【中考冲刺】点与圆的位置关系
- 格式:doc
- 大小:158.50 KB
- 文档页数:7
点、直线、圆和圆的位置关系(一)基础知识1.点与圆的三种位置关系如果圆O半径为r,已知点P到圆心的距离OP=d,则:点P在圆外⇔d>r点P在圆上⇔d=r点P在圆内⇔d<r2.过三点的圆(1)不在同一直线上的三个点确定一个圆(2)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.3.直线和圆的位置关系(1)定义:如果直线和圆没有公共点,直线和圆相离;直线和圆只有一个公共点,直线和圆相切;直线和圆有两个公共点,直线和圆相交.(2)等价条件:设圆半径为r,圆心到直线距离为d,则:直线和圆相离⇔d>r直线和圆相切⇔d=r直线和圆相交⇔d<r4.圆的切线(1)切线的判定方法①用定义判断②用等价条件判断③用定理判断:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)切线的性质定理:圆的切线垂直于过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线比必经过圆心(3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.5.两圆的位置关系设R、r(R>r)为两圆的半径,d为圆心距,则:两圆相离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r两圆内切⇔d=R-r两圆内含⇔d<R-r6.性质相交两圆的连心线,垂直平分公共弦,且平分两外公切线所夹的角.相切的两圆的连心线必过切点.7.公切线两圆的两条外公切线长相等;两条内公切线的长也相等.8.公切线的条数与两圆的位置关系两圆相离⇔4条公切线两圆外切⇔3条公切线两圆相交⇔2条公切线两圆内切⇔1条公切线两圆内含⇔0条公切线9.常见辅助线(1)连心线;(2)公共弦;(3)内、外公切线(二)经典例题1.如图,⊙O的直径AB=4,∠ABC=30 ,BC=4D是线段BC的中点,试判断点D与⊙O的位置关系,并说明理由2.(2009湖北荆门市)如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A 、E 、C 、F 四点共圆;(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND .3.(1)如图,在A B C 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E ,求证:DE 是⊙O 的切线.(2)已知:如图,O 为∠BAC 平分线上一点,OD ⊥AB 与D ,以O 为圆心,以OD 为半径作圆O ,求证:⊙O 与AC 相切4.ADFCM E BN5.(1)如图,A B C的内切圆与三边AB、BC、CA分别切于D、E、F,AB=11cm,BC=13cm,CA=14cm,求AD、BE、CF的长(2)在Rt A B C中,∠C=90 ,AC=3,BC=4,求A B C内切圆的半径.6.(1)已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是()A.外离B.外切C.相交D.内含(2)已知关于x的一元二次方程22R r x d-++=没有实数根,其中R、rx2()0分别为⊙O1,⊙O2的半径,d为两圆的圆心距,则⊙O1,⊙O2的位置关系()A.外离B.外切C.相交D.内切7.(三)历年中考试题1.(2011上海)2. (2006安徽)3.设⊙O 的半径为2,点P 到圆心O 的距离为m ,且满足方程2210x m -+-=有实数根,则定点P 的位置为( )A. 在⊙O 内B. 在⊙O 外C. 在⊙O 上D. 不在⊙O 外 4.(2011杭州)5.(2011日照)6.(2009年泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )A .外离B .外切C .相交D .内切7.(2009年益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( )8. (2009年湖州)已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是( )A .12O O =1B .12O O =5C .1<12O O <5D .12O O >59. (2009年遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于 A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )B . 3 1 0 2 4 5D .3 1 0 24 5A .1 0 C . 3 1 02 4 5A.4π-8B. 8π-16C.16π-16D. 16π-3210. (2010浙江绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切,且O 1O 2∥l 1( l 1为水平线),⊙O 1,⊙O 2的半径均为30 mm ,弧AB 的最低点到l 1的距离为30 mm ,公切线l 2与l 1间的距离为100 mm .则⊙O 的半径为( )A.70 mmB.80 mmC.85 mmD.100 mm 11.(2011舟山)12.(2009成都)如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.13.(2009年贵州省黔东南州)如图,⊙O 的半径为5,P 为圆内一点,P 点到圆心O 的距离为4,则过P 点的弦长的最小值是_____________第10题图AB单位:mml 1l 214.(2009年益阳市)如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm .15.