图形翻折1
- 格式:doc
- 大小:112.76 KB
- 文档页数:6
学科培优数学
“图形的折叠”
学生姓名授课日期
教师姓名授课时长
知识定位
图形折叠问题既考查学生的动手能力,又考查了想象能力,往往与全等、相似、面积、对称性质联系在一起.涉及到画图、测量、猜想证明、归纳等问题,它与代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
知识梳理
1.关注“两点一线”在翻折过程中,我们应关注“两点”,即对称点,思考自问“哪两个点是对称点?”;还应关注“一线”,即折线,也就是对称轴。
这是解决问题的基础。
2.联想到重合与相等遇到这类问题,我们应马上联想到“重合的线段相等,重合的角相等”,这是解决问题的关键
3. 我们把翻折问题分为两类:“依点翻折”和“依线翻折”
例题精讲
【试题来源】
【题目】
【试题来源】【题目】
【试题来源】【题目】
【试题来源】【题目】
【试题来源】【题目】
【试题来源】【题目】。
元宝的多种折叠方法
以下是元宝的两种折叠方法:
方法一:
1. 选择一张长方形的纸,长与宽的比例约为3:2。
2. 将长方形纸的宽边向上翻折。
3. 把下面的边向上折一些,使翻折后图形的三个部分为1:1:1的比例。
4. 把纸翻过来,将最外边的纸展开并向上折,使之与前面的边高度相同。
5. 把下面左右两边的角沿刚才的边向里面折一个三角,上面的角向下翻折。
6. 把上面的边向下翻折过来,撑开中间的空隙并挤兑一下,一个简单的纸元宝就做好了。
方法二:
1. 准备一张正方形的纸。
2. 将正方形纸的两条对角线分别对折,得到一个双层三角形。
3. 将三角形的顶部角折向底部角,然后展开。
4. 将三角形的底部角向上翻折,使其与顶角对齐,然后展开。
5. 将三角形的一侧的角沿中线对折,然后展开。
6. 将三角形的另一侧的角沿中线对折,然后展开。
7. 将纸翻转过来,重复步骤2-6。
8. 将两个三角形顶部开口处朝上,然后将两个三角形沿着中线对接,形成一个元宝形状。
9. 最后将元宝的边缘整理平滑,一个完整的元宝就折好了。
希望以上信息对您有帮助。
如果想要了解更多方法,建议在互联网上搜索或请教手工纸艺专家。
勾股定理的翻折问题(一)勾股定理的翻折问题引言勾股定理是数学中的基本定理之一,它描述了直角三角形中三边关系的定理。
而“勾股定理的翻折问题”则是指在勾股定理的基础上,通过将定理中的元素进行翻折、转化或推广,来探讨更多有趣的数学问题。
相关问题以下是勾股定理的翻折问题的一些相关问题:1.翻折证明定理: 如何通过翻折的方法来证明勾股定理?这个问题可以引导我们思考证明方法的灵活性,也有助于对勾股定理的理解。
2.翻折应用: 除了证明定理,我们是否可以通过翻折的方法应用勾股定理解决其他几何问题?通过翻折,我们能否得到更多的几何性质?这个问题可以拓宽我们对勾股定理的应用范围。
3.翻折推广: 能否将勾股定理中的三角形翻折推广到其他多边形?通过翻折的方法,我们能否得到其他几何图形的边长关系和角度关系?这个问题可以引出更多几何形状的特性和定理。
4.几何拼贴: 是否可以利用翻折的方法构建出更多有趣的几何拼贴?通过翻折的方式,我们能否创造出新的几何形状、图案和艺术作品?这个问题可以在美学和创意领域引发讨论。
解释说明勾股定理的翻折问题是一种通过对定理中的元素进行折叠、转化和推广来探索更多数学问题的方法。
通过翻折,我们可以在勾股定理的基础上发现新的性质、解决其他几何问题,并且在美学和艺术领域中创造出有趣的图案和作品。
这些相关问题的探讨和解答不仅可以拓宽我们对勾股定理的理解和应用,还能够培养我们的数学思维、创造力和美学观察力。
综上所述,勾股定理的翻折问题是一个具有挑战性和创造性的数学探索领域,通过对相关问题的研究,我们可以进一步认识和应用勾股定理,同时也可以在艺术和美学领域中发现新的可能性。
上海数学七年级上知识点注意:斜体为易错点、划线为难点、其余为重点第九章整式知识梳理一、代数式的有关概念(1)代数式的分类单项式代数式整式多项式分式(2)整式:没有除法运算或虽有除法运算而除式里不含字母的有理式叫做整式。
二、同类项、合并同类项所含的字母相同并且字母的指数也分别相同的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变。
三、去括号及添括号(1)去括号法则:括号前是“+”号,去掉括号和它前面的“+”号,括号里各项都不改变符号;括号前是“-”,去掉括号和它前面的“-”号,括号里各项都改变符号。
(2)添括号法则:添括号,括号前面是“+”号,括到括号里的各项都不变符号,括号前面是“-”,括到括号里的各项都改变符号。
四、整式的运算(1)数的运算律对代数式同样适用。
