Phases of two coupled Luttinger liquids
- 格式:pdf
- 大小:123.25 KB
- 文档页数:11
广东化工2021年第5期· 62 · 第48卷总第439期双水相体系在化学反应工程中的应用研究进展林锦良,余贵山,李友凤*(遵义师范学院化学与化工学院,贵州遵义563000)[摘要]双水相体系作为化学反应介质具有操作方便、组分可调、绿色环保、连续操作和易于工艺放大等特点,引起了界面科学、分离提纯和反应工程等研究和应用领域的广泛研究。
基于上述优点,本文将对双水相体系在氢化反应、加氢酰胺化反应、耦联反应、聚合反应、CO2还原反应,无膜电池设计和新型纳米材料制备的应用分别进行综述,结合新材料开发、清洁能源利用和环境可持续性发展等研究进行分析,将为相关的研究领域提供参考和启示。
[关键词]双水相体系;化学反应;清洁能源;纳米材料[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2021)05-0062-03Advances of Aqueous Two Phase System (ATPS) Applications on ChemicalReaction EngineeringLin Jinliang, Yu Guishan, Li Youfeng*(Department of Chemistry and Chemical Engineering Zunyi Normal College, Zunyi 563000, China) Abstract: Aqueous Two Phase Systems (ATPS) has attracted tremendous attentions in the field of interracial science, separation and purification, and chemical reaction engineering due to their various advantages of facility, adjustable, sustainable, continuous operation and large scale industrial adaptive when they were employed as chemical reaction medium. The chemical reactions including hydrogenation, hydroamidation, oxidation, coupling reaction, polymerization, CO2 reduction etc. taken in the ATPS have been reviewed in the paper. Besides, the membrane-free cell and Ag particles has also been covered. Thereafter, the discussions on exploitation of clean energy and preparation of novel materials base on the ATPS have also been presented. All these efforts should provided a significance on the relevant researches.Keywords: Aqueous Two Phase System(ATPS);Chemical Reaction;Clean Energy;Nano Material双水相体系(ATPS)是将两种不同组分的水溶液以一定浓度混合而形成互不相溶的两相系统。
第42 卷第 12 期2023 年12 月Vol.42 No.121580~1587分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)均相合成多重选择性的新型两亲性C22高效液相色谱固定相范二乐1,蒋星宇1,张加栋1*,张明亮2,韩海峰1,2,张大兵1,2,陈义1,3(1.淮阴工学院矿盐资源深度利用技术国家地方联合工程研究中心,高端矿盐功能材料智能制备国际合作联合实验室,江苏淮安223003;2.江苏汉邦科技股份有限公司,江苏淮安223000;3.中国科学院化学研究所活体分析化学科学院重点实验室,北京100190)摘要:为解决高效液相色谱(HPLC)固定相非均相合成中产物多变和重现性差等问题,该文采用均相合成新方法,制备了既含有二十二碳烷基(C22)、又嵌入脲(U)和/或酰胺(A)强极性基团的两种新型两亲性色谱固定相C22-A和C22-A/U。
通过元素分析、核磁等手段,证实制备的两种新型固定相含有碳、氮元素,且碳氮元素比例符合理论值,表明酰胺和脲基极性基团成功键合到硅胶上。
通过对多种样品进行色谱分离分析,对两种新型固定相的载体残余硅羟基屏蔽作用、疏水选择性、形状选择性和亲水性等多种性质进行了考察,证实两种新型固定相不但具备作为反相液相色谱(RPLC)的性能,同时也具备亲水相互作用色谱(HILIC)的性能。
相较于C18固定相,C22-A和C22-A/U具有更好的形状选择性,双重嵌入的极性基团极大地降低了固定相硅羟基活性。
将C22-A和C22-A/U两种固定相应用于几种碱性化合物、雌醇(酮)类化合物的分离,C22固定相在一定程度上解决了传统C18固定相上碱性化合物分离拖尾严重或保留不足的问题,成功实现了对雌醇(酮)类化合物的分离。
关键词:色谱固定相;两亲性;均相合成;药物分析;液相色谱中图分类号:O657.7;R914.1文献标识码:A 文章编号:1004-4957(2023)12-1580-08 Homogeneous Synthesis of Novel Amphiphilic C22 StationaryPhases with Multiple SelectivityFAN Er-le1,JIANG Xing-yu1,ZHANG Jia-dong1*,ZHANG Ming-liang2,HAN Hai-feng1,2,ZHANG Da-bing1,2,CHEN Yi1,3(1.International Cooperation Joint Laboratory for Intelligent Preparation of High-end Functional Mineral SaltMaterials,National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization,Huaiyin Instituteof Technology,Huai’an 223003,China;2.Jiangsu Hanbon Science & Technology Co.Ltd.,Huai’an 223000,China;3.CAS Key Laboratory of Analytical Chemistry for Living Biosystems,Instituteof Chemistry,Chinese Academy of Sciences,Beijing 100190,China)Abstract:In order to solve the variable and irreproducible issues of heterogeneously synthesized chromatographic stationary phases,a new method of homogeneous synthesis was established and used to prepare two newly designed amphiphilic stationary phases,C22-A and C22-A/U,where C22 denotes a long docosyl terminal while U and A denote the strong polar insertions of urea and am⁃ide groups at the initial end,respectively. By the means of elemental analysis and nuclear magnetic spectrum,the two new stationary phases contain nitrogen elements,and the ratio of carbon and nitro⁃gen elements accords with the theoretical value,indicating that the amide and urea-based polar groups are successfully bonded to silica gel. Through the chromatographic separation and analysis of the standard sample and the real sample,the shielding effect on upported silicon hydroxyl,hydro⁃phobic selectivity,shape selectivity and hydrophilicity of the two new stationary phases were investi⁃gated.It is confirmed that the two new stationary phases have amphiphilic properties as reversed-phase liquid chromatography(RPLC)and hydrophilic interaction chromatography(HILIC).Com⁃pared with C18 stationary phases,C22-A and C22-A/U own better shape selectivity,and the dou⁃doi:10.19969/j.fxcsxb.23072402收稿日期:2023-07-24;修回日期:2023-09-15基金项目:国家自然科学基金重点项目(22134007)∗通讯作者:张加栋,博士,副教授,研究方向:化学与生物传感、色谱分离分析等,E-mail:jiadongzhang@1581第 12 期范二乐等:均相合成多重选择性的新型两亲性C22高效液相色谱固定相ble embedded polar groups greatly reduce the silica hydroxyl activity of the stationary phase. C22-A and C22-A/U were used for the separation of several alkaline compounds and estrone(ketone) com⁃pounds. The C22 stationary phase solved the problem of serious tailing or insufficient retention of al⁃kaline compounds in the traditional C18 alkyl stationary phase,and successfully realized the separa⁃tion of estrone(ketone) compounds.Key words:chromatographic stationary phase;amphiphilicity;homogeneous synthesis;drug analysis;liquid chromatography色谱固定相的性质决定了保留机理、分离效率以及适合的分离对象[1-2]。
谷悦,唐会鑫,李朔,等. QuEChERS-超高效液相色谱-三重四极杆串联质谱法测定水果制品和肉酱中10种四环素类抗生素[J].食品工业科技,2023,44(18):313−320. doi: 10.13386/j.issn1002-0306.2022100072GU Yue, TANG Huixin, LI Shuo, et al. Determination of 10 Tetracycline Antibiotics in Fruit Products and Meat Sauce by QuEChERS with Ultra Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(18): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100072· 分析检测 ·QuEChERS-超高效液相色谱-三重四极杆串联质谱法测定水果制品和肉酱中10种四环素类抗生素谷 悦1,唐会鑫1,李 朔2,马 玲2,王 可1,2, *,杨莉丽1(1.河北师范大学化学与材料科学学院,河北石家庄 050024;2.石家庄市疾病预防控制中心,石家庄市化学毒物检测及风险预警技术创新中心,河北石家庄 050011)摘 要:使用QuEChERS 结合超高效液相色谱-三重四极杆串联质谱(Ultra performance liquid chromatography-triple quadrupole tandem mass spectrometry ,UPLC-MS/MS ),建立检测水果制品和肉酱中10种四环素类抗生素的分析方法。
Luttinger 液體與一維量子傳輸文/栗育文本文簡介 Luttinger 液體最基本的一些概念。
我們從一個特殊的角度,亦即場論中的 chiral anomaly 的角度出發,闡述它和一維電子系統及量子傳輸的的關係。
I.為什麼要談Luttinger 液體本期物理雙月刊的主題是介紹介觀物理 (mesoscopic physics)。
所謂介觀物理的研究對象,指的是相位相干長度 (phase coherence length) 和物體尺寸大小相當的的系統,換言之,在討論這樣的系統時,量子力學的相位相干效應極為重要,而古典的傳輸理論則失去其適用性。
在這些系統中,有許多都具小尺寸,低維度的特性。
最典型的例子就是量子點 (quantum dot) 與量子線 (quantum wire)。
我在本文所要介紹的 Luttinger liquid 就是在研究相關系統時,一個常用的出發點。
在介紹 Luttinger 液體前,我先用簡短的篇幅回顧一下二十世紀凝態物理最重要的一塊基石--- Landau 的費米液體 (Fermi liquid) --- 的概念。
費米液體最重要的概念就是一個交互作用費米系統的基態以及低能激發態可以用所謂的佔據數 (occupation number)0,1k n = 來標記。
換言之,交互作用費米系統和自由費米系統的低能態間有一個一對一的對應關係。
用更精確的多體物理的語言來說, 費米液體的單粒子格林函數可以近似的寫為如下之形式:1(,)(,)1(Re (,))Im (,)near ,2()k k kF k kG k k k i k Z iE ωωεωωεωωεωτω=--∑=-+∑-∑≈-+其中1(,)k k E Z k ωωω==-∂∑是所謂的quasi-particleweight 。
從這個單粒子格林函數中,我們可以讀出所謂的單粒子譜(single particle spectral weight)()(),2Im , Lorentzian(), 1k k k A k G k Z E Z ωωω=-⨯-<這個單粒子譜的重要性在於說它是一個可以直接透過穿隧實驗(tunneling experiment)量測的物理量。
化学分析计量CHEMICAL ANALYSIS AND METERAGE第29卷,第5期2020年5月V ol. 29,No. 5Sept. 202072doi :10.3969/j.issn.1008–6145.2020.05.017高效液相色谱–电感耦合等离子体质谱法同步测定海水中的无机砷与六价铬黄键,张文国,施锦辉,曹海峰,王红卫,葛红梅,王金娟(南通海关综合技术中心,江苏南通 226004)摘要 建立高效液相色谱–电感耦合等离子体质谱法同步分离和测定海水中亚砷酸盐[As(Ⅲ)]、砷酸盐[As(Ⅴ)]和六价铬[Cr(Ⅵ)]的分析方法。
海水样品直接进样,以40 mmol /L pH 9的硝酸铵溶液作为流动相,使用Hamilton PRP–X100阴离子交换色谱柱对待测组分进行分离,实现了亚砷酸根、砷酸根和六价铬3种元素形态的分离与测定。
3种元素形态的线性范围分别为:As(Ⅲ),As(Ⅴ) 10~250 µg /L ;Cr(Ⅵ) 20~500 µg /L 。
检出限分别为3,3,6 µg /L ,加标回收率为85.1%~95.4%,相对标准偏差为1.0%~3.8%(n =6)。
该方法操作简便,可同步测定海水中砷和铬的元素形态。
关键词 砷;铬;元素形态;高效液相色谱–电感耦合等离子体质谱法;海水中图分类号:O657.7 文献标识码:A 文章编号:1008–6145(2020)05–0072–04Simultaneous analysis of inorganic arsenics and chromium(Ⅵ) in sea water by high performanceliquid chromatography–inductively coupled plasma mass spectrometryHUANG Jian, ZHANG Wenguo, SHI Jinhui, CAO Haifeng, WANG Hongwei, GE Hongmei, WANG Jinjuan(Nantong Customs Comprehensive Technology Center, Nantong 226004, China)Abstract A method for the simultaneous separation and determination of three species of As(Ⅲ), As(Ⅴ) and Cr(Ⅵ) in sea water was established by high performance liquid chromatography–inductively coupled plasma mass spectrometry. 40 mmol /L NH 4NO 3 solution was used as the mobile phase which was adjusted to pH 9, sea water samples were directly injected then separated by Hamilton PRP–X100 anion exchange chromatography. The three element species including As(Ⅲ), As(Ⅴ), Cr(Ⅵ) were successfully separated by the developed method. The three analytes showed good linearity in certain concentration range [As(Ⅲ)/As(Ⅴ): 10–250 µg /L ; Cr(Ⅵ): 20–500 µg /L ]. The detection limits (LODs) of the three analytes were 3, 3, 6 μg /L, respectively. The recoveries for the analytes were between 85.1% and 95.4% while the relative standard deviations were 1.0%–3.8%(n =6). This method is simple, and it provide a useful tool for the speciation analysis of arsenic and chrome in sea water.Keywords arsenic; chromium; elemental species; high performance liquid chromatography–inductively coupled plasma mass spectrometry; sea water随着工业化进程的发展,在工业中具有广泛用途的重金属通过各种方式排放至环境中,当重金属通过水源或是食物链进入人体并达到一定阈值时会对人体产生危害。