(2009年南充)A B C △中,10cm 8cm 6cm A B A C B C ===,,,以点B 为圆心、6cm 为半径作B ⊙,则边AC 所在的直线与B ⊙的位置关系是 .16.(2010重庆市潼南县)如图,在矩形ABCD 中,AB=6 , BC=4, ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .17.(2010湖北孝感)P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合,则∠ACB 的度数为18.(2009襄樊市)已知1O 和2O 的半径分别为3cm 和2cm ,且121cm O O =,则1O 与2O 的位置关系为 .19.(2009年浙江省绍兴市)如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距A B 为5cm .如果A ⊙由图示位置沿直线A B 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________.20.(2009威海)如图,⊙O 1和⊙O 2的半径为1和3,连接O 1O 2,交⊙O 2于点P ,O 1O 2=8,若将⊙O 1绕点P 按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切_______次.21.(2009年崇左)如图,正方形A B C D 中,E 是B C 边上一点,以E 为圆心.E C 为半径的半圆与以A 为圆心,A B 为半径的圆弧外切,则sin E A B ∠的值为 .22.(2010 四川巴中)⊙O 1与⊙O 2的半径分别是方程27110x x -+=的两根,如果两圆外切,那么圆心距a 的值是 23.(2010福州)24.(2009柳州)如图10,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:C F B F =;(2)若2AD =,⊙O 的半径为3,求BC 的长.D C EB A25.(2010济宁)26.(2011福州)27.(2009安顺)28.(2011盐城)29.(2011菏泽)30.(2011十堰)31.(2010湖北十堰)如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C . (1)求证:O 2C ⊥O 1O 2;(2)证明:AB ·BC =2O 2B ·BO 1;(3)如果AB ·BC =12,O 2C =4,求AO 1的长.32.(2010湖北黄石)在△ABC 中,分别以AB 、BC 为直径⊙O 1、⊙O 2,交于另一点D. ⑴证明:交点D 必在AC 上;⑵如图甲,当⊙O 1与⊙O 2半径之比为4︰3,且DO 2与⊙O 1相切时,判断△ABC 的形状,并求tan ∠O 2DB 的值;⑶如图乙,当⊙O 1经过点O 2,AB 、DO 2的延长线交于E ,且BE =BD 时,求∠A 的度数.。
点与圆的位置关系一、圆的概念1、圆是轴对称图形,它的对称轴是 ,它有 条对称轴.2、平面上到一个定点的距离等于定长的所有点所成的图形是 ,这个定点是 .3、如图五,点C 是⊙O 的直径AB 所在直线上 一点.直线CE 与⊙O 交于点D 、E ,AO =BC ,如果 ∠BOD =27°,那么∠AOE = (度)4、已知:如图九,扇形∠AOB =45°,半径OB =2,矩形PQRS 的顶点P ,点S 在半径OA 上,点Q 在 半径OB 上,点R 在弧AB 上,连接OR . (1)当∠AOR =30°时,求OP 长; (2)设OP =x ,OS =y ,求y 与x 的函数关系式 及定义域;(3)当矩形PQRS 是正方形时,求OP 的长. 二、点与圆的位置关系5、点与圆的位置关系有三种情况: .6、如果一个圆的半径长为R ,点P 到圆心的距离为d ,那么点P 在圆外⇔d R ;点P 在圆上⇔d R ;点P 在圆内⇔d R .7、若点P (3,-2)在以原点O 为圆心的⊙O 上,则点(2,-3) ⊙O 上.(填“在”或“不在”).8、⊙M 的半径为10,点M 的坐标是(4,3),点N 的坐标是(2,-5),那么坐标点N在圆M 的 .9、有一个长与宽分别是4和3的矩形ABCD ,现以点A 为圆心作圆.若点B 、C 、D 中至少有一个点在圆内,且至少有一个点在圆外,那么⊙A 的半径r 的取值范围是 .10、如图一,在Rt △ABC 中,∠C =90°,点E 、F 分别为AB 、AC 边的中点,AC =4cm ,BC =3cm ,以点B 为圆心,BC 为半径,作⊙B ,则点F 和⊙B 的位置关系为……( )(A )点E 、F 都在⊙B 外; (B )点E 、F 都在⊙B 内; (C )点E 在⊙B 内,点F 在⊙B 外; (D )点E 在⊙B 外,点F 在⊙B 内. 三、圆的确定11、经过 的三点不能作圆.四、三角形的外接圆12、已知三角形三边长分别为5、12、13,则这个三角形的外心到顶点的距离是 .(图一)· · A B C E F (图九)O A BS P Q R (图一) O D C A E B13、下列说法中,正确的是……………………………………………………()(A)三角形三条角平分线的交点是三角形的外接圆圆心;(B)三角形三条高的交点是三角形的外接圆圆心;(C)三角形三条中线的交点是三角形的外接圆圆心;(D)三角形三条边的垂直平分线的交点是三角形的外接圆圆心.14、等腰三角形的外心一定在……………………………………………………()(A)腰上的高所在的直线上;(B)顶角的平分线上;(C)腰的中线上;(D)底边的垂直平分线上.15、边长为3、4的直角三角形外接圆直径为.16、在Rt△ABC中,如果斜边的长为6cm,那么这个三角形的垂心到外心的距离为.17、⊙O的半径是13,圆心O到直线l的距离OD=5,点P在直线l上,若PD=12.5,则点P在(填“圆外”、“圆上”或“圆内”).18、三角形外心具有的性质是……………………………………………………()(A)到三个顶点距离相等;(B)到三边距离相等;(C)外心必在形外;(D)到顶点的距离等于它到对边中点距离的两倍.19、下列各三角形中,外心一定在该三角形内的是……………………………()(A)等腰三角形;(B)锐角三角形;(C)直角三角形;(D)钝角三角形.。