(2)整式的加减:整式的加减法实际上就是合并同类项,遇到括号,一般要先去掉括号,去括号的方法是:(3)幂的运算法则同底数幂相乘,底数不变,指数相加,即:(m、n都是整数)幂的乘方,底数不变,指数相乘。
即:(m、n都是整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(n都是整数)同底数幂相除,底数不变,指数相减。
即(都为整数)(4)整式的乘法单项式及单项式相乘,把系数、同底数幂分别相乘,作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式及多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
即多项式及多项式相乘,先用一个多项式的每一项乘以另外一个多项式的每一项,再把所得的积相加。
即(5)乘法公式平方差公式两个数的和及这两个数的差的积等于这两个数的平方差,即:完全平方公式两数和(或差)的平方,等于它的平方和加上(或者减去)它们积的2倍,即:五、因式分解把一个多项式化为几个整式的积的形式,这种式子的变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
一张纸的折叠方法大全纸张折叠,又称纸艺,是一种富有创造性和趣味性的活动。
它不仅能锻炼我们的动手能力,还能培养我们的空间想象力和审美能力。
本文将介绍一张纸的多种折叠方法,让你轻松掌握这项有趣的艺术。
一、基础折叠方法1.对折法:将纸张对折,再展开,形成一条中心折痕,然后根据需要沿折痕折叠。
2.翻折法:将纸张一端翻折,再沿翻折后的边缘继续翻折,形成连续的折痕。
3.折叠三角法:将纸张对折,再沿对折线两侧分别折叠,形成一个三角形。
4.捏折法:将纸张一端捏住,沿捏住的部分折叠,形成一条折痕。
二、进阶折叠方法1.箱形折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,形成一个箱形。
2.飞机折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,最后将一端沿中心折痕折叠。
3.船形折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,最后将两端分别沿中心折痕折叠。
4.花瓣折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,最后将折好的部分展开,形成花瓣状。
三、高级折叠方法1.龙形折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,接着将两端分别沿中心折痕折叠,最后展开,形成龙形状。
2.鸟形折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,接着将一端沿中心折痕折叠,最后展开,形成鸟形状。
3.心形折叠法:将纸张对折,然后沿对折线两侧分别折叠,再沿对折线折叠,接着将两端分别沿中心折痕折叠,最后展开,形成心形状。
4.立体图形折叠法:通过组合多种基础折叠方法和进阶折叠方法,创作出立体图形,如立方体、球体等。
总结:一张纸的折叠方法多种多样,本文仅介绍了部分折叠方法。
在实际操作中,你可以根据自己的想象力和创造力,将不同折叠方法进行组合,创作出更多有趣的纸艺作品。
图形的翻折运动
在几何画板中,怎样把一个图形、图片做翻折运动,使得左右两部分重合?
赵化中学 郑宗平
下面以四边形为例,其它图形、图片做翻折运动可以类推,见下面操作步骤和操作流程图: 1、画一个四边形并命名为ABCD ,在图形的一侧画一条线段(或以图形一边也可以,根据需要而定);
2、将线段标记镜面,选中四边形ABCD →变换→反射,出现另一侧的全等图形''''A B C D ;
3、在四边形ABCD 旁边画一个四边形EFGH ,形状和ABCD 近似即可.(可以采取复制的办法)(注意对应点ABCD →EFGH →''''A B C D );
4、依次选中“''''E A F B G C H D →→→→、、、 ”→编辑→操作类按钮→移动→将标签命名,如“向右翻折”→确定;
5、单击按钮“向右翻折”,当四个动点还没有运动到目标图形''''A B C D 之前→再次单击按钮“向右翻折”→让运动图形停下来,这一步要特别注意;
6、依次选中“E A F B G C H D →→→→、、、 ”→编辑→操作类按钮→移动→将标签改为“向左翻折”→确定;
7、隐藏不需要的部分,该设置虚线的部分设置成虚线;还可以选中刚才的两个按钮→编辑→操作类按钮→系列.做成一个动画按钮,单击系列动画按钮,图形即可连续翻折运动,操作起来更方便.