2004年第24卷第6期,579~584有机化学Chinese Journal of Organic Chem istryV ol.24,2004N o.6,579~584・综述与进展・液/液两相催化新进展温控非水液/液两相催化杨玉川 魏 莉 金子林ΞΞ(大连理工大学精细化工国家重点实验室 大连116012)摘要 温控非水液/液两相催化,是指一类由两种或多种液态有机物组成的催化反应体系,其特点是体系的相态变化可通过温度来调控,即体系在高温时相互混溶呈均相,低温不溶分成两相,催化剂和产物分别处于两相,从而为解决均相催化剂分离难的问题开拓了一个新方向,是液/液两相催化研究领域最引人注目的进展之一.首次以“温控”为主线将氟两相催化作为温控液/液两相催化的一个特定类型纳入“温控非水液/液两相催化”范畴,并与其它通过温度来调控的有机液/液两相和作者提出的温控相分离催化串在一起作一较为详细的评述.关键词 液/液两相催化,温控非水液/液两相催化,氟两相催化,温控相分离催化,临界溶解温度N e w Progress in Liquid/Liquid Biphasic C atalysis ThermoregulatedN on2aqueous Liquid/Liquid Biphasic C atalysisY ANG,Y u2Chuan WEI,Li J I N,Z i2LinΞ(State K ey Laboratory o f Fine Chemicals,Dalian Univer sity o f Technology,Dalian116012)Abstract Therm oregulated non2aqueous liquid/liquid biphasic catalysis system is a kind of catalysis system com posed of tw o or three organic s olvents,in which phase conversion can be regulated by tem perature.This system is miscible and hom ogeneous at high tem perature but converts into tw o phases at low tem perature.The catalysts and products are in different phases and can be separated conveniently by phase2separation,which s olves the difficult problem of catalyst separation in hom ogeneous catalysis.S o the therm oregulated non2aqueous liquid/liquid biphasic catalysis is one of the m ost attractive progresses in the research field of liquid/liquid biphasic catalysis.In this paper, fluorous biphasic catalysis,which is believed to be one special exam ple of the therm oregulated liquid/liquid biphasic catalysis,other therm oregulated organic liquid/liquid biphasic catalysis,and therm oregulated phase separable catalysis are described in detail.K eyw ords liquid/liquid biphasic catalysis,therm oregulated non2aqueous liquid/liquid biphasic catalysis,fluorous biphasic system,therm oregulated phase separable catalysis,critical s olution tem perature 绿色化学的基本目标之一是从源头上消除三废的产生,研究开发高效、高选择性的催化剂是实现这一目标的重要手段[1].均相络合催化具有反应条件温和、催化活性高、选择性好等优点,然而受到催化剂难以分离回收问题的困扰,制约了它的工业应用.迄今在重要的工业催化过程中,均相催化所占比例不足20%[2].20世纪60年代末出现的液/液两相催化为均相催化剂的分离回收提供了崖思路.1984年水/有机两相催化丙烯氢甲酰化合成丁醛(RCH/RP工艺)的成功工业应用[3],是液/液两相催化研究的一个历史性突破.然而,进一步的研究发现[4,5],水/有机两相催化的适用范围受底物水溶性的限制,因为水溶性极小的底物会使发生在水相的反应速率受扩散控制而明显下降[6].此外,水/有机两相催化的适用范围还受到诸如催化剂或配体对水的敏感性等因素的制约,这激起了人们对非水液/液两相体系的兴趣.始于20世纪90年代的非水液/液两相催化的研究在近10多年取得飞速发展,先后有氟两相[7]、室温离子液体[8,9]、有机液/ΞE2mail:jyjiang@Received April18,2003;revised July20,2003;accepted October22,2003.教育部博士点科研基金(N o.20020141004)资助项目.液两相[10]、超临界介质[11]、温控相分离[12]和离子液体/超临界流体[13]等液/液两相催化体系问世.其中,氟两相体系、某些有机液/液两相及温控相分离催化是基于体系的高温混溶、低温分相特性,实现“均相反应,两相分离”,从而兼具均相和多相催化的优点,既解决了催化剂分离回收的问题,又避免了水/有机两相催化的局限性.本文首次以“温控”为主线,将上述体系总括为“温控非水液/液两相催化”而予以介绍.温控液/液两相体系的构想是基于某些双组份或多组分溶剂体系可能存在临界溶解温度的特性.通常,极性不同的两种有机溶剂其互溶性随温度的变化而变化.对某些体系来说,室温下互不相溶的两种溶剂,当温度高于某一值时,呈完全互溶状态,这个温度即为临界溶解温度.1 氟两相催化20世纪90年代初,H orvath 等[7]基于全氟溶剂与多数有机溶剂在低温下相溶性有限而高温下互溶的特性,提出了“氟两相体系”(Flurous biphasic system ,F BS ),并成功地用于均相络合催化反应,开创了一条简单、有效的均相催化剂分离回收的新途径.全氟溶剂可以是全氟烷烃、全氟二烷基醚和全氟三烷基胺等[14].在低温下,它们与甲苯、四氢呋喃、丙酮等常见有机溶剂的互溶性很小,形成两相;而当温度升至某一值时,则可以混溶成一相.选择适当的配体形成的配合物催化剂,使反应时呈均相,反应结束冷却后分为两相:含催化剂的氟相和含产物的有机溶剂相,从而实现“均相反应,两相分离”的目的.图1 氟两相的基本原理Figure 1 G eneral principle of fluorous biphasic catalysis氟两相催化成功实施的关键是找到合适的配体,以使配合物催化剂在分相时能随氟溶剂与有机溶剂相完全分离,达到全部有效回收的目的.基于“相似相溶”的原理,H orvath 等[7]使用一类三氟代烷基膦配体(P[(CH 2)x (CF 2)y CF 3]3),研究发现[14,15],由于氟原子强烈的吸电子性,全氟烷基的引入将会改变配体的配位性能,从而影响配合物催化剂的催化活性,因此须在全氟烷基的前端留有一定数量的(CH 2)链段以削弱其吸电子效应.氟两相体系最先在高碳烯烃的氢甲酰化反应中取得成功[7,15,16],在体积比各半的甲苯/氟烃(C 6H 11CF 3)介质中,以P[CH 2CH 2(CF 2)5CF 3]3的Rh 配合物HRh (CO ){P[CH 2CH 22(CF 2)5CF 3]3}3为催化剂,在100℃,111MPa 的反应条件下,癸烯的转化率约90%,产物醛的选择性最高达98%,醛的正异比(n/i )为219.催化剂可通过简单相分离进行回收并循环使用,经九次循环使用,总T ON 数达到35000,每摩尔醛流失的铑仅为1118×10-6.进一步的研究表明,以ClRh (CO )2{P[CH 2CH 2(CF 2)5CF 3]3}3为催化剂的氟两相在加氢[17]、硼氢化[18]和氢硅化[19]的反应中也显示良好的效果.V ogt 等[20]将Ni (COD )2/HOOCCOCH 2CO [CF (CF )3OCF 22(CF 3)CF]3P 配合物用于氟两相体系中的乙烯齐聚,产物可以很容易地与催化剂氟相分开.由于O 2在氟溶剂中的溶解度很高[21]且多氟烃难氧化,加之大多数氧化产物是高极性的,难以溶于氟溶剂,因此,氟两相体系特别适用于氧化反应.P ozzi 等[22]以C o/四芳基卟啉配合物为催化剂,研究了烯烃在氟两相中的氧化反应.在底物/C o 物质量比为1000时,环烯烃的氧化收率达100%,氧化产物与含C o 配合物的氟相很容易分离.K lement 等[23]报道了Ni 络合物催化的醛氧化成羧酸和硫化物氧化为亚砜的反应,以及以多Ru/氟二酮配合物(Scheme 1),研究表明,反应后催化剂没有流失.Scheme 1氟烃作为反应介质具有化学稳定性好、热稳定性高、无毒等优点,是一种绿色溶剂.氟两相体系对均相催化剂分离回收的有效性,已被催化界所公认[24].然而,其工业应用前景还难以肯定,因为大量使用氟溶剂和含氟膦配体不但成本昂贵,而且尽管它们要在很高温度下才分解,但必须警惕破坏臭氧层的可能性问题.2 有机液/液两相催化有机液/液两相是指由两种在室温下互不相溶的有机溶剂组成的反应体系.应该说,氟两相也属于这一范畴,但由于氟两相在液/液两相催化中的特殊地位和突出的作用而自成一帜,所以本文于上节作了介绍.本节评述的有机液/液两相体系,通常都是由互不相溶的两种(或多种)极性和非极性有机溶剂组成,下面按不同溶剂体系分别叙述于下.2.1 低碳醇/烷烃两相体系众所周知,低碳醇与烷烃具有在常温下不溶,高温下混溶的性质,例如由甲醇和正庚烷组成的二元体系,其临界溶解温度为5110℃[25],高于此温度,两者可在任何比例下混085 有机化学V ol.24,2004溶.Bianchini 等[10]将低碳醇/烷烃两相体系用于苯乙烯的催化加氢和12己烯的氢甲酰化反应.成功的关键在于使用一种三膦配体NaO 3S (C 6H 4)CH 2C (CH 2PPh 2)3(缩写为Sulphos ),它的过渡金属配合物在甲醇等低碳醇中有很好的溶解性,而在室温下很难溶于烃中.研究表明,Sulphos 能与Rh ,cod (环辛二烯)形成一种两性离子络合物(Scheme 2).它在水、烃或醚中不溶,但溶于低碳醇(甲醇、乙醇),室温下,它在醇/烃两相体系中留在醇相中而与烃相分离;而当温度高于60℃时,体系是单相,从而实现“均相反应、两相分离”以回收催化剂的目的.用Sulphos/Rh/cod 作催化剂,在甲醇/庚烷两相进行的苯乙烯加氢反应可在p H 2=310MPa ,t =65℃,t =3h ,Rh/底物=1∶500(摩尔比)的条件下达到大于90%的转化率.Scheme 2在甲醇/异辛烷的两相体系中,以Sulphos/Rh/cod 为催化剂的12己烯氢甲酰化反应结果并不十分理想:在p =310MPa [CO/H 2=1/1(V /V )],t =80℃,t =5h ,底物/催化剂=100(摩尔比)的条件下,尽管底物已全部转化,但其中有24%变成已烷,而产物醛进一步加氢产生醇的含量高达59%.Bergbreiter 等[26~28]以固载在醇溶性的聚N 2异丙基酰胺高聚物上的膦配体PNIPAM 2NH (CH 2)3PPh 2(Scheme 3)与Rh 的配合[PNIPAM 2NH (CH 2)3PPh 2]3RhCl 为催化剂,研究了在含水10%的乙醇/正庚烷(体积比1∶1)体系中12十八碳烯的氢化反应,在70℃的反应温度下体系呈一相,反应速度与用经典W ilkinson 催化剂(PPh 3)3RhCl 接近.当反应结束冷却至室温时,体系分为两相,催化剂相经四次循环使用催化活性保持不变[26].在相同的体系中,以PNIPAM 的Pd (0)配合物PNIPAM 2NH (CH 2)3PPh 2]4Pd (0)为催化剂的碘苯与丙烯酸叔丁酯偶合(Heck 反应)也显示良好效果[27,28],反应在助催化剂CuI 及缚酸剂三乙胺存在下进行,在70℃下,经48h 反应完全,冷却至室温后体系呈两相,催化剂可循环使用.然而,这种溶于极性相的聚合物不适合于产物为极性的反应,这会导致与催化剂分离的困难.但这可以通过增强PNIPAM 中N 烷基的憎水性(如变异丁烯为十八烷基)使之变成溶于非极性相来解决[28].Scheme 32.2 碳酸乙(丙)烯酯/烷烃两相体系Behr [29,30]最先提出将碳酸乙(丙)烯酯作为极性溶剂用于温控液/液两相催化体系,并成功地用于下式102十一烯酸甲酯的氢硅化反应(Eq.1).在碳酸烯丙酯/环己烷(或庚烷)体系中,在无水H 2PtCl 6催化剂存在下,于80℃反应2min ,反应转化率即达80%,选择性为98%.它不但比用W ilkinson 催化剂[RhCl 3(PPh )3]在均相体系中进行的反应条件(t =180℃)更温和,反应速度(24h )更快[31],而且催化剂易分离回收,经5次循环使用,催化活性没有太大变化(表1).表1 三乙氧基硅烷和102十一烯酸甲酯氢硅化反应中催化剂的循环T able 1 Catalyst recycling in the hydrosilylation of methylundec 2102enoate with triethoxysilane aRun C onversion/%Y ield/%1777727574381614726757170aC onditions :t =40℃,t =2h ,s olvent :cyclohexane/propylene carbonate ,H 2PtCl 6∶reactants =1∶100(m olar ratio ),stoichiometric am ounts of hydrosilane and fatty acid com pound [30].Behr [32]在对碳酸乙(丙)烯酯/正庚烷体系相平衡的研究时发现,加入少量半极性的醚(如二氧六环,THF 等),可以增加碳酸乙(丙)烯酸与正庚烷的互溶性,以适应更宽的操作条件(温度、溶剂比).图2示出碳酸乙(丙)烯酸/正庚烷/二氧六环三组份体系在25,50和70℃下的相平衡实验数据.在碳酸丙烯酯/二氧六环/葵花油酸(甲酯)三组份体系中进行的Rh 催化的葵花油酸(甲酯)n/i 与乙烯共二聚的反应,可在温和条件下(t <70℃,p =30MPa ,t =2h )得到98%的转化率,反应是在均相中进行,室温下催化剂可以方便地分离并循环使用[33].2.3 聚乙二醇/烷烃两相体系在近年的文献中,有关以聚乙二醇(PEG )作极性相的液/液两相催化也见报道.PEG 是泛指分子量200~20000的聚乙二醇,其中200~800是液体,1000以上为低熔点(<50℃)蜡状物,它们在有机溶剂的溶解度早有详细记载[34],利用其与某些有机溶剂(如苯、甲苯)或某些多组份溶剂体系存在室温分相、高温互溶的特性,Loh 等[35]研究了由分子量为185N o.6杨玉川等:液/液两相催化新进展温控非水液/液两相催化 图2 碳酸乙(丙)烯酸/正庚烷/二氧六环三组份体系在25,50和70℃下的相平衡Figure 2 Phase equilibria at 25,50and 70℃of the systems [propylene carbonate (PC )/heptane/dioxane ][32]A :m onophase ;B :biphase3350的PEG,CH 2Cl 2和正庚烷组成的三元体系,得到如图3所示的相图.图3 聚乙二醇、二氯甲烷和正庚烷三组分体系在25℃下的相平衡Figure 3 Phase equilibria at 25℃of the PE O/heptane/dichloro 2methane system [35]A :m onophase ;B :biphase利用上述三组份体系可通过组成的调配产生低温分相,高温互溶的特性,Loh 等[36]研究了在该体系中用RhCl 2(PPh 3)3和阳离子络合物[Rh (cod )(dppe )]PF 6(dppe :1,22双二苯基膦-乙烷)作催化剂的12己烯加氢.选择PEO 23350∶CH 2Cl 2∶庚烷=1915∶5516∶2819(摩尔分数,PEG 的摩尔数按乙二醇单元计)三元体系(相转变温度为9℃).研究表明,当以RhCl (PPh 3)3为催化剂时,催化剂回收效果不理想,有15%的铑流失到上层烃相,只是用液N 2冷却至-40℃~-80℃时,铑流失才明显降低,但催化剂相在循环使用三次后活性已明显下降.为了克服W ilkinson 催化剂RhCl (PPh 3)3的流失问题,改用阴离子型铑络合物[Rh (cod )(dppe )]PF 6作催化剂,但它在含CH 2Cl 2的三元体系中的催化活性不佳,而当以甲醇代替CH 2Cl 2作极性溶剂用于由PEG 、庚烷组成三元体系时,催活性虽有明显提高,但冷至室温分相后,上层非极性相的体积太小,影响了产物的分离效果.但可通过补加庚烷达到满意的分离,铑的流失率仅为01083%,在一由甲醇(14m L ),PEG (316g )和正庚烷(14m L )组成的体系中,加入010335mm ol Rh 配合物及8101mm ol 12已烯,在室温和p H 2=110MPa 下,经1h 活化后,加氢可在15min 完成,经5次循环使用,催化活性和选择性均保持不变.将PEG 加入M oO 2(acac )2/T BHP (连二磷酸四丁酯)/叔丁醇催化体系,可使顺-环辛烯环氧化反应的催化剂分离回收得以简化[37],它需要在反应后加入相当量的正庚烷使体系分为两相,催化剂处于PEG 相.此外,用非质子极性溶剂DM A (二甲基乙酰胺)或DMF (二甲基甲酰胺)代替质子溶剂水、醇的液/液两相体系的研究也有文献记载.Bergbreiter 等[27]研究了在DM A 与正庚烷体系(在室温下不溶,高于63℃时可以混溶)中,以[PNIPAM 2NH (CH 2)3PPh 2]4Pd (0)为催化剂的碘苯与苯乙烯的Heck 反应,于90℃经48h 反应转化率达到100%,反21,2二苯乙烯收率达99%,催化剂循环两次,收率仍保持98%以上.K aneda 等[38]在DMF/正庚烷体系(在室温下不溶,高于75℃时可以混溶)中实现了膦/Pd 催化下的温控液/液两相催化反式乙酸肉桂酯和二丁基胺的烯丙型胺化反应,经三次循环反应收率仍高达99%.3 温控相分离催化本文作者基于被称作温控相转移配体的非离子表面活性膦配体[39~43]与有机溶剂可能存在临界溶解温度(CST )[44]的设想,提出如图4所示的温控相分离液/液两相催化过程构思[12].温控相分离催化过程的特点是由温控配体与Rh ,Ru 形成的粘稠状液体催化剂在低于临界溶解温度时不溶于有机溶剂而自成一相,当反应温度升至临界溶解温度以上时,催化剂溶于有机相而呈一均相体系;当反应结束冷却至低于临界溶解温度时,催化剂又从产物相析出,体系恢复两相,可以通过倾析方便地将产物与催化剂相分离.实验证实[45],温控配体P [p 2C 6H 4O (CH 2CH 2O )n H ]3(PETPP ,n =6~12,N =3n )在甲苯中存在如图5所示的温度溶解度曲线.图5曲线显示,PETPP 在甲苯中于28℃左右出现临界溶解温度.利用PETPP 在甲苯中的溶解度特性,金子林、王艳华等研究了在甲苯溶液中以PETPP/Rh 配合物为催化剂的高碳烯烃氢甲酰化反应[12,45~48]和以PETPP/Ru 配合物的烯烃加氢反应[49,50].表2中列出PETPP/Rh 催化的高碳烯烃氢甲酰化反应结果.285 有机化学V ol.24,2004图4 温控相分离催化的基本原理Figure 4 G eneral principle of therm oregulated phase 2separable catalysis (TPSC )S:substrate ;Os :organic s olvent ;C :catalyst ;P :product [12]表2 PETPP/Rh 配合物催化的高碳烯烃氢甲酰化反应T able 2 Hydroformylation of different higher olefins catalyzed by PETPP/Rh com plexOlefine T em perature/℃Syngas pressure a /MPaReaction time/hC onversion/%Aldehyde yield/%Reference Cyclohexene 130 5.0798.498.4[12]12Hexene 100 4.0695.595.5[45]12Octene 100 4.0696.592.6[45]12D odecene 130 4.0695.893.7[45]Diis obutene 130 6.01093.182.5[46]T ripropene 1306.01076.372.1[47] a H 2/CO =1/1(V /V ).图5 PETPP (N =18)在甲苯中的溶解度曲线Figure 5 S olubility of PETPP (N =18)in toluene [45]实验表明,反应中存在温控相分离的过程,即高温时互溶,低温时完全分相,显示出“均相反应,两相分离”的特色.反应结束冷却后上层为含产物的甲苯相,下层是粘稠的催化剂相,可以很方便地通过倾析将产物与催化剂分开并循环使用,催化剂循环使用活性的考察结果表明,对高碳直链端烯烃,经十次循环后,活性才呈现较明显的下降趋势.温控相转移催化用于烯烃加氢也取得很好的效果,以Ru 3(CO )12/PETPP 配合物为催化剂的苯乙烯加氢结果表明[49,50]:在t =90℃,p H 2=210MPa ,t =3h 的反应条件下,苯乙烯的转化率为100%,乙苯收率9915%.催化剂经十次循环,催化活性几乎没有下降.最近,G ladysz 等[51,52]利用含氟膦配体在正辛烷中高温(65℃)溶解、低温(-30℃)析出的性质,实现了温控相分离催化.这种无需氟溶剂的温控两相催化中,催化剂是固体的形式析出.4 结语与展望以“氟两相体系”为先导的温控非水液/液两相催化研究,经十余年的发展,已成为继水/有机两相催化后两相催化领域的一个新亮点.它不但弥补了水/有机两相催化应用范围受底物水溶性限制的问题,而且大大拓宽了配体和催化剂的选择范围,可以使用对水敏感的配体、配合物,开创了“均相反应、两相分离”的新领域,是“反应-分离”一体化的一条新途径,为解决均相催化过程催化剂难以分离回收提供了一条新途径.虽然由于经济方面的因素,迄今仍未见温控非水液/液两相催化在工业中应用的实例,但可以预期,通过寻找更经济、高效的两相溶剂体系及与之相匹配的催化剂,必将在工业应用,特别是精细化学品的合成中取得突破.R eferences1Baker ,R.T.;Tumas ,W.Science 1999,284,1477.2C ornils , B.;Hermann ,W. A.Aqueous 2phase Organometallic Catalysis ,Willey 2VCH ,Weinheim ,1998,p. 4.3K untz ,K. E.CHEMTECH 1987,17,570.4Bahrmann ,H.;C ornils , B.;K onkol ,W.;Lipps ,W.DE 3420491,1984[Chem.Abstr.1986,105,4247].5Jin ,Z.2L.;Mei ,J.2T.;Jiang ,J.2Y.Chem.J.Chin.Univ .385N o.6杨玉川等:液/液两相催化新进展温控非水液/液两相催化 2000,21,941(in Chinese).(金子林,梅建庭,蒋景阳,高等学校化学学报,2000,21, 941.)6Bahmann,H.;Bogdam ovic,S.In Aqueous2phase Organometallic Catalysis,Eds.:C ormils,B.;Herrmann,W.A.,Willey2VCH, Weinheim,1998,pp.306~321.7H orvath,I.T.;Rabai,J.Science1994,266,72.8Chauvi,Y.;Olivier,H.CHEMTECH1995,25,26.9Wasserscheid,P.;K eim,W.Angew.Chem.,Int.Ed.2000, 39,3772.10Bianchini,C.;Frediani,P.;Sernan,anometallics1995, 14,5458.11K och, D.;Leitner,W.J.Am.Chem.Soc.1998,120, 13398.12Wang,Y.;Jiang,J.;Wu,X.;Cheng, F.;Jin,Z.Catal.Lett.2002,79,55.13Fuchen,L.;Abrams,M.B.;Baker,R.T.;Tumas,W.Chem.Commun.2001,433.14H orvath,I.T.Acc.Chem.Res.1998,31,641.15H orvath,I.T.;K iss,G.;C ook,R. A.;Boad,J. E.;S tevens,P. A.;Rabai,J.;M ozeleski,E.J.J.Am.Chem.Soc.1998,120,3133.16H orvath,I.T.;Rabai,5463082,1995[Chem.Abstr.1995,123,87349].17Ruther ford,D.;Juliette,J.J.J.;R ocaboy,C.;H orvath,I.T.;G ladysz,J.A.Catal.Today1998,42,381.18Juliette,J.J.J.;H orvath,I.T.;G ladysz,J. A.Angew.Chem.,Int.Ed.Engl.1997,36,1610.19Juliette,J.J.J.;G ladysz,J. A.;H orvath,I.T.10th International Symposium on Homogeneous Catalysis,Princeton,NI, 1996,p.A59.20V ogt,M.Ph.D.Dissertation,TH Aachen,G ermany,1991.21Clark,L. C.;G ollan,F.Science1966,152,1755.22P ozzi,G.;M ontanari,S.;Quici,mun.1997,69.23K lement,I.;Luetjens,J.;K nochel,P.Angew.Chem.,Int.Ed.Engl.1997,36,1454.24C ornils,B.Angew.Chem.,Int.Ed.Engl.1997,36,2057. 