考点20.与圆有关的位置关系及计算(精讲)【命题趋势】与圆相关的位置关系也是各地中考数学中的必考考点之一,主要内容包括点、直线与圆的位置关系、切线的性质和判定、三角形的内切圆和外接圆三块,在解答题中想必还会考查切线的性质和判定,和直角三角形结合的求线段长的问题和三角函数结合的求角度的问题等知识点综合,考查形式多样,多以动点、动图的形式给出,难度较大。
关键是掌握基础知识、基本方法,力争拿到全分。
【知识清单】1:点、直线与圆的位置关系类(☆☆)1)点和圆的位置关系:已知⊙O的半径为r,点P到圆心O的距离为d,则:图1图2(1)d<r⇔点在⊙O内,如图1;(2)d=r⇔点在⊙O上,如图2;(3)d>r⇔点在⊙O外,如图3.解题技巧:掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系。
2)直线和圆的位置关系:设⊙O的半径为r,圆心到直线l的距离为d,则直线和圆的位置关系如下:图1图2图3(1)d>r⇔相离,如图1;(2)d=r⇔相切,如图2;(3)d<r⇔相交,如图3。
2:切线的性质与判定(☆☆☆)1)切线的性质:(1)切线与圆只有一个公共点;(2)切线到圆心的距离等于圆的半径;(3)切线垂直于经过切点的半径。
解题技巧:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题。
2)切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法);(2)到圆心的距离等于半径的直线是圆的切线(数量关系法);(3)经过半径外端点并且垂直于这条半径的直线是圆的切线(判定定理法)。
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径。
3)切线长定理定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
圆和点之间有三种不同的位置关系:
1.点在圆内:当一个点位于圆的内部时,它与圆心的距离小于圆的半径。
2.点在圆上:当一个点位于圆的边界上时,它与圆心的距离等于圆的半径。
3.点在圆外:当一个点位于圆的外部时,它与圆心的距离大于圆的半径。
这些位置关系可以用来解决圆和点之间的几何问题,例如圆的内切圆,外接圆,圆的直径等等。
另外在判断圆和点之间位置关系时,我们还可以使用圆方程来判断。
圆方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r是圆的半径。
如果给定点(x0,y0) 满足这个方程,则说明该点在圆内,如果点到圆心的距离小于半径,则说明该点在圆上。
如果点到圆心的距离大于半径,则说明该点在圆外。
这种方法可以适用于所有的圆,不管圆的半径是否为0,也不管圆的半径是否为正。
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
与圆有关的位置关系基础知识知识点一、点与圆的位置关系1. 点和直线有三种位置关系:①点在圆外,即这个点到圆心的距离大于半径;②点在圆上,即这个点到圆心的距离等于半径;③点在圆内,即这个点到圆心的距离小于半径.2. 用数量关系表示位置关系:⊙O的半径为r,点P到圆心的距离OP=d,则有①点P在⊙O外d>r;②点P在⊙O上d=r;③点P在⊙O内d<r.知识点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1)相离:直线和圆没有公共点,这时我们说这条直线和圆相离.(2)相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)相交:直线和圆有两个公共点,这时我们说这条直线和圆相交.2、直线和圆的位置关系的性质与判断:设圆的半径为r,圆心到直线的距离为d,则:①直线和圆相离 d < r②直线和圆相切 d = r③直线和圆相交 d > r.知识点三、切线的判定定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.在应用定理时,必须先弄清两个条件:一是经过半径的外端;二是垂直于这条半径,两者缺一不可.2. 切线的判定方法有以下几种:①可以直接应用定义:直线与圆有一个公共点时,直线是圆的切线.②圆心到直线的距离等于半径的直线是圆的切线.③切线的判定定理.当已知条件中没有指出圆与直线的公共点时,常运用方法②进行判定;当已知条件中明确指出圆与直线有公共点时,常运用判定定理进行判定.证题方法“有点连半径,无点作垂线”.知识点四、切线的性质定理与切线长定理1. 切线的性质定理:圆的切线垂直于过切点的半径.当已知圆的切线时,常常连接过切点的半径,得两线垂直关系. 2.切线长定理(1)切线长的定义:过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等. 知识点五、三角形的外接圆与外心1. 三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆.2. 三角形的外心:三角形外接圆的圆心,是三角形三条边垂直平分线的交点.这个点叫做三角形的外心.3. 三角形外心的性质:①三角形的外心是外接圆的圆心,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的;但一个圆的内接三角形却有无数个,这些三角形的外心重合.知识点六、三角形的内切圆与内心1.三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.任意一个三角形都有且只有一个内切圆.但一个圆的外切三角形有无数个.2. 三角形的内心:三角形内切圆的圆心,是三角形三条角平分线的交点,到三角形三边的距离相等. 