选中四边形ABCD 的四个点→构造→四边形内部(或设置其它阴影),增添视觉效果!
下面是今天我制作的图形翻折运动示意图部分,我想若作为课件的组成部分,会很好的
调动学生学习的热情:
B
B。
解决翻折问题的关键:找准“变”与“不变”作者:韩文美来源:《新高考·数学基础》2019年第04期立体几何的翻折问题是指将一平面图形翻折后变成空间图形,然后根据平面图形的数量关系、位置关系等的变化与否来研究空间图形中各元素间的数量关系、位置关系等问题.所以,解决翻折问题的关键是确定翻折前后的不变量与改变量.一般情况下,在折线同侧的量,折叠前后不变,“跨过”折线的量,折叠前后可能会发生变化,把握这点是解决这类问题的关键.一、翻折中的判定问题通过平面图形的翻折后变成空间图形,进而研究翻折后的空间图形中的点、线、面的位置关系,判定相关的点、线、面的平行或垂直关系,以及相应量的变化等.例1 如图1,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△Al DE.若M为线段A,C的中点,则在△ADE翻转过程中,正确的命题是____ .故填答案:①②④.点评平面图形翻折为空间图形问题的关键是看翻折前后线面位置关系的变化,不变的和变化的量反映了翻折后的空间图形的结构特征,据此可加以分析与判断.二、翻折中的距離问题通过平面图形的翻折后变成空间图形后的距离问题,往往涉及空间几何体的表面积与体积,以及空间距离等数量关系的证明与计算等.例2 如图3,菱形ABCD的对角线AC与BD交于点0,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D'EF的位置.三、翻折中的探究问题结合平面图形的数量关系与位置关系研究翻折后的空间图形中的点、线、面的开放与创新探索问题,包括点、线的位置确定,存在性或探究性问题等.例3 如图4,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点.将△ADE沿DE翻折起到△A1DE的位置,使A1F⊥CD,如图5.(1)求证:DE∥平面AlCB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使AC⊥平面DEQ?说明理由.分析(l)由D,E分别为AC,AB的中点,通过线线平行的转化,易证DE∥平面A1 CB;(2)由题中线线垂直可证DE⊥平面A1DC,进而有DE⊥A1F,结合线面垂直的判定可证A1F⊥平面BCDE,进而得到对应的线线垂直关系;(3)分别取A1C,A1B的中点P,Q,可得PQ∥BC,平面DEQ即为平面DEP,结合(2)中的线面垂直关系的转化,利用线线垂直关系来证明对应的线面垂直关系,进而得以解决存在性问题.点评在解决翻折中的开放、创新或探究性问题时,一般通过先确定存在性、位置关系等开放性结论,再通过合理的推理与分析来说明.而正确的翻折处理、直观图的判定以及科学的推理论证都是必不可少的.立体几何的翻折问题背景简单,但立意较深,对考生的空间想象能力要求很高,可以有效改善同学们对立体几何的思维定势,构造空间立体几何结构直观图,使静态数学动态化,优化思维品质。
怎样利用几何画板制作一个图形的翻折动画?图形的翻折是几何图形的常见变换方式,我们常说的折纸就是属于图形的翻折,它的实质是得到关于某直线成轴对称的图形;那么在几何画板中怎样制作一个图形的翻折动画呢?下面以三角形为例谈谈其操作步骤,其它图形、图片做翻折动画的制作可以类推!1.画一个"ABC,在图形的一侧画一条线段(或以图形一边也可以,根据课件的需要而定);(下面左图)2.将线段标记镜面(选中线段双击或通过“变换”来标记均可)T选中"ABC T变换T反射,出现关于这条线段成轴对称的图形" A'B'C';(下面中图)3.在这个"ABC旁边画一个" DEF,形状和ABC近似即可,用来叠合的图形" DEF要是可变的,这一点要注意,其它的可类推!(可以采取复制的办法更简捷)(注意三个图形的对应点按顺序是ABC T DEF T A'B'C');(下面右图)标签命名为如"向右翻折”,选好速度等T确定;(下面左图)5.单击按钮“向右翻折” T当四个动点还没有运动到目标图形A'B'C''之前T再次单击按钮“向右翻折” T 让运动图形停下来.这一步还是由必要的,使设置下一个动画按钮“向左翻折”方便选点;6.依次选中“ D A、E B、F C ” T编辑T操作类按钮T移动T将标签改为“向左翻折”、选好速度等T确定;(下面右图)7.制作系列组合动画按钮:可以选中刚才的两个按钮T编辑T操作类按钮T系列T依序进行T设置好两个翻折动画之间的间隔时间等,这样做成一个动画组合按钮,单击系列动画按钮,图形即可连续作向右、向左的翻折运动,操作起来更方便T T移动T可将8•隐藏不需要的部分,该设置虚线的部分设置成虚线;还选中"ABC的三个点T构造T 三角形内部(或设置其它阴影),增强动画视觉效果!下面是我制作的另外一些图形翻折运动示意图部分,我想若作为课件的组成部分,会很好的调动学生学习的热情:注:1.在制作图形的翻折动画时要注意选点的对应顺序,否则动画会变形;2.用来叠合的过渡的图形要是可变的,这一点要注意,比如上面第3操作步骤的"DEF ;又比如半圆翻折,用来要叠合的图形最好是另外三点构造的可变的弧,半圆采用复制好像行不通!3.翻折动画可以看作是图形变换的“反射”和“平移”的结合,其它动画可借鉴.郑宗平2018 年5月10日编创E向上翻折向下翻折|上下翻折。