25Francis,A.W.Critical Solution Temperatures,Washington,ACS, 1962,p.115.26Bergbreiter,D. E.;Liu,Y.S.;Osburn,P.L.J.Am.Chem.Soc.1998,120,4250.27Bergbreiter,D. E.;Osburn,P.L.;Wils on,A.;S ink,E.M.J.Am.Chem.Soc.2000,122,9058.28Bergbreiter, D. E.;Osburn,P.L.;Frels,J. D.J.Am.Chem.Soc.2001,123,11105.29Behr,A.;T oslu,N.Chem.Eng.Technol.2000,23,123. 30Behr,A.;Naendrup.;Obst,D.Eur.J.Lipid Sci.Technol.2002,104,161.31Delpech, F.;Asgatay,S.;Castel,A.;Riviere,P.;Baudet, R.M.;Amin2Alami, A.;Manriquez,anomet.Chem.2001,15,626.32Behr,A.;Fangewisch,C.Chem.Eng.Technol.2002,25,143.33Behr, A.;Fangewisch, C.;Naendrup, F.12th International Symposium on Homogeneous Catalysis,S tockholm,Aug.27/sept.1,2000.34Bao,Q.2N.;Y an,R.2X.In Water2soluble Polymer,Eds.:Y an, R.2X.,Chemical Industry Press,Beijing,2000,pp.225~226 (in Chinese).(鲍其鼐,严瑞 ,水溶性高分子,化学工业出版社,北京, 2000,pp.225~226.)35Da S ilva,L.H.M.;Loh,mun.1998,787. 36Da R osa,R.G.;Martinelli,L.;Da S ilva,L.H.M.;Loh,W.mun.2000,33.37Dallmann,K.;Bu ffeu,R.;Loh,W.J.Mol.Catal.2002, 178,43.38M izugaki,T.;Murata,M.;O oe,M.;Ebitani,K.;K aneda,K.mun.2002,52.39Jin,Z.L.;Zheng,X.L.;Fell,B.J.Mol.Catal.1997, 116,55.40Chen,R. F.;Liu,X.Z.;Jin,anomet.Chem.1998,571,201.41Zheng,X.2L.;Chen,R.2F.;Jin,Z.2L.Chem.J.Chin.Univ.1998,19,574(in Chinese).(郑晓来,陈瑞芳,金子林,高等学校化学学报,1998,19, 574.)42Jiang,J.Y.;Wang,Y.H.;Liu,C.Han,F.S.;Jin,Z.L.J.Mol.Catal.1999,147,131.43Jin,Z.2L.;Mei,J.2T.;Jiang,J.2Y.Chem.J.Chin.Univ.2000,21,941(in Chinese).(金子林,梅建庭,蒋景阳,高等学校化学学报,2000,21, 941.)44Martin,K.K.;Pink,R. C.J.Chem.Soc.1948,1750.45Wang,Y.H.;Jiang,J.Y.;Zhang,R.;Liu,X.Z.;Jin,Z.L.J.Mol.Catal.2000,157,111.46Wang,Y.H.;Jiang,J.Y.;Cheng,F.;Jin,Z.L.J.Mol.Catal.2002,188,79.47Wu,X.2W.;Wang,Y.2H.;Zhao,Y.2L.;Jin,Z.2L.Chin.J.Catal.2000,23,388(in Chinese).(吴小伟,王艳华,赵玉亮,金子林,催化学报,2000,23, 388.)48Wu,X.2W.;Wang,Y.2H.;Cheng,F.;Jin,Z.2L.Chem.J.Chin.Univ.2002,23,1939(in Chinese).(吴小伟,王艳华,程 ,金子林,高等学校化学学报, 2002,23,1939.)49Wang,Y.H.;Wu,X.W.;Cheng, F.;Jin,Z.L.Chin.Chem.Lett.2002,13,1011.50Wang,Y.H.;Wu,X.W.;Cheng,F.;Jin,Z.L.J.Mol.Catal.2003,195,133.51Wende,M.;Meier,R.;G ladysz,J. A.J.Am.Chem.Soc.2001,123,11490.52Wende,M.;G ladysz,J. A.J.Am.Chem.Soc.2003,125, 5861.(Y0304186 ZH AO,X.J.;LU,Z.S.)485 有机化学V ol.24,2004CHINESE JOURNAL OF Volume 24 Number 6ORGANIC CHEMISTRYJ une 2004(YOUJ I HUA XU E )CON TEN TSN ew Progress in Liquid/Liquid Biph asic C atal 2ysisThermoregulated N on 2Aqueous Liq 2uid/Liquid Biph asic C atalysisY ANG,Y u 2Chuan ;WEI ,Li ;J I N ,Z i 2Lin Ξ.Chem .2004,24(6),579Using special therm oregulated non 2aqueous liquid/liquid biphasic catalysis systems ,the reac 2tion is carried out in a single phase by repression of the miscibility gap at reaction tem pera 2ture.Decreasing the tem perature to room tem perature a separation into tw o phases takes place and easy catalyst/product separation is possible.Application of Pentaerythritol and I ts Deriva 2tives in the Synthesis of Dendrimers T ANG,X in 2De ;ZH ANG,Qi 2Zhen Ξ;ZH OU ,Qi 2Feng.Chem .2004,24(6),585Dendrimers based on pentaerythritol or its derivatives have symmetrical structure ,special properties ,and potential application.F our kinds of pentaerythritol 2based dendrimers includ 2ing polyether dendrimers ,polyamide dendrimers ,polyamine dendrimers ,and organometallic dendrimers are reviewed.Cycloisomerization of 1,62E nynes C atalyzed by T ransition MetalsT ONG,X iao 2Feng ;ZH ANG,Zhao 2G uo Ξ.Chem .2004,24(6),591The behavior of 1,62enynes in the presence of transition metal catalysts has been extensively studied.1,62Enyne cyclois omerization reactions catalyzed by transition metals and three dif 2ferent reaction pathways ,namely cyclometalation ,halorhodation and π2allyl rhodium route ,divided according to the reaction mechanism are summarized and discussed.N ew Development of the Solvent 2Free Mich ael AdditionLU ,G ang ;ZH ANG,Qian ;X U ,Y ou 2Jun Ξ.Chem .2004,24(6),600Due to its excellent yield ,high selectivity ,convenient operation and cost 2effectiveness ,the echo 2friendly reaction of the s olvent 2free M ichael addition has been extensively explored re 2cently.S ome new synthetic methods have been achieved by em ploying various highly efficient catalysts ,which will definitely broaden the application of this reaction.Recent development of s olvent 2free M ichael addition is reviewed in this paper.Many success ful instances are dis 2cussed in detail ,which are prom pted by basic ,acidic catalysts or even under catalyst 2freeconditions.。
专利名称:Method for cleaning semiconductorstructures using hydrocarbon and solventsin a repetitive vapor phase/liquid phasesequence发明人:Sudipto Ranendra Roy,Yi Xu,SimonChooi,Yakub Aliyu,Mei Sheng Zhou,JohnLeonard Sudijono,Paul Kwok KeungHo,Subhash Gupta申请号:US09764244申请日:20010119公开号:US20020096190A1公开日:20020725专利内容由知识产权出版社提供专利附图:摘要:A method for cleaning a semiconductor structure using vapor phase condensation with a thermally vaporized cleaning agent, a hydrocarbon vaporized by pressure variation, or a combination of the two. In the thermally vaporized cleaning agent process, a semiconductor structure is lowered into a vapor blanket in a thermal gradient cleaning chamber at atmospheric pressure formed by heating a liquid cleaning agent below the vapor blanket and cooling the liquid cleaning agent above the vapor blanket causing it to condense and return to the bottom of the thermal gradient cleaning chamber. The semiconductor structure is then raised above the vapor blanket and the cleaning agent condenses on all of the surfaces of the semiconductor structure removing contaminants and is returned to the bottom of the chamber by gravity. In the pressurized hydrocarbon process, a semiconductor structure is placed into a variable pressure cleaning chamber, having a piston which changes the pressure by reducing or increasing the volume of the chamber. The semiconductor structure first exposed to the hydrocarbon in vapor phase, then the piston is lowered to condense the hydrocarbon. Asemiconductor structure can be cleaned by either or both of these processes byrepetitive vaporization/condensation cycles.申请人:CHARTERED SEMICONDUCTOR MANUFACTURING INC.更多信息请下载全文后查看。
银川海派英语【SAT2化学】备考知识点之三种状态Liquids Solids and Phase Changes 液体,固体和状态变化Liquids(液体) Importance of Intermolecular Interaction(分子间相互作用的重要性)Kinetics of Liquids(液体动力学)Viscosity(粘性)Surface Tension(表面张力)Capillary Action(毛细作用)Phase Equilibrium(平衡状态)Boiling Point(沸点)Critical Temperature and Pressure(临界温度和临界压力)Solids(固体) Phase Diagrams(状态图表)Water(水)History of Water(水的历史)Purification of Water(水净化)Composition of Water(水的构成)Properties and Uses of Water(水的性质和使用)W ater’s Reactions with Anhydrides(水和碱性氧化物的反应)Polarity and Hydrogen Bonding(极性和氢键)Solubility(可溶性)General Rules of Solubility(可溶性的基本原则)Factors That Affect Rate of Solubility(影响溶解率的因素)Summary of Types of Solutes and Relationships of Type to Solubility(溶液类型和类型之间关系的总结)Water Solutions(水处理)Continuum of Water Mixtures(水混合溶剂)exxxxxpressions of Concentration(浓度的表达)Dilution(稀释)Colligative Properties of Solutions(溶液的依数性)Crystallization(结晶化)以上就是关于SAT2化学知识点中三种状态的总结,都是一些比较琐碎的点。
冷原子物理与量子模拟20日下午,地点:208,主持人:朱诗亮,南京大学 时 间 报告人 报告题目13:30-14:00张天才山西大学Full control and measurement of singleatom in micro-trap and micro-cavity14:00-14:30 史保森中科大Entanglement between a collective Rydbergexcitation and a ground-state spin wave14:30-15:00颜辉华南师大Narrowband single photons: Generation andApplication休息20日下午,地点:208,主持人:张天才,山西大学15:20-15:50 管习文物数所Luttinger liquid and beyond in one-dimensionalspin-1/2 Heisenberg antiferromagnet CuPzN15:50 -16:20钱静华东师大Non-equilibrium quantum phases in ultracold Rydberg atoms with strong blockadeeffect16:20-16:40金家森大连理工Steady-state phase diagram of a drivenQED-cavity array with cross-Kerrnonlinearities16:40-17:00魏世杰清华大学Duality Quantum Computer Simulates Open QuantumSystems Efficiently17:00-17:20周增荣清华大学The efficient quantum simulation algorithm in duality quantum computer21日上午,地点:208,主持人:颜辉,华南师范大学 时 间 报告人 报告题目8:30-9:00张靖山西大学Experimental realization of a two-dimensionalsynthetic spin-orbit coupling in ultracoldFermi gases9:00-9:30周小计北京大学Quantum dynamical evolution of cold atoms in the high bands of an optical lattice9:30-10:00张熙博北京大学Studying many-body physics based on coldstrontium atoms休息21日上午,地点:208,主持人:龙桂鲁,清华大学10:20-10:50冯芒物数所Precise control and quantum gating with trappedions10:50-11:20颜波浙江大学Ultracold polar molecules in an 3D opticallattice11:20-11:50陈澍物理所Existence of critical phase in quasiperiodic optical lattices11:50-12:10周智超武汉大学Thermal valence-bond-solid transition andcooling of SU(2N) ultra-cold Dirac fermions inthe optical lattice休息与海报21日下午,地点:208,主持人:刘伍明,中科院物理所 时 间 报告人 报告题目13:30-14:00 龙桂鲁清华大学Duality Quantum Computing: A New Paradiam forEfficient Quantum Simulation14:00-14:30 王大军港中文Creation of an ultracold gas of ground-statedipolar 23Na87Rb molecules14:30-15:00 纪安春首师大Oscillations of Solitons in 1D Spin-Orb it Coupled Bose-Einstein Condensates休息21日下午,地点:208,主持人:陈澍,中科院物理所15:20-15:50 许志芳华中科大Interaction-driven topological edgeexcitations in a bosonic chiral p-wavesuperfluid15:50-16:20 刘伍明物理所光晶格中冷原子的拓扑量子相变16:20-16:50 江开军物数所TBA16:50-17:20 朱诗亮南京大学Simulation of PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice。