常见结论:(1)Rt △ABC 的三条边分别为:a 、b 、c (c 为斜边),则它的内切圆的半径2ab cr ; (2)△ABC 的周长为l ,面积为S ,其内切圆的半径为r ,则12S lr . 知识点七、正多边形与圆的关系1. 正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.2. 正多边形与圆的关系可以这样表述:把圆分成n (n≥3)等份,依次连接各分点所得的多边形就是这个圆的内接正n 边形.利用这一关系可以判定一个多边形是否是正多边形或作出一个正多边形.这个圆是这个正多边形的外接圆.正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做这个正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.3. 对称性:①正多边形的轴对称性:正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.②正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的中心是对称中心. ③正多边形的旋转对称性:正多边形都是旋转对称图形,最小的旋转角等于中心角. 典型例题解析例1. 已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为cm.例2. 已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么直线l与⊙O的位置关系是()A.相切B.相交C.相离或相切D.相切或相交例3. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是.例4. (朝阳)如图,△MBC中,∠B=90°,∠C=60°,MB=23,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.2B.3C.2 D.3例5. (葫芦岛)如图,边长为a的正六边形内有一边长为a的正三角形,则SS阴影空白()A.3 B.4 C.5 D.6例6. 如图:⊙I是Rt△ABC的内切圆,∠C=90°,AC=6,BC=8,则⊙I的半径是.例7. (锦州)已知,⊙O为∆ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE 的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.(2)过点O作OH⊥AB,垂足为H,例8. (来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O 于点E,且∠BAF=2∠CBF,CG⊥BF于点G.连接AE.(1) 直接写出AE与BC的位置关系;(2) 求证:△BCG∽△ACE ;(3) 若∠F=60°,GF=1,求⊙O得半径.巩固训练1. (青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥62. 在⊙O中,圆心O在坐标原点上,半径为210,点P的坐标为(4,5),那么点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定3. 已知正三角形外接圆半径为3,这个正三角形的边长是()A.2 B.3 C.4 D.54. (天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°△放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面5. 如下图,将ABC△,能够完全覆盖这个三角形的最小圆面的半径是________.去覆盖ABC6. (曲靖)如图,正六边形ABCDEF的边长为2,则对角线AE的长是.7. (莱芜)如图,正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE8. (广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6,若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次9. (日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx(k≠0)的图象经过圆心P,则k= .10. (德州)如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.11. (河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线P A、PB,切点分别为点A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.12. (抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A,B两点,连接AP 并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F,若点F的坐标为(0,1),点D的坐标为(6,-1).(1)求证:DC=FC.(2)判断⊙P与x轴的位置关系,并说明理由.(3)求直线AD的解析式.中考预测1. 在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=-1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<-1时,点B在圆A外D.当-1<a<3时,点B在圆A内2. 如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A =30°,则∠C的大小是( )A.30°B.45°C.60°D.40°3. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3, 0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.54. 如图,P为⊙O的直径BA延长线上一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD. 已知PC=PD=BC. 下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°. 其中正确的个数为()A. 4个B. 3个C. 2个D. 1个5. ⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.6. 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是.7. 已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC只有一个公共点,那么x的取值范围是.8. 如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)9. 如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形沿EC折叠,点B落在圆上的F点,则BE的长为.10. 如图,Rt△ABC中,∠ABC=90°.以AB的中点O为圆心、OA长为半径作半圆,交AC于点D.点E为BC的中点,连接DE.(1)求证:DE是该半圆的切线;(2)若∠BAC=30°,DE=2,求AD的长.11.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上,与⊙O 相切, BD ∥AC . (1)图中∠OCD =_______°,理由是_____________________; (2)⊙O 的半径为3,AC =4,求OD 的长.13. 阅读材料:已知,如图(1),在面积为S 的△ABC 中, BC =a ,AC =b , AB =c ,内切圆O 的半径为r.连接OA 、OB 、OC ,△ABC 被划分为三个小三角形. ∵r c b a r AB r AC r BC S S S S OAB OAC OBC )(21212121++=⋅+⋅+⋅=++=△△△.. ∴cb a Sr ++=2.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求21r r 的值.参考答案:巩固训练∵∠ODE=∠DEA=90°,∴OD∥AC,∴11313222 OCES CE DE∆=⨯⨯=⨯=.13. 【解析】 (1)连接OA 、OB 、OC 、OD. ∵AOD COD BOC AOB S S S S S △△△△+++=dr cr br ar 21212121+++=r d c b a )(21+++=。
中考数学专题复习第二十四讲与圆有关的位置关系【基础知识回顾】一、点与圆的位置关系:1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d则:点P在圆内<=> 点P在圆上<=>点P在圆外<=>2、过三点的圆:⑴过同一直线上三点作用,过三点,有且只有一个圆⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的⑶三角形外心的形成:三角形的交点,外心的性质:到相等【赵老师提醒:1、锐角三角形外心在三角形直角三角形的外心是锐角三角形的外心在三角形】一、直线与圆的位置关系:1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆直线叫圆的线,这的直线叫做圆的直线和圆没有公共点时,叫做直线和圆2、设Qo的半径为r,圆心o到直线l的距离为d,则:直线l与Qo相交<=>d r,直线l与Qo相切<=>d r直线l与Qo相离<=>d r3、切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【赵老师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【赵老师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】4、切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点到圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角5、三角形的内切圆:⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的⑵三角形内心的形成:是三角形的交点内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分【赵老师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】二、圆和圆的位置关系:圆和圆的位置关系有种,若Qo1半径为R,Qo2半径为r,圆心距外,则Qo1 与Qo2 外距<=> Qo1 与Qo2 外切<=>两圆相交<=> 两圆内切<=>两圆内含<=>【赵老师提醒:两圆相离无公共点包含和两种情况,两圆相切有唯一公共点包含和两种情况,注意题目中两种情况的考虑圆心同是两圆此时d= 】三、反证法:假设命题的结论,由此经过推理得出由矛盾判定所作的假设从而得到原命题成立,这种证明命题的方法叫反证法【赵老师提醒:反证法正题的关键是提出即假设所证结论的反面成立,择推理论证得出的矛盾可以与相矛盾,也可以与相矛盾,从而肯定原命题成立】【典型例题解析】考点一:切线的性质线,证明:AB=4PD.考点:切线的性质;等边三角形的判定与性质;含30度角的直角三角形;圆心角、弧、弦的关系;圆周角定理.专题:几何综合题.