初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.3.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,得折痕DG,求AG的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD沿BE折叠,使得BA边与BC重合,然后再沿着BF折叠,使得折痕BE也与BC边重合,展开后如图所示,则∠DFB等于()注意折叠前后角的对应关系5.如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'CA BD6.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D重合.MN 为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.54132GD‘FC‘DB CAE二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()图c图b图aCDG FEACGDFEAFDB CA EB Ba2130°BEFACD本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG 15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠17.如图,把Rt△ABC(∠C=90°),使A,B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则CE:AE=18.在△ABC中,已知AB=2a,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的14.(1)当中线CD等于a时,重叠部分的面积等于;GEFDAEFDB CABC60cm(2)有如下结论(不在“CD等于a”的限制条件下):①AC边的长可以等于a;②折叠前的△ABC的面积可以等于32a2;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C′DE,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;(2)如图(2)把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;(3)如图(3)把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE,∠2=180°-2∠CED,再根据三角形内角和定理比可求出答案;(2)连接DG,将∠ADG+∠AGD作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'CDA B231EB'CD BA21图(1)C'AC BDE12C'ACDE21GC'ABCDE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
第1讲翻折问题专题解析版【例题1】如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为.【解析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点,∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=,∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠,∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2,∴BE=2∵CD∥AB,∴∠ABE=∠BEC=90°在Rt△BEF中,EF2=BE2+BF2=12+(AB﹣EF)2.∴EF=,∴sin∠EFG===,故答案为:【例题2】如图,在矩形ABCD中,AB=3,BC=4,点E是边AB上一点,且AE=2EB,点P 是边BC上一点,连接EP,过点P作PQ⊥PE交射线CD于点Q.若点C关于直线PQ 的对称点正好落在边AD上,求BP的值.【解析】过点P作PE⊥AD于点E,∴∠PEC'=90°∵矩形ABCD中,AB=3,BC=4∴∠EAB=∠B=∠C=∠QDC'=90°,CD=AB=3∴四边形CPED 是矩形 ∴DE =PC ,PE =CD =3∵AE =2EB ,∴AE =2,EB =1 设BP =x ,则DE =PC =4﹣x ∵点C 与C '关于直线PQ 对称 ∴△PC 'Q ≌△PCQ∴PC '=PC =4﹣x ,C 'Q =CQ ,∠PC 'Q =∠C =90° ∵PE ⊥PQ∴∠BPE +∠CPQ =90° 又∵∠BEP +∠BPE =90° ∴∠BEP =∠CPQ ∴△BEP ∽△CPQ同理可证:△PEC '∽△C 'DQ ∴,,∴CQ ==x (4﹣x )∴C 'Q =x (4﹣x ),DQ =3﹣x (4﹣x )=x 2﹣4x +3 ∴,∴C 'D =3x ,EC '=∵EC '+C 'D =DE ,∴,解得:x 1=1,x 2=∴BP 的值为1或【例题3】如图,矩形OABC 中,OA =4,AB =3,点D 在边BC 上,且CD =3DB ,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上,则OE 的长为_________.【解析】连接A ′D ,AD , ∵四边形OABC 是矩形,∴BC =OA =4,OC =AB =3,∠C =∠B =∠O =90°, ∵CD =3DB ,∴CD =3,BD =1, ∴CD =AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上, ∴A ′D =AD ,A ′E =AE , 在Rt △A ′CD 与Rt △DBA 中,,∴Rt △A ′CD ≌Rt △DBA (HL ), ∴A ′C =BD =1, ∴A ′O =2,∵A ′O 2+OE 2=A ′E 2,∴22+OE 2=(4﹣OE )2, ∴OE =,【例题4】如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF的长为.