Biophysical Chemistry 109(2004)105–1120301-4622/04/$-see front matter ᮊ2003Elsevier B.V .All rights reserved.doi:10.1016/j.bpc.2003.10.021Cloud-point temperature and liquid–liquid phase separation ofsupersaturated lysozyme solutionJie Lu *,Keith Carpenter ,Rui-Jiang Li ,Xiu-Juan Wang ,Chi-Bun Ching a ,a a b bInstitute of Chemical and Engineering Sciences,Ayer Rajah Crescent 28,࠻02-08,Singapore 139959,Singapore aChemical and Process Engineering Center,National University of Singapore,Singapore 117576,SingaporebReceived 31July 2003;received in revised form 8October 2003;accepted 16October 2003AbstractThe detailed understanding of the structure of biological macromolecules reveals their functions,and is thus important in the design of new medicines and for engineering molecules with improved properties for industrial applications.Although techniques used for protein crystallization have been progressing greatly,protein crystallization may still be considered an art rather than a science,and successful crystallization remains largely empirical and operator-dependent.In this work,a microcalorimetric technique has been utilized to investigate liquid–liquid phase separation through measuring cloud-point temperature T for supersaturated lysozyme solution.The effects of cloud ionic strength and glycerol on the cloud-point temperature are studied in detail.Over the entire range of salt concentrations studied,the cloud-point temperature increases monotonically with the concentration of sodium chloride.When glycerol is added as additive,the solubility of lysozyme is increased,whereas the cloud-point temperature is decreased.ᮊ2003Elsevier B.V .All rights reserved.Keywords:Biocrystallization;Microcalorimetry;Cloud-point temperature;Liquid–liquid phase separation1.IntroductionKnowledge of detailed protein structure is essen-tial for protein engineering and the design of pharmaceuticals.Production of high-quality pro-tein crystals is required for molecular structure determination by X-ray crystallography.Although considerable effort has been made in recent years,obtaining such crystals is still difficult in general,and predicting the solution conditions where pro-*Corresponding author.Tel.:q 65-6874-4218;fax:q 65-6873-4805.E-mail address:lujie@.sg (J.Lu ).teins successfully crystallize remains a significant obstacle in the advancement of structural molecu-lar biology w 1x .The parameters affecting protein crystallization are typically reagent concentration,pH,tempera-ture,additive,etc.A phase diagram can provide the method for quantifying the influence of solu-tion parameters on the production of crystals w 2,3x .To characterize protein crystallization,it is neces-sary to first obtain detailed information on protein solution phase behavior and phase diagram.Recently physics shows that there is a direct relationship between colloidal interaction energy106J.Lu et al./Biophysical Chemistry109(2004)105–112and phase diagram.Gast and Lekkerkerker w4,5x have indicated that the range of attraction between colloid particles has a significant effect on the qualitative features of phase diagram.A similar relationship should hold for biomacromolecules, i.e.the corresponding interaction potentials govern the macromolecular distribution in solution,the shape of the phase diagram and the crystallization process w6x.Many macromolecular crystallizations appear to be driven by the strength of the attractive interactions,and occur in,or close to,attractive regimes w7,8x.Recent intensive investigation has revealed that protein or colloidal solution possesses a peculiar phase diagram,i.e.liquid–liquid phase separation and sol–gel transition exists in general in addition to crystallization w9,10x.The potential responsible for the liquid–liquid phase separation is a rather short range,possibly van der Waals,attractive potential w11,12x.The measurement of cloud-point temperature T can provide useful informationcloudon the net attractive interaction between protein molecules,namely,the higher the cloud-point tem-perature,the greater the net attractive interaction. Herein Taratuta et al.w13x studied the effects of salts and pH on the cloud-point temperature of lysozyme.Broide et al.w14x subsequently meas-ured the cloud-point temperature and crystalliza-tion temperature for lysozyme as a function of salt type and concentration.From these works the cloud-point temperature was found to be typically 15–458C below the crystallization temperature. Furthermore,Muschol and Rosenberger w15x deter-mined the metastable coexistence curves for lyso-zyme through cloud-point measurements,and suggested a systematic approach to promote pro-tein crystallization.In general,an effective way to determine the strength of protein interactions is to study temperature-induced phase transitions that occur in concentrated protein solutions.Liquid–liquid phase separation can be divided into two stages w11x:(1)the local separation stage at which the separation proceeds in small regions and local equilibrium is achieved rapidly;and(2) the coarsening stage at which condensation of these small domains proceeds slowly to reduce the loss of interface free energy w16x.The coexisting liquid phases both remain supersaturated but differ widely in protein concentration.The effect of a metastable liquid–liquid phase separation on crystallization remains ambiguous w17x.Molecular dynamics simulations and analyt-ical theory predict that the phase separation will affect the kinetics and the mechanisms of protein crystal nucleation w18x.tenWolde and Frenkel w19x have demonstrated that the free energy barrier for crystal nucleation is remarkably reduced at the critical point of liquid–liquid phase separation, thus in general,after liquid–liquid phase separa-tion,crystallization occurs much more rapidly than in the initial solution,which is typically too rapid for the growth of single crystal with low defect densities w15x.The determination of the location of liquid–liquid phase separation curve is thus crucial for efficiently identifying the optimum solution conditions for growing protein crystals. Microcalorimetry has the potential to be a useful tool for determining:(1)the metastable-labile zone boundary;(2)the temperature-dependence of pro-tein solubility in a given solvent;and(3)the crystal-growth rates as a function of supersatura-tion w20x.Microcalorimeters can detect a power signal as low as a few microwatts whereas standard calorimeters detect signals in the milliwatt range. Because of this greater sensitivity,samples with small heat effects can be analyzed.In addition, microcalorimetry has the advantage of being fast, non-destructive to the protein and requiring a relatively small amount of material.The present work is concerned with the analysis of the transient heat signal from microcalorimeter to yield liquid–liquid phase separation information for lysozyme solutions at pH4.8.To further examine the role of salt and additive on interprotein interactions, cloud-point temperature T has been determinedcloudexperimentally as a function of the concentrations of salt,protein and glycerol.2.Materials and methods2.1.MaterialsSix times crystallized lysozyme was purchased from Seikagaku Kogyo,and used without further107J.Lu et al./Biophysical Chemistry 109(2004)105–112purification.All other chemicals used were of reagent grade,from Sigma Chemical Co.2.2.Preparation of solutionsSodium acetate buffer (0.1M )at pH 4.8was prepared with ultrafiltered,deionized water.Sodi-um azide,at a concentration of 0.05%(w y v ),was added to the buffer solution as an antimicrobial agent.Protein stock solution was prepared by dissolving protein powder into buffer.To remove undissolved particles,the solution was centrifuged in a Sigma centrifuge at 12000rev.y min for 5–10min,then filtered through 0.22-m m filters (Mil-lex-VV )into a clean sample vial and stored at 48C for further experiments.The concentration of protein solution was determined by measuring the absorbance at 280nm of UV spectroscopy (Shi-madzu UV-2550),with an extinction coefficient of 2.64ml y (mg cm )w 21x .Precipitant stock solution was prepared by dissolving the required amount of sodium chloride together with additive glycerol into buffer.The pH of solutions was measured by a digital pH meter (Mettler Toledo 320)and adjusted by the addition of small volumes of NaOH or HAc solution.2.3.Measurement of solubilitySolubility of lysozyme at various temperatures and precipitant y additive concentrations was meas-ured at pH 4.8in 0.1M acetate buffer.Solid–liquid equilibrium was approached through both crystallization and dissolution.Dissolving lasted 3days,while the period of crystallization was over 2weeks.The supernatant in equilibrium with a macroscopically observable solid was then filtered through 0.1-m m filters (Millex-VV ).The concen-tration of diluted supernatant was determined spec-troscopically and verified by refractive meter(Kruss)until refractive index remained unchanged ¨at equilibrium state.Solubility of each sample was measured in duplicate.2.4.Differential scanning microcalorimetry Calorimetric experiments were performed with a micro-differential scanning calorimeter with anultra sensitivity,micro-DSC III,from Setaram SA,France.The micro-DSC recorded heat flow in microwatts vs.temperature,thus can detect the heat associated with phase transition during a temperature scan.The sample made up of equal volumes of protein solution and precipitant solu-tion was filtered through 0.1-m m filters to remove dust particles further.To remove the dissolved air,the sample was placed under vacuum for 3min while stirring at 500rev.y min by a magnetic stirrer.The degassed sample was placed into the sample cell of 1.0ml,and a same concentration NaCl solution was placed into the reference cell.The solutions in the micro-DSC were then cooled at the rate of 0.28C y min.After every run,the cells were cleaned by sonicating for 10–15min in several solutions in the following order:deionized water,methanol,ethanol,acetone,1M KOH and finally copious amounts of deionized water.This protocol ensured that lysozyme was completely removed from the cells.The cells were then placed in a drying oven for several hours.The rubber gaskets were cleaned in a similar manner except acetone and 1M KOH were omitted and they were allowed to dry at low temperature.3.Results and discussionA typical micro-DSC scanning experiment is shown in Fig.1.The onset of the clouding phe-nomenon is very dramatic and easily detected.The sharp increase in the heat flow is indicative of a liquid–liquid phase separation process producing a latent heat.This is much consistent with many recent investigations of the liquid–liquid phase separation of lysozyme from solution w 22,23x .In fact,such a liquid–liquid phase separation is a phase transition with an associated latent heat of demixing.In this work,the cloud-point tempera-tures at a variety of lysozyme,NaCl and glycerol concentrations are determined by the micro-DSC at the scan rate of 128C y h.3.1.Effect of