分析:(1)PO与BC的位置关系是平行;(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠COP=∠ACB,利用内错角相等两直线平行,可得出PO与BC平行;(3)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP 平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证.解答:解:(1)PO与BC的位置关系是PO∥BC;(2)(1)中的结论PO∥BC成立,理由为:由折叠可知:△APO≌△CPO,∴∠APO=∠CPO,又∵OA=OP,∴∠A=∠APO,∴∠A=∠CPO,又∵∠A与∠PCB都为PB所对的圆周角,∴∠A=∠PCB,∴∠CPO=∠PCB,对应训练1.(2012•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.(1)求证:AE平分∠CAB;(2)探求图中∠1与∠C的数量关系,并求当AE=EC时,tanC的值.考点:切线的性质;特殊角的三角函数值.专题:探究型.分析:(1)连接OE,则OE⊥BC,由于AB⊥BC,故可得出AB∥OE,进而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,进而可得出∠1=∠2;(2)由三角形外角的性质可知∠1+∠AEO=∠EOC,,因为∠1=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;当AE=CE时,∠1=∠C,再根据2∠1+∠C=90°即可得出∠C的度数,由特殊角的三角函数值得出tanC即可.解答:(1)证明:连接OE,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,∵设圆半径为r,则OP=OB=r,PA=5-r,∴AB2=OA2-OB2=52-r2,AC2=PC2-PA2=(25)2-(5-r)2,∴52-r2=(25)2-(5-r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,∵∠DPB=∠CPA,∴△DPB∽△CPA,∴CP AP PD BP=,∴2553 33BP-=+,解得:PB=655.考点二:切线的判定(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=35,又∵sin∠DAB=BD AB,∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BDsin45°=6×22=32,∵∠DAB=∠DCB∴tan∠DCB=BGCG=34,∴CG=42,∴CD=CG+DG=42+32=72,∴S△CBD=12CD•BG=7232212⨯=.点评:本题考查的是切线的判定定理,涉及到圆周角定理、解直角三角形及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.对应训练考点三:三角形的外接圆和内切圆例4 (2012•阜新)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.考点:三角形的外接圆与外心;圆周角定理;锐角三角函数的定义.专题:计算题.分析:作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出sin∠D= BCCD,代入求出CD即可.解答:解:作圆O的直径CD,连接BD,∵弧BC对的圆周角有∠A、∠D,∴∠D=∠A=60°,∵直径CD,A.r B.2r C.2r D.2r考点:三角形的内切圆与内心;矩形的判定;正方形的判定;切线长定理.专题:计算题.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=r,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.解答:解:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=r,∵⊙O切AB于D,切BC于E,切MN于P,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,故选C.点评:本题考查的知识点是矩形的判定、正方形的判定、三角形的内切圆和内心、切线长定理等,主要考查运用这些性质进行推理和计算的能力,题目比较好,难度也适中.对应训练4.(2012•台州)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;∴sin∠D=BCCD=45,∴CD=25 4,答:三角形ABC外接圆的直径是254.(2)解:连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=5,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A=45=BFAB,∴BF=4,在Rt△ABF中,由勾股定理得:AF=CF=3,AC=2AF=6,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴12AB×R+12BC×R+12AC×R=12AC×BF,即5×R+5×R+6×R=6×4,∴R=32,在△AIF中,AF=3,IF=32,由勾股定理得:AI=352.答:AI的长是352.点评:本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.考点三:圆与圆的位置关系例6(2012•毕节地区)第三十奥运会将于2012年7月27日在英国伦敦开幕,奥运会旗图案有五个圆环组成,如图也是一幅五环图案,在这个五个圆中,不存在的位置关系是()A.外离B.内切C.外切D.相交考点:圆与圆的位置关系.分析:根据两圆的位置关系易得到它们的位置关系有外切、外离、相交.解答:解:观察图形,五个等圆不可能内切,也不可能内含,并且有的两个圆只有一个公共点,即外切;有的两个圆没有公共点,即外离;有的两个圆有两个公共点,即相交.