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式。
【典型例题】例1:一次函数图象如图所示,求其解析式.【答案】设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【解析】利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k,b的值,从而确定表达式。
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》说课稿2一. 教材分析北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》这一节的内容是在学生已经掌握了二元一次方程组和一次函数的基础上进行学习的。
通过这一节的内容,学生需要能够理解用二元一次方程组来确定一次函数表达式的方法,并能够运用这种方法来解决实际问题。
在教材中,首先是通过一个具体的问题引出用二元一次方程组确定一次函数表达式的概念,然后通过例题和练习题来让学生理解和掌握这种方法。
教材还配备了一些相关的阅读材料,让学生能够了解一次函数在实际生活中的应用。
二. 学情分析在教学这一节的内容时,我考虑到我的学生已经掌握了二元一次方程组和一次函数的基本知识,所以他们对于用二元一次方程组确定一次函数表达式的概念和方法应该能够理解。
但是在实际操作中,他们可能会遇到一些困难,比如如何正确地列出二元一次方程组,如何解这个方程组等等。
三. 说教学目标通过这一节的学习,我希望学生能够达到以下目标:1.理解用二元一次方程组确定一次函数表达式的概念和方法。
2.能够正确地列出和解二元一次方程组,从而确定一次函数的表达式。
3.能够将一次函数应用到实际问题中,解决实际问题。
四. 说教学重难点在这一节的内容中,重点是让学生理解用二元一次方程组确定一次函数表达式的概念和方法,难点是让学生能够正确地列出和解二元一次方程组。
五. 说教学方法与手段在教学这一节的内容时,我会采用讲解法、示例法和练习法相结合的方法。
首先,我会通过讲解来让学生理解用二元一次方程组确定一次函数表达式的概念和方法。
然后,我会通过示例来让学生了解如何正确地列出和解二元一次方程组。
最后,我会通过练习来让学生巩固所学的知识。
六. 说教学过程1.引入:通过一个具体的问题引出用二元一次方程组确定一次函数表达式的概念。
2.讲解:讲解用二元一次方程组确定一次函数表达式的方法和步骤。
3.示例:通过一个示例来让学生了解如何正确地列出和解二元一次方程组。
5.7用二元一次方程组确定一次函数表达式学习目标:1.理解作函数图像的方法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.预习案课前导学: 阅读书本P126---P127尝试练习:1、叫做二元一次方程。
叫做二元一次方程组。
2、函数图象与x 轴的交点的纵坐标是,函数图象与y 轴的交点的横坐标是.3、一次函数的解析式为。
4、解二元一次方程组的方法: ,。
学习案阅读书本P126---P127 并讨论以下问题:A ,B 两地相距100千米,甲、乙两人骑自行车分别从A ,B 两地相向而行。
假设他们都保持匀速行驶,那么他们各自到A 地的距离s (千米)都是骑车时间 t (时)的一次函数。
1小时后乙距A 地80千米; 2小时后甲距A 地30千米。
问:经过多长时间两人相遇 ?解得s=7300,t=720 知识点拨:用待定系数法求一次函数的表达式的方法可归纳为“一设,二列,三解,四复原〞.具体的说明如下:一设:设出一次函数表达式的一般形式y =kx +b (k ≠0);二列:根据两点或图象上的两个点坐标列出关于k ,b 的二元一次方程组;三解:解这个方程组,求出k ,b 的值;四复原:将已求得的k ,b 的值再代入y =kx +b (k ≠0)中,从而得到所要求的一次函数的表达式. 像这样,先设出函数关系式,再根据所给条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法。
课内训练:某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量那么需购置行李票,且行李费y 〔元〕是行李质量x 〔kg 〕的一次函数.现知李明带了60 kg 的行李,交了行李费5元;张华带了90 kg 的行李,交了行李费10元.〔1〕写出y 与x 之间的函数表达式;〔2〕旅客最多可免费携带多少千克的行李?反应案根底训练1、函数y=2x+b 的图象经过点〔a, 7〕和〔-2,a 〕,求这个函数表达式。