protein concentrationIn semilogarithmic Fig.2we plot the solid–liquid and liquid–liquid phase boundaries for lyso-108J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.1.Heat flow of a typical micro-DSC scan of lysozyme solution,50mg y ml,0.1M acetate buffer,pH 4.8,3%NaCl.The scan rate 128C y h is chosen referenced to the experimental results of Darcy and Wiencek w 23x .Note the large deflection in the curve at approximately 4.38C indicating a latent heat resulting from demixing (i.e.liquid–liquid phase separation )process.Fig.2.Cloud-point temperature and solubility determination for lysozyme in 0.1M acetate buffer,pH 4.8:solubility (5%NaCl )(s );T (5%NaCl,this work )(d );T (5%cloud cloud NaCl,the work of Darcy and Wiencek w 23x )(*);solubility (3%NaCl )(h );T (3%NaCl )(j ).cloud Fig.3.Cloud-point temperature determination for lysozyme as a function of the concentration of sodium chloride,50mg y ml,0.1M acetate buffer,pH 4.8.zyme in 0.1M acetate buffer,pH 4.8,for a range of protein concentrations.It is worth noting that,at 5%NaCl,our experimental data of T from cloud micro-DSC are quite consistent with those from laser light scattering and DSC by Darcy and Wiencek w 23x ,with difference averaging at approx-imately 0.88C.This figure demonstrates that liquid–liquid phase boundary is far below solid–liquid phase boundary,which implies that the liquid–liquid phase separation normally takes place in a highly metastable solution.In addition,cloud-point temperature T increases with the cloud concentration of protein.3.2.Effect of salt concentrationFig.3shows how cloud-point temperature changes as the concentration of NaCl is varied from 2.5to 7%(w y v ).The buffer is 0.1M acetate (pH 4.8);the protein concentration is fixed at 50mg y ml.Over the entire range of salt concentrations studied,the cloud-point temperature strongly depends on the ionic strength and increases monotonically with the concentration of NaCl.Crystallization is driven by the difference in chemical potential of the solute in solution and in the crystal.The driving force can be simplified as w 24xf sy Dm s kT ln C y C (1)Ž.eq109J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.4.The driving force required by liquid–liquid phase sep-aration as a function of the concentration of sodium chloride,50mg y ml lysozyme solution,0.1M acetate buffer,pH 4.8.In the same way,we plot the driving force,f ,required by liquid–liquid phase separation as a function of the concentration of sodium chloride in Fig.4.At the moderate concentration of sodium chloride,the driving force required by liquid–liquid phase separation is higher than that at low or high salt concentration.As shown in Fig.3,with NaCl concentration increasing,the cloud-point temperature increases,which is in accord with the results of Broide et al.w 14x and Grigsby et al.w 25x .It is known that protein interaction is the sum of different potentials like electrostatic,van der Waals,hydrophobic,hydration,etc.The liquid–liquid phase separation is driven by a net attraction between protein molecules,and the stronger the attraction,the higher the cloud-point temperature.Ionic strength is found to have an effect on the intermolecular forces:attractions increase with ionic strength,solubility decreases with ionic strength,resulting in the cloud-point temperature increases with ionic strength.It is worth noting that,the effect of ionic strength on cloud-point temperature depends strongly on the specific nature of the ions w 13x .Kosmotropic ions bind adjacent water molecules more strongly than water binds itself.When akosmotropic ion is introduced into water,the entro-py of the system decreases due to increased water structuring around the ion.In contrast,chaotropes bind adjacent water molecules less strongly than water binds itself.When a chaotrope is introduced into water,the entropy of the system increases because the water structuring around the ion is less than that in salt-free water.This classification is related to the size and charge of the ion.At high salt concentration ()0.3M ),the specific nature of the ions is much more important w 25x .The charges on a protein are due to discrete positively and negatively charged surface groups.In lysozyme,the average distance between thesecharges is approximately 10Aw 26x .As to the salt ˚NaCl used as precipitant,Na is weakly kosmo-q tropic and Cl is weakly chaotropic w 27x .At low y NaCl concentrations,as the concentration of NaCl increases,the repulsive electrostatic charge–charge interactions between protein molecules decrease because of screening,resulting in the increase of cloud-point temperature.While at high NaCl con-centrations,protein molecules experience an attrac-tion,in which differences can be attributed to repulsive hydration forces w 14,25x .That is,as the ionic strength increases,repulsive electrostatic or hydration forces decrease,protein molecules appear more and more attractive,leading to higher cloud-point temperature.At various salt concentra-tions,the predominant potentials reflecting the driving force for liquid–liquid phase separation are different.Fig.4shows that the driving force,f ,is parabolic with ionic strength,while Grigsby et al.w 25x have reported that f y kT is linear with ionic strength for monovalent salts.The possible reasons for that difference include,their model is based on a fixed protein concentration of 87mg y ml,which is higher than that used in our study,yet f y kT is probably dependent on protein concentration,besides the solutions at high protein and salt concentrations are far from ideal solutions.3.3.Effect of glycerolFig.5compares cloud-point temperature data for 50mg y ml lysozyme solutions in absence of glycerol and in presence of 5%glycerol,respec-110J.Lu et al./Biophysical Chemistry109(2004)105–112parison of cloud-point temperatures for lysozyme at different glycerol concentrations as a function of the con-centration of sodium chloride,50mg y ml,0.1M acetate buffer, pH4.8:0%glycerol(s);5%glycerol(j).Fig.6.Cloud-point temperatures for lysozyme at different glycerol concentrations,50mg y ml lysozyme,5%NaCl,0.1M acetate buffer,pH4.8.Fig.7.Cloud-point temperature and solubility determination for lysozyme at different concentrations of glycerol in0.1M acetate buffer,5%NaCl,pH4.8:solubility(0%glycerol)(s); T(0%glycerol)(d);solubility(5%glycerol)(h);cloudT(5%glycerol)(j).cloudtively.Fig.6shows the cloud-point temperature as a function of the concentration of glycerol.The cloud-point temperature is decreased as the addi-tion of glycerol.In semilogarithmic Fig.7we plot the solid–liquid and liquid–liquid phase boundaries at dif-ferent glycerol concentrations for lysozyme in0.1 M acetate buffer,5%NaCl,pH4.8,for a range of protein concentration.This figure demonstrates that liquid–liquid and solid–liquid phase bounda-ries in the presence of glycerol are below those in absence of glycerol,and the region for growing crystals is narrowed when glycerol is added. Glycerol has the property of stabilizing protein structure.As a result,if crystallization occurs over a long period of time,glycerol is a useful candidate to be part of the crystallization solvent and is often included for this purpose w28x.In addition,glycerol is found to have an effect on the intermolecular forces:repulsions increase with glycerol concentra-tion w29x.Our experiment results of solubility and cloud-point temperature can also confirm the finding.The increased repulsions induced by glycerol can be explained by a number of possible mecha-nisms,all of which require small changes in the protein or the solvent in its immediate vicinity.The addition of glycerol decreases the volume of protein core w30x,increases hydration and the size of hydration layer at the particle surface w31,32x. In this work,we confirm that glycerol shifts the solid–liquid and liquid–liquid phase boundaries. The effect of glycerol on the phase diagram strong-111 J.Lu et al./Biophysical Chemistry109(2004)105–112ly depends on its concentration and this canprovide opportunities for further tuning of nuclea-tion rates.4.ConclusionsGrowing evidence suggests protein crystalliza-tion can be understood in terms of an order ydisorder phase transition between weakly attractiveparticles.Control of these attractions is thus keyto growing crystals.The study of phase transitionsin concentrated protein solutions provides one witha simple means of assessing the effect of solutionconditions on the strength of protein interactions.The cloud-point temperature and solubility datapresented in this paper demonstrate that salt andglycerol have remarkable effects on phase transi-tions.The solid–liquid and liquid–liquid bounda-ries can be shifted to higher or lower temperaturesby varying ionic strength or adding additives.Ourinvestigation provides further information upon therole of glycerol used in protein crystallization.Glycerol can increase the solubility,and decreasethe cloud-point temperature,which is of benefit totuning nucleation and crystal growth.In continuingstudies,we will explore the effects of other kindsof additives like nonionic polymers on phasetransitions and nucleation rates.Much more theo-retical work will be done to fully interpret ourexperimental results.AcknowledgmentsThis work is supported by the grant from theNational Natural Science Foundation of China(No.20106010).The authors also thank Professor J.M.Wiencek(The University of Iowa)for kinddiscussion with us about the thermal phenomenaof liquid–liquid phase separation.Referencesw1x A.McPherson,Current approaches to macromolecular crystallization,Eur.J.Biochem.189(1990)1–23.w2x A.M.Kulkarni, C.F.Zukoski,Nanoparticle crystal nucleation:influence of solution conditions,Langmuir18(2002)3090–3099.w3x E.E.G.Saridakis,P.D.S.Stewart,L.F.Lloyd,et al., Phase diagram and dilution experiments in the crystal-lization of carboxypeptidase G2,Acta Cryst.D50(1994)293–297.w4x A.P.Gast, C.K.Hall,W.B.Russel,Polymer-induced phase separations in non-aqueous colloidal suspensions,J.Colloid Interf.Sci.96(1983)251–267.w5x H.N.W.Lekkerkerker,W.C.K.Poon,P.N.Pusey,et al., Phase-behavior of colloid plus polymer mixtures,Euro-phys.Lett.20(1992)559–564.w6x