故选B.点评:本题考查了圆与圆的位置关系:若两圆的半径分别为R,r,圆心距为d,若d>R+r,两圆外离;若d=R+r,两圆外切;若R-r<d<R+r(R≥r),两圆相交;若d=R-r(R>r),两圆内切;若0≤d<R-r(R>r),两圆内含.对应训练6.(2012•德阳)在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有个.6.4考点:圆与圆的位置关系;坐标与图形性质;直线与圆的位置关系.分析:分两圆内切和两圆外切两种情况讨论即可得到⊙P的个数.解答:解:如图,满足条件的⊙P有4个,故答案为4.点评:本题考查了圆与圆的位置关系、坐标与图形的性质及直线与圆的知识,能充分考虑到分内切和外切是解决本题的关键.【聚焦山东中考】1.(2012•济南)已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.解答:解:∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O1O2=5,∴两圆外切.故选B.点评:此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).2.(2012•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别是4和6,O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别是4和6,O1O2=2,∴O1O2=6-4=2,∴⊙O1与⊙O2的位置关系是内切.故选A.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.3.(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.π B.2πC.3π D.5π考点:切线的性质;弧长的计算.分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,在利用弧长公式即可求出BC的长.解答:解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=120°,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴ BC 的长为nπr 180 =120×π×3 180 =2π,故选B.点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.4.(2012•潍坊)已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先解方程x2-7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵x2-7x+10=0,∴(x-2)(x-5)=0,∴x1=2,x2=5,即两圆半径r1、r2分别是2,5,∵2+5=7,两圆的圆心距为7,∴两圆的位置关系是外切.故选C.点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.5.(2012•济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.5.4848考点:切线的性质;勾股定理;矩形的性质.分析:首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.解答:解:取AC的中点O,过点O作MN∥EF,PQ∥EH,∵四边形EFGH是矩形,∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,∵AB∥EF,BC∥FG,∴AB∥MN∥GH,BC∥PQ∥FG,∴AL=BL,BK=CK,∴OL=12BC=12×8=4,OK=12AB=12×6=3,∵矩形EFGH的各边分别与半圆相切,∴PL=12AB=12×6=3,KN=12BC=12×8=4,在Rt△ABC中,AC= ,∴OM=OQ=12AC=5,∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,∴矩形EFGH的周长是:EF+FG+GH+EH=12+12+12+12=48.故答案为:48.点评:此题考查了切线的性质、矩形的性质,三角形中位线的性质以及勾股定理等知识.此题难度较大,解题的关键是掌握辅助线的作法,注意数形结合思想的应用.6.(2012•菏泽)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.6.23考点:切线的性质.专题:计算题.分析:由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC 的度数.解答:解:∵PA,PB是⊙O是切线,∴PA=PB,又∠P=46°,∴∠PAB=∠PBA=180-462=67°,又PA是⊙O是切线,AO为半径,∴OA⊥AP,∴∠OAP=90°,∴∠BAC=∠OAP-∠PAB=90°-67°=23°.故答案为:23。
考点九点和圆的位置关系
考点九:点和圆的位置关系
知识点一:点与圆的位置关系
1. 点在圆外:点到圆心的距离大于半径。
2. 点在圆上:点到圆心的距离等于半径。
3. 点在圆内:点到圆心的距离小于半径。
知识点二:过已知点作圆
1. 经过一个点的圆:以点外的任意一点为圆心,以点到圆心的距离为半径作圆。
2. 经过两点的圆:以线段中垂线上的任意一点为圆心,以线段长度为半径作圆。
3. 经过三点的圆:不在同一直线上的三个点确定一个圆,只能作一个圆。
作法是连接两线段并作它们的垂直平分线,两条垂直平分线相交于点,以该点为圆心,以线段长度为半径作圆。
知识点三:外接圆和外心
1. 外接圆:经过三角形的三个顶点的圆。
2. 外心:外接圆的圆心,是三角形三条边垂直平分线的交点。
2.19 与圆有关的位置关系一、点与圆的位置关系1、设圆的半径为r,点到圆心的距离为d,则(1)点在圆内⇔d r<;(2)点在圆上⇔d r=;(3)点在圆外⇔d r>;2、不在同一条直线上的三个点确定一个圆.3、经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆. 外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.二、直线与圆的位置关系1、设圆的半径为r,圆心到直线的距离为d,则(1)直线与圆相交(图1)⇔d r<⇔有两个交点;(2)直线与圆相切(图2)⇔d r=⇔有一个交点;(3)直线与圆相离(图3)⇔d r>⇔无交点;2、相关概念:(1)直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.(2)直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)直线和圆没有公共点,这时我们说这条直线和圆相离,(4)切线长:经过圆外一点的圆切线上,这点和圆的切点之间的线段的长,叫做这点到圆的切线长.(5)与三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.3、相关定理:知识回顾(1)切线的判定定理:经过半径外端且垂直于半径的直线是圆的切线. (2)切线的性质定理:圆的切线垂直于过切点的半径; 推论1:过圆心垂直于切线的直线必过切点; 推论2:过切点垂直于切线的直线必过圆心.以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个.(3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.三、圆和圆的位置关系1、设两圆的半径分别为R 、r (R >r ),圆心距为d ,则(1)两圆外离(图1)⇔d R r >+⇒无交点;(2)两圆外切(图2)⇔d R r =+⇒有一个交点;(3)两圆相交(图3)⇔d R r R r -<<+⇔有两个交点;(4)两圆内切(图4)⇔d R r =-⇒ 有一个交点;(5)两圆内含(图5)⇔d R r <-⇒无交点;2、相关概念:(1)如果两个圆没有公共点,那么这两个圆相离,分为外离(图1)和内含(图5)两种情况;(2)如果两个圆只有一个公共点,那么这两个圆相切,分为外切(图2)和内切(图4)两种情况;(3)如果两个圆有两个公共点,那么这两个圆相交.考点一:点与圆的位置关系考点精讲O的半径为5cm,点P到圆心O的距离OP=6cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【答案】A【解析】解:∵OP=6cm>5cm,∴点P在⊙O外.故选A.【点评】利用点与圆的位置关系的判断方法求解.变式跟进1如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是()A.点BB.点DC.点ED.点A【答案】D【解析】解:∵∠C=90°,AB=5,AC=4,∴BC=3,∵且点D,E分别是AC,AB的中点,∴CD=2,CE= 52,∴点B在⊙C上,∴点E在⊙C内,∵BC=3,∴点D在⊙C内,∴点A在⊙C外,故选:D.【点评】分别求出AC、CE、BC、CD的长,根据点与圆的位置关系的判断方法进行判断即可.考点二:确定圆的条件AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:A B=24cm,CD=8cm.例1例2(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.【答案】答案见解析【解析】(1)解:作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA 长为半径作圆O就是此残片所在的圆,如图.(2)解:连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,则根据勾股定理列方程:x2=122+(x﹣8)2,解得:x=13.答:圆的半径为13cm.【点评】(1)根据垂径定理作图即可。
【中考冲刺】点与圆的位置关系
一、选择题(共8小题)
2.(2011•武汉)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()
3.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD
5.(2002•连云港)直角坐标系中,圆心0′的坐标是(2,0),⊙O′的半径是4,则点P(﹣2,1)与⊙O′的位置关系
7.(2008•资阳)已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,
二、填空题(共1小题)(除非特别说明,请填准确值)
9.(2012•广元)平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为_________ cm.
参考答案与试题解析
一、选择题(共8小题)
2.(2011•武汉)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()
3.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD
r=PD=
PC==9
5.(2002•连云港)直角坐标系中,圆心0′的坐标是(2,0),⊙O′的半径是4,则点P(﹣2,1)与⊙O′的位置关系
7.(2008•资阳)已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,
==25
二、填空题(共1小题)(除非特别说明,请填准确值)
9.(2012•广元)平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为4或2cm.。