A.Tardieu,S.Finet,F.Bonnete,Structure of the´macromolecular solutions that generate crystals,J.Cryst.Growth232(2001)1–9.w7x D.Rosenbaum,C.F.Zukoski,Protein interactions and crystallization,J.Cryst.Growth169(1996)752–758.w8x A.George,W.W.Wilson,Predicting protein crystalli-zation from a dilute solution property,Acta Cryst.D50(1994)361–365.w9x D.Rosenbaum,P.C.Zamora, C.F.Zukoski,Phase-behavior of small attractive colloidal particles,Phys.Rev.Lett.76(1996)150–153.w10x V.J.Anderson,H.N.W.Lekkerkerker,Insights into phase transition kinetics from colloid science,Nature416(2002)811–815.w11x S.Tanaka,K.Ito,R.Hayakawa,Size and number density of precrystalline aggregates in lysozyme crys-tallization process,J.Chem.Phys.111(1999)10330–10337.w12x D.W.Liu,A.Lomakin,G.M.Thurston,et al.,Phase-separation in multicomponent aqueous-protein solutions,J.Phys.Chem.99(1995)454–461.w13x V.G.Taratuta,A.Holschbach,G.M.Thurston,et al., Liquid–liquid phase separation of aqueous lysozymesolutions:effects of pH and salt identity,J.Phys.Chem.94(1990)2140–2144.w14x M.L.Broide,T.M.Tominc,M.D.Saxowsky,Using phase transitions to investigate the effect of salts onprotein interactions,Phys.Rev.E53(1996)6325–6335. w15x M.Muschol,F.Rosenberger,Liquid–liquid phase sep-aration in supersaturated lysozyme solutions and asso-ciated precipitate formation y crystallization,J.Chem.Phys.107(1997)1953–1962.w16x C.Domb,J.H.Lebowitz,Phase Separation and Critical Phenomena,Academic,London,1983.w17x D.F.Rosenbaum,A.Kulkarni,S.Ramakrishnan,C.F.Zukoski,Protein interactions and phase behavior:sen-sitivity to the form of the pair potential,J.Chem.Phys.111(1999)9882–9890.w18x O.Galkin,P.G.Vekilov,Nucleation of protein crystals: critical nuclei,phase behavior and control pathways,J.Cryst.Growth232(2001)63–76.w19x P.R.tenWolde, D.Frenkel,Enhancement of protein crystal nucleation by critical density fluctuations,Sci-ence277(1997)1975–1978.w20x P.A.Darcy,J.M.Wiencek,Estimating lysozyme crystal-lization growth rates and solubility from isothermalmicrocalorimetry,Acta Cryst.D54(1998)1387–1394.112J.Lu et al./Biophysical Chemistry109(2004)105–112w21x A.J.Sophianopoulos,C.K.Rhodes,D.N.Holcomb,K.E.vanHolde,Physical studies of lysozyme.I.Characteri-zation,J.Biol.Chem.237(1962)1107–1112.w22x Y.Georgalis,P.Umbach, A.Zielenkiewicz,et al., Microcalorimetric and small-angle light scattering stud-ies on nucleating lysozyme solutions,J.Am.Chem.Soc.119(1997)11959–11965.w23x P.A.Darcy,J.M.Wiencek,Identifying nucleation tem-peratures for lysozyme via differential scanning calorim-etry,J.Cryst.Growth196(1999)243–249.w24x M.L.Grant,Effects of thermodynamics nonideality in protein crystal growth,J.Cryst.Growth209(2000)130–137.w25x J.J.Grigsby,H.W.Blanch,J.M.Prausnitz,Cloud-point temperatures for lysozyme in electrolyte solutions:effectof salt type,salt concentration and pH,Biophys.Chem.91(2001)231–243.w26x D.Voet,J.Voet,Biochemistry,Wiley,New Y ork,1990. w27x K.D.Collins,Charge density-dependent strength of hydration and biological structure,Biophys.J.72(1997)65–76.w28x R.Sousa,Use of glycerol and other protein structure stabilizing agents in protein crystallization,Acta Cryst.D51(1995)271–277.w29x M.Farnum, C.F.Zukoski,Effect of glycerol on the interactions and solubility of bovine pancreatic trypsininhibitor,Biophys.J.76(1999)2716–2726.w30x A.Priev,A.Almagor,S.Yedgar,B.Gavish,Glycerol decreases the volume and compressibility of proteininterior,Biochemistry35(1996)2061–2066.w31x S.N.Timasheff,T.Arakawa,Mechanism of protein precipitation and stabilization by co-solvents,J.Cryst.Growth90(1988)39–46.w32x C.S.Miner,N.N.Dalton,Glycerol,Reinhold Publishing, New Y ork,1953.。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期C 形管池沸腾两相流流场模拟与流固耦合分析徐若思1,2,谭蔚1,2(1 天津大学化工学院,天津 300350;2 天津大学浙江研究院,浙江 宁波 315000)摘要:热交换器作为化工和核电中重要的换能设备,管束的流致振动(FIV )成为诱发管束破裂的重要因素,其安全可靠性变得尤为重要。
本文为研究非能动余热排出热交换器(PRHR HX )运行工况下C 形管的流致振动响应,将壳侧的换料水箱(IRWST )和C 形管进行了简化,开展了流场和振动响应的数值模拟计算。
结果表明,温度场中自然对流和强迫对流交汇引发的速度断层,由于流速的损失,气泡无法被冲刷,合并包裹管壁热性能下降,产生过渡沸腾,这种沸腾降低了热通量产生热分层的现象。
水箱可以分气液两相热流区、单相热流区和冷流区为3个区域。
其中气液两相热流区存在高湍动能,空泡率达到50%,这使得蒸汽快速生长和坍塌提供扰动的动力,并且C 形管结构阻尼比有所降低,在远离固支端的上弯管处成为诱发振动最大的区域。
根据C 形管的振动结果,在上弯管处C 形管受气液两相热流冲击时振动最为剧烈,方向为C 形管面内方向,在PRHR HX 中该位置管束容易与支撑和防振组件发生磨损,存在管束破裂的潜在危险。
关键词:C 形管;池沸腾;两相流流场模拟;流固耦合中图分类号:TQ053 文献标志码:A 文章编号:1000-6613(2023)S1-0047-09Flow field simulation and fluid-structure coupling analysis of C-tubepool boiling two-phase flow modelXU Ruosi 1,2,TAN Wei 1,2(1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; 2 Zhejiang Institute ofTianjin University, Ningbo 315000, Zhejiang, China)Abstract: As a heat exchanger is an important energy transfer equipment in chemical and nuclear power, the fluid induced vibration (FIV) of the tube bundle becomes an important factor to induce the tube bundle rupture. So the safety and reliability of the tube bundle becomes especially important. In order to study the flow induced vibration response of C-tube in the passive residual heat removal heat exchanger (PRHR HX), the in-containment refueling water storage tank (IRWST) and C-tube were simplified, and the numerical simulation of the flow field and vibration response were carried out. Simulation results showed that the intersection of natural and forced convection in the temperature field caused by the velocity disruption, due to the loss of flow velocity, vapor bubbles can not be flushed, combined and wrapped with tube, resulting in transition boiling, the boiling reduces the heat flux to produce the phenomenon of thermal stratification. According to the fluid flow characteristics, the flow field can be divided into three regions:gas-liquid two-phase hot flow region, hot flow region, cold flow region. Among them, there was high turbulence energy in the gas-liquid two-phase hot flow region, and the steam volume研究开发DOI :10.16085/j.issn.1000-6613.2023-0378收稿日期:2023-03-13;修改稿日期:2023-05-08。
Phase diagramHello everybody, welcome to my class. Today, we will talk about phase diagram and Gibbs phase rule, as well as how to calculate the corresponding proportion of liquid phase and solid phase.译文:大家好,欢迎来到我的课程。
今天,我们将讨论相图,吉布斯相律,以及如何计算液相和固相的相对含量。
First of all, let’s introduce the definition of phase. Phase is defined as a homogeneous part or aggregation of material. This homogenous part is distinguished from another part due to difference in structure, composition, or both. The different structures form an interface to difference in structure and composition. (这里要注意相的概念,相是指在结构和组成方面与其它部分不同的均匀体。
)译文:我们首先学习相的定义。
相是指在一种材料中,结构、组成,或两者同时不同于其他部分的均匀体或聚集体部分。
不同部分间形成界面,也就是相与相之间的分界面。
Some solid materials have the capability of changing their crystal structure under the varying conditions of pressure and temperature, causing an ability of phase-change.译文:一些固体材料随着压力和温度条件的改变而发生结晶结构变化,具有相变的能力。
液相色谱中相邻两色谱峰英文回答:In liquid chromatography (LC), adjacent chromatographic peaks can be separated or merged depending on several factors, including the selectivity of the stationary phase, the mobile phase composition, and the flow rate.Selectivity refers to the ability of the stationary phase to differentiate between different analytes. A higher selectivity will result in better separation of adjacent peaks. The selectivity can be affected by the chemical nature of the stationary phase, the pH of the mobile phase, and the temperature.Mobile phase composition also plays a role in peak separation. The composition of the mobile phase can be varied to change the elution order of the analytes and to improve the separation of adjacent peaks. The most common mobile phases used in LC are aqueous-organic mixtures. Theorganic solvent can be changed to vary the polarity of the mobile phase and to improve the separation of analytes with different polarities.Flow rate can also affect peak separation. A higher flow rate will result in faster elution of the analytes, but it can also lead to a decrease in the separation of adjacent peaks. A lower flow rate will result in slower elution of the analytes, but it can improve the separation of adjacent peaks.In addition to these factors, the column temperature can also affect peak separation. A higher temperature will result in faster elution of the analytes, but it can also lead to a decrease in the separation of adjacent peaks. A lower temperature will result in slower elution of the analytes, but it can improve the separation of adjacent peaks.中文回答:液相色谱中相邻色谱峰的分离或合并取决于多种因素,包括固定相的选择性、流动相组成和流速。
ZHANG Hongying. Comparative studies on secretory glandular trichome morphology and leaf surface chemi-stry between tobacco varieties[J]. Tobacco Science & Technology, 2021, 54(1): 10-16(in Chinese).SEVERSON R F, ARRENDALE R F, CHORTYK O T, JOHNSON A W, JACKSON D M, GWYNN G R, CHAPLIN J F, STEPHENSON M G. Quantitation of the major cuticular components from green leaf of different tobacco types[J]. Journal of Agricultural and Food Chemistry, 1984, 32(3): 566-570.[5]XIA Y, JOHNSON A W, CHORTYK O T. Enhanced toxicity of sugar esters to the tobacco aphid (homoptera: Aphididae) using humectants[J]. Journal of Economic Entomology, 1997, 90(4): 1 015-1 021.[6]ASHRAF-KHORASSANI M, NAZEM N, TAYLOR L T, COLEMAN W M III. Separation and identification of sucrose esters from Turkish tobacco using liquid chro-matography-mass spectrometry[J]. Beiträ ge Zur Tabak-forschung International, 2005, 21(7): 381-389.[7]ASHRAF-KHORASSANI M, NAZEM N, TAYLOR L T, COLEMAN W M III. Isolation, fractionation, and identification of sucrose esters from various oriental tobaccos employing supercritical fluids[J]. Beiträ ge Zur Tabakforschung International, 2008, 23(1): 32-45.[8]范若静, 陈秀萍, 张芳, 张菁, 郭寅龙. 液相色谱-离子淌度-四极杆/飞行时间串联质谱法快速检测烟叶中蔗糖酯[J]. 质谱学报, 2016, 37(4): 301-309.FAN Ruojing, CHEN Xiuping, ZHANG Fang, ZHANG Jing, GUO Yinlong. Fast detection of sucrose esters in tobacco leaf using liquid chromatography coupled with ion mobility-quadrupole/time of flight mass spectrome-try[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(4): 301-309(in Chinese).[9]EINOLF W N, CHAN W G. Estimation of sucrose esters in tobacco by direct chemical ionization mass spectrome-try[J]. Journal of Agricultural and Food Chemistry, 1984, 32(4): 785-789.[10]DING L, XIE F, ZHAO M, WANG S, XIE J, XU G.Rapid quantification of sucrose esters in oriental tobacco by liquid chromatography-ion trap mass spectrometry[J].Journal of Separation Science, 2007, 30(1): 35-41. [11]DING L, XIE F, ZHAO M, XIE J, XU G. Rapid charac-[12]terization of the sucrose esters from oriental tobacco using liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spec-trometry, 2006, 20(19): 2 816-2 822.DING L, XIE F, XU G, LIU K, WANG S, XIE J. Sepa-ration and detection of polar cuticular components from Oriental tobacco leaf by integration of normal-phase liq-uid chromatography fractionation with reversed-phase liquid chromatography-mass spectrometry[J]. Journal of Separation Science, 2010, 33(21): 3 429-3 436.[13]JIA C, WANG Y, ZHU Y, XU C, MAO D. Preparative isolation and structural characterization of sucrose ester isomers from oriental tobacco[J]. Carbohydrate Research, 2013, 372: 73-77.[14]ZHU H, FENG Y, YANG J, PAN W, LI Z, TU Y, ZHU X, HUANG G. Separation and characterization of sucrose esters from Oriental tobacco leaves using accel-erated solvent extraction followed by SPE coupled to HPLC with ion-trap MS detection[J]. Journal of Separa-tion Science, 2013, 36(15): 2 486-2 495.[15]SHINOZAKI Y, MATSUZAKI T, SUHARA S, TOBITA T, SHIGEMATSU H, KOIWAI A. New types of glycolipids from the surface lipids of nicotiana umbratica[J]. Agricultural and Biological Chemistry, 1991, 55(3): 751-756.[16]MATSUZAKI T, SHINOZAKI Y, SUHARA S, SHIGE-MATSU H, KOIWAI A. Isolation and characterization of tetra- and triacylglucose from the surface lipids of nico-tiana miersii[J]. Agricultural and Biological Chemistry, 1989, 53(12): 3 343-3 345.[17]SCHUMACHER J N. The isolation of 6-O-acetyl-2, 3, 4-tri-O-[(+)-3-methylvaleryl]-β-d-glucopyranose from toba-cco[J]. Carbohydrate Research, 1970, 13(1): 1-8.[18]贾春晓, 王瑞玲, 王莹莹, 毛多斌. 超声萃取-气相色谱-质谱法测定烟叶中的葡萄糖四酯[J]. 分析试验室, 2013, 32(12): 55-60.JIA Chunxiao, WANG Ruiling, WANG Yingying, MAO Duobin. Determination of glucose tetra-esters in tobac-cos by ultrasonic extraction coupled with gas chromatog-raphymass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2013, 32(12): 55-60(in Chinese).[19](收稿日期:2023-07-25;修回日期:2023-09-07)第 3 期袁凯龙等:白肋烟中糖酯类化合物的分离与鉴定385第 45 卷 第 3 期质 谱 学 报Vol. 45 No. 3 2024 年 5 月Journal of Chinese Mass Spectrometry Society May 2024新疆汉代羊毛织物染料的飞行时间二次离子质谱表征刘 婕1,2,陈相龙3,梁汉东1,2,铁 偲1,李展平4(1. 煤炭精细勘探与智能开发全国重点实验室,北京 100083;2. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;3. 中国社会科学院考古研究所,北京 100101;4. 清华大学化学系,有机光电子与分子工程教育部重点实验室,北京 100084)摘要:汉代女性干尸着鲜艳的红-蓝-浅黄三色羊毛纤维编制的华丽服饰,本研究以织物片段作为研究样本,主要采用飞行时间二次离子质谱(TOF-SIMS)法对其染料进行表征。
专利名称:LIQUID CRYSTAL PHASE SHIFTING UNIT AND MANUFACTURING METHODTHEREFOR, LIQUID CRYSTAL PHASESHIFTER AND ANTENNA发明人:HU, Yingru,扈映茹,WU, Bo,吴勃,PNEG, Xuhui,彭旭辉申请号:CN2019/087897申请日:20190522公开号:WO2020/015452A1公开日:20200123专利内容由知识产权出版社提供专利附图:摘要:A liquid crystal phase shifting unit and a manufacturing method therefor, a liquid crystal phase shifter, and an antenna. The present invention relates to the technical field of phase shifting and can increase the length of microstrip lines without increasing the volume of a liquid crystal phase shifting unit. The liquid crystal phase shifting unit comprises: a first substrate (1) and a second substrate (2); wherein a plurality of first protrusions (7) is provided on a surface of the first substrate (1), a plurality of second protrusions (8) is provided on a surface of the second substrate (2), and the first protrusions (7) and the second protrusions (8) are disposed alternatingly; microstrip lines (3) disposed on the surface of the first substrate (1) facing toward the second substrate (2), the microstrip lines (3) covering at least a part of the first protrusions (7); a first support pad (4) disposed between the first substrate (1) and the second substrate (2); a grounding electrode (5) disposed on the surface of the second substrate (2) facing toward the first substrate (1), the grounding electrode (5) covering at least a part of the second protrusions (8); and liquid crystal molecules (6) filled between the microstrip lines (3) and the ground electrode (5). The liquid crystal phase shifting unit is used to perform phase shifting on microwave signals.申请人:CHENGDU TIANMA MICRO-ELECTRONICS CO., LTD,成都天马微电子有限公司地址:88th Tianyuan Rd., West Hi-tech Zone Chengdu, Sichuan 611730 CN,中国四川省成都市高新西区天源路88号, Sichuan 611730 CN国籍:CN,CN代理人:UNI-INTEL PATENT AND TRADEMARK LAW FIRM,北京汇思诚业知识产权代理有限公司更多信息请下载全文后查看。
a rXiv:c ond-ma t/941298v225Apr1995Phases of two coupled Luttinger liquids H.J.Schulz Laboratoire de Physique des Solides,Universit´e Paris–Sud,91405Orsay,France Abstract A model of two interacting one–dimensional fermion systems (“Luttinger liquids”)coupled by single–particle hopping is investigated.Bosonization allows a number of exact statements to be made.In particular,for forward scattering only,the model contains two massless boson sectors and an Ising type critical sector.For general interactions,there is a spin excitation gap and either s–or d–type pairing fluctuations dominate.It is shown that the same behavior is also found for strong interactions.A possible scenario for the crossover to a Fermi liquid in a many chain system is discussed.74.20.Hi,75.10.Lp,71.45.LrTypeset using REVT E XThe properties of a strictly one–dimensional interacting fermion system are by now rather well understood.[1,2]The typical phenomenology(called“Luttinger liquid”[3])is charac-terized by a separation of the dynamics of spin and charge and by interaction–dependent power laws in many correlation functions,and is thus quite different from Fermi liquid be-havior familiar from higher–dimensional systems.On the other hand,the effects of coupling between parallel chains,present in any real quasi–one–dimensional system,are still a subject of debate.[4–6]Considerable effort has been devoted to the understanding of the properties of many coupled chains,[5]however,it is in many respects unclear how to connect these results to the strictly one–dimensional case.A possible bridge between the single and many chain cases are two(and possibly three,four,etc.)coupled chains.The two–chain case is also of relevance for experiments on Sr2Cu4O6,[7](VO)2P2O7,[8]and possibly the blue bronzes[9](in this last case three–dimensional phonons certainly play an important role).The two–chain model has thus attracted considerable interest,both analytically[10–13] and numerically.[14–16]Nevertheless,there is little general information on the low–lying excitations or on the possible ground state phases.In the present paper I investigate this problem for small interchain hopping integral and small intrachain interaction,but with their relative size left ing the standard bosonization procedure,a rather complete picture of the different possible phases and the excitation spectrum will emerge.It will further be shown that the low–energy properties found for weak interactions also exist in the strong–interaction limit,suggesting that weak and strong interaction are in the same phase of the coupled chain model.The model I consider is given by the HamiltonianH=H1+H2−t⊥ dx(ψ†rs1ψrs2+h.c.).(1) Here H1,2are the(identical)Hamiltonians of the two chains,[1,2]each characterized by a Fermi velocity v F and forward and backward scattering interaction g2and g1,t⊥is the interchain hopping amplitude,andψrsi is the fermionfield operator for right(r=+)or left (r=−)going particles of spin s on chain i.To start,I neglect the backward scatteringg1.The following analysis is then initially identical to that of ref.[10].The Hamiltonianis transformed by the following steps:(i)introduce bonding and antibonding operators via √2;(ii)introduce charge and spin bosonfields ψrs0=(ψrs1+ψrs2)/φρ,σ;0,πcorresponding to the0–andπ–fermions,following the standard procedure;(iii)formthe linear combinationsφν±=(φν0±φνπ)/√dx Π2να+12 ν=ρ,σα=±γ=±g(2)γ 14 dx2(πα)2 dx cos2θρ−(cos2φσ−+cos2θσ−).(3) Hereαis a short distance cutoff,∂xθβγ=πΠβγ,g(2)γ=g(2)0000+γg(2)0ππ0,and I use the notations is the coupling constant for an interaction scattering two particles fromof ref.[11]:g(2)abcdstates(a,b)into(d,c).Initially,all the g’s in eq.(3)equal g2,but renormalization will give rise to differences.At energy scales higher then t⊥an additional process of type g(2)0π0πalso exists and is responsible for the fact that g2is not renormalized in the purely one–dimensional problem t⊥=0(this process also only involves theρ−andσ−fields).At energies below t⊥the g(2)0π0π–process becomes however forbidden due to energy and momentum conservation, and eq.(3)is then indeed the full forward scattering Hamiltonian.One now can notice that theρ+andσ+parts of the Hamiltonian remain bilinear,and the correspondingfields are thus massless.On the other hand,there are nontrivial inter-action effects for the coupledρ−andσ−fields:onefinds coupled Kosterlitz–Thouless type renormalization group equations for g(2)00ππand g(2)−.[10,17]For the initial conditions appro-priate here,these equations always scale to strong coupling,and the standard interpretation [10]then is that there is a gap∆0≈t⊥exp(−π2v F/|g2|)for both theρ−andσ−degrees of freedom.That things are actually a bit more subtle can be seen noting that theσ−part of the Hamiltonian is the continuum transfer matrix of a two–dimensional classical XY model with twofold anisotropyfield cos2φσ−(the XY spins then are(S=cosφσ−,sinφσ−)).[18,19] This model has Ising type symmetry,with order parameter sinφσ−,and the symmetry of the Hamiltonian under the duality transformationφσ−↔θσ−implies that the model is critical. The duality symmetry is related to the fact that the left–and right–going fermions are independently invariant under spin rotation,i.e.there is a chiral SU(2)×SU(2)symmetry in the fermionic model.What are the physical properties of the pure forward scattering model?First,there are massless modes in theρ+andσ+channels,giving a total specific heat C(T)= (πT/3)(1/uρ++1/uσ++1/2v F),where the total charge and spin velocities are given by u2ρ+=v2F−(g2/π)2and uσ+=v F,and the factor1/2in the last term comes from the Ising critical behavior(with central charge c=1/2[20]).The compressibility is determined by theρ+modes only and given byκ−1=πρ20uρ+/4K,whereρ0is the equilibrium particle density and K2=(πv F−g2)/(πv F+g2).Similarly,the(Drude)weight of the zero–frequency peak in the conductivity isσ0=4uρ+K.As in the one–chain case,[6]these relations can in particular be used to determine the coefficient K which determines power laws of different correlations functions.Naturally,the present model does not have broken symmetry ground states,but as in the one–chain case there are divergent susceptibilities of different types,indicating incipient instabilities.Ifirst consider g2>0.To obtain the long–wavelength(low–energy)asymptotics of correlation functions one has to analyze the consequences of the nonlinear term in eq.(3) which scales to strong coupling(g(2)00ππ→∞).A semiclassical treatment is appropriate,and then the energy is minimized byθρ−=0(there are different degenerate solutions which all lead to identical physical results).Following standard arguments[1]long–range order of theθρ−field implies exponentially decayingφρ−correlations.On the other hand,from the Ising analogy for theσ−sector correlations of the order parameter sinφσ−and its dual sinθσ−then decay as r−1/4whereas correlation of the non–ordering cosφσ−and cosθσ−fieldsdecay exponentially.These points have not been appreciated in previous work on this model. Consider now for example charge density oscillations which are out of phase between the two chains,described by the operator O CDWπ≈e iφρ+sinφσ+sinθσ−.From the massless modes the CDWπcorrelations then decay as r−(3+2K)/4,giving rise to a susceptibility diverging as T(2K−5)/4.The analogous spin(SDWπ)correlations obey the same power law,whereas in–phase correlations decay exponentially.Similar considerations apply to BCS type instabilities.It turns out that long–range correlations exists for the pairing operatorO SCd= s s(ψ−,−s,0ψ+,s,0−ψ−,−s,πψ+,s,π)(4) and its triplet analogue.It seems appropriate to call this form“d–wave”because pairing amplitudes of the“transverse”modes0andπintervene with opposite sign.The bosonic form of this operator is given by the same form as O CDWπ,withφρ+→θρ+,θσ−→φσ−.The corresponding susceptibilities diverge like T(2/K−5)/4.Because for g2>0one has K<1this divergence is subdominant compared to the CDWπand SDWπones.It may seem surprising that the exponents do not tend to zero as g2→0,however one should notice that the power laws are valid for T<∆0,and because∆→0for g2→0there is a nontrivial crossover in the noninteracting limit.In all other pairing correlations,“s–wave”superconductivity in particular(a plus instead of the minus sign in eq.(4),the leading divergent terms cancel and one therefore has exponential decay of correlation functions andfinite susceptibilities as T→0.For negative g2the picture changes quite drastically,because now scaling goes to g(2)00ππ→−∞,and consequently the Ising order parameter is cosφσ−.Now K>1,and the dominant divergent susceptibility is then easily found to be standard s–wave superconductivity,with exponent(2/K−5)/4.The subdominant divergence occurs for orbital antiferromagnetic operators[21]of the formψ†+sπψ−s0−ψ†+s0ψ−sπand its triplet analogue(the spin nematic).Consider now the backscattering interaction g1.I will only treat the repulsive case g1>0.In a purely one–dimensional system this then scales to zero as g1(E)=g1/(1+g1/(πv F)ln(v F/Eα))when the running cutoffE goes to zero.In the coupled chain problem, the one–dimensional scaling breaks down for E≈t⊥.For small t⊥the effective g∗1=g1(t⊥) will then indeed be a perturbation.Simultaneously,g2is renormalized to g∗2=g2−g1/2+ g∗1/2.The backscattering Hamiltonian takes the form2g∗1H int,1=14 dxsuperconductivity with exponent1/2K−2.The precise boundary between the two regimes can be determined from the scaling equations of ref.[17]and is given by g1=2g2.The triplet susceptibilities(spin density wave or triplet superconductivity)are suppressed by the spin gap.The spin gap gives rise to“anomalousflux quantization”,[23]and there is also a gap for single–particle excitations.The power laws discussed above apply in the temperature region below∆0.In the intermediate region∆0<T<t⊥the g(2)00ππterm in eq.(3)has little effect,and one then can obtain the temperature dependence of different correlation functions from a purely bilinear Hamiltonian.For example,for CDW0susceptibilities onefinds a power law T(K−1)/2,whereas in the one–dimensional region T>t⊥one has a behavior as T K−1.The important point here is that in the intermediate region the interaction dependent exponent is smaller than in the high–temperature region,i.e.below t⊥the system behaves more closely like a Fermi liquid than at high temperatures.Let me now briefly consider the strongly interacting case.For sufficiently strong in-trachain interactions,i.e.small parameter Kρof the individual chains,single–particle hopping is renormalized to zero,however simultaneously particle–hole tunneling processes appear.[5,6]Introducingφν±=(φν1±φν2)/√strong–coupling model is the“t–J ladder”.[15]Here in the limit of strong interchain ex-change a mapping onto an effective single–chain hard core boson model can be made,leading again to the same low–energy properties as in the weak–coupling limit.[24]Recent numerical results[14,16]confirm this point.The exponents K−1and(K−1)/2valid for the single and double chain problems suggest that for N chains coupled by near–neighbor interchain hopping one might have an anomalous exponent(K−1)/N at T<t⊥.To see how such a behavior can possibly arise, in analogy to the two–chain case one can go to momentum space in the transverse direction. The noninteracting bosonized Hamiltonian then isH0=πv Fπ2(∂xφνk⊥)2 ,(6)Following standard arguments[25]I now only consider forward scattering interactions which for states at the Fermi energy are consistent with both energy and momentum conservation. The analogue of thefirst term in eq.(3)then isH int,2=g2π2(∂xφρ0)2−Π2ρ0,(7)whereφρx is the Fourier transform ofφρk⊥with respect to k⊥.The important point here is that only the mode at x=0is affected by the interactions.A standard calculation then leads to a decay of CDW correlations as r−2−(K−1)/N,giving rise to a susceptibility behaving as T(K−1)/N.Similarly,the single particle Green function decays as r−1−δ,with δ=(K+1/K−2)/4N,leading to a singularity of the momentum distribution function as |k−k F|δ.[26]In the limit of a large number of coupled chains the anomalous exponents now vanish,and in particular one recovers a Fermi liquid like momentum distribution function in this description.Clearly,a number of interactions has been neglected in this argument.First there are Cooper type((k,−k)→(k′,−k′))and possibly nesting interactions,the prototype of which is given by the g(2)00ππterm in eq.(3).By analogy with that case I expect these interactions to give rise to a gap of order∆0,and to ordered ground states for N→∞.Thus the power lawsof the preceding paragraphs are valid in the temperature region∆0<T<t⊥.Moreover, there are interactions that involve at least one state not exactly at the Fermi energy.Though these interactions cannot directly affect the low–energy physics,they in general will lead to renormalizations of g2.The above arguments remain valid if these renormalizations are nonsingular.To which extent this is correct is currently under investigation.In conclusion,I’ve investigated the phase diagram and excitation spectrum of two Lut-tinger liquids coupled by single–particle hopping,and proposed a possible extension to many coupled chains.The conclusions are valid for small hopping amplitude,but the same types of divergent responses(d–type superconductivity and4k F charge density in the case of repulsion)occur for both weak and strong interactions,suggesting that this type of be-havior is to be found for rather general interactions.The fact that for strong interactions interaction interchain hopping renormalizes to zero[6,5,11]only affects properties at inter-mediate energy scales(above the spin gap).Contrary to the case of a single chain,the pure forward–scattering model is found to be a singular line in the phase diagram,with Ising type criticality.I am grateful to L.Balents,T.Einarsson,M.P.A.Fisher,T.Giamarchi,R.Noack, D.Poilblanc,J.P.Pouget,and H.Tsunetsugu for stimulating boratoire de Physique des Solides is a Laboratoire Associ´e au CNRS.REFERENCES[1]V.J.Emery,in Highly Conducting One-Dimensional Solids,edited by J.T.Devreese,R.P.Evrard,and V.E.van Doren(Plenum,New York,1979),p.327.[2]J.S´o lyom,Adv.Phys.28,209(1979).[3]F.D.M.Haldane,J.Phys.C14,2585(1981).[4]P.W.Anderson,Phys.Rev.Lett.67,3844(1991),D.G.Clarke,S.P.Strong,andP.W.Anderson,Phys.Rev.Lett.72,3218(1994).[5]C.Bourbonnais and L.G.Caron,Int.J.Mod.Phys.B5,1033(1991),and referencestherein.[6]H.J.Schulz,Int.J.Mod.Phys.B5,57(1991).[7]T.M.Rice,S.Gopalan,and M.Sigrist,Europhys.Lett.23,445(1993).[8]R.S.Eccleston et al.,Phys.Rev.Lett.73,2626(1994),and references therein.[9]J.P.Pouget,in Low–Dimensional Electronic Properties of Molybdenum Bronzes andOxides,edited by C.Schlenker(Kluwer,Dordrecht,1989),p.87.[10]A.M.Finkel’stein and rkin,Phys.Rev.B47,10461(1993).[11]M.Fabrizio,A.Parola,and E.Tosatti,Phys.Rev.B46,3159(1992);M.Fabrizio,ibid.48,15838.[12]D.V.Khveshenko and T.M.Rice,Phys.Rev.B50,252(1994).[13]L.Balents and M.P.A.Fisher,preprint.[14]E.Dagotto,J.Riera,and D.J.Scalapino,Phys.Rev.B45,5744(1992);R.M.Noack,S.R.White,and D.J.Scalapino,Phys.Rev.Lett.73,882(1994).[15]H.Tsunetsugu,M.Troyer,and T.M.Rice,Phys.Rev.B49,16078(1994).[16]D.Poilblanc,D.J.Scalapino,and W.Hanke,preprint;C.A.Hayward et al.,preprint.[17]C.M.Varma and A.Zawadowski,Phys.Rev.B32,7399(1985).[18]M.P.M.den Nijs,Physica A111,273(1982).[19]The same conclusion is reached going back to a fermionic representation in the(ρ−,σ−)sector.Then a massless Majorana fermion mode decouples,a well–known representation of the critical two–dimensional Ising model.[20]D.Friedan,Z.Qiu,and S.Shenker,Phys.Rev.Lett.52,1575(1984);I.Affleck,Phys.Rev.Lett.56,746(1986).[21]A.A.Nersesyan,Phys.Lett.A153,49(1991).[22]In a more realistic model,the Fermi velocities v F0,πof the two bands are different.Thiscan be shown to lead to effective parameters uρ+and K given by(uρ+K)eff=uρ+K, (uρ+/K)eff=uρ+/K−(v F0−v Fπ)2/4。