【解析】连接BF ,∵BC =6,点E 为BC 的中点, ∴BE =3, 又∵AB =4, ∴AE ==5,∴BH =,则BF =,∵FE =BE =EC ,∴∠BFC =90°, 根据勾股定理得,CF ===.【例题5】如图,将边长为6的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N(1)若CM =x ,则CH = (用含x 的代数式表示); (2)求折痕GH 的长.【解析】(1)∵CM =x ,BC =6, ∴设HC =y ,则BH =HM =6﹣y ,法2:亦可过E 作EG ⊥FC ;或者过F 作MN 分别垂直AD 和BC故y2+x2=(6﹣y)2,整理得:y=﹣x2+3,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,∴=,解得:HC=﹣x2+2x,故答案为:﹣x2+3或﹣x2+2x;(2)方法一:∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=2,x2=6,当x=2时,∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN﹣EM=6﹣5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴=,∴=,解得:NG=,由翻折变换的性质,得AG=NG=,过点G作GP⊥BC,垂足为P,则BP=AG=,GP=AB=6,当x=2时,CH=﹣x2+3=,∴PH=BC﹣HC﹣BP=6﹣﹣=2,在Rt△GPH中,GH===2.当x=6时,则CM=6,点H和点C重合,点G和点A重合,点M在点D处,点N在点A处.MN同样经过点E,折痕GH的长就是AC的长.所以,GH长为6.方法二:有上面方法得出CM=2,连接BM,可得BM⊥GH,则可得∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==2.【例题6】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).【解析】(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).精品练习1.如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,若CE⊥AD,则cos∠EFG的值为.【解析】如图,过点A作AH⊥BC于点H,连接BE,过点P作PE⊥AB,∵AB=15,tan∠ABC=,∴AH=9,BH=12,∴CH=3,∵四边形ABCD是菱形,∴AB=BC=15,AD∥BC,∵AH⊥BC,∴AH⊥AD,且AH⊥BC,CE⊥AD,∴四边形AHCE是矩形∴EC=9,AE=CH=3,∴BE===3,∵将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,∴BF=EF,BE⊥FG,BO=EO=∵AD∥BC,∴∠ABC=∠P AE,∴tan∠ABC=tan∠P AE=,且AE=3,∴AP=,PE=,∵EF2=PE2+PF2,∴EF2=+(15﹣EF+)2,∴EF=,∴FO===∴cos∠EFG==,故答案为:2.如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.【解析】如图,作AH⊥CD于H,交BC的延长线于G,连接AC′.由题意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,∴△AFD′≌△AHD(AAS),∴∠F AD′=∠HAD,∵∠EAD′=∠EAD,∴∠EAB=∠EAG,∴=(角平分线的性质定理,可以用面积法证明)∵AB∥CD,AH⊥CD,∴AH⊥AB,∴∠BAG=90°,∵∠B=∠D,∴tan B=tan D==,∴=,∴AG=,∴BG===,∴BE:EG=AB:AG=4:3,∴EG=BG=,在Rt△ADH中,∵tan D==,AD=5,∴AH=3,CH=4,∴CH=1,∵CG∥AD,∴=,∴CG=,∴EC=EG﹣CG=﹣=.故答案为.3.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:54如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在Rt△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在Rt△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.5如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【解析】∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为6.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为2.【解析】过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,则四边形AOGO′为矩形,∴O′G=AO=6,∵沿EF折叠后所得得圆弧恰好与半径OB相切于点G,∴与所在圆的半径相等,∴点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∴Rt△OEH∽Rt△OO′A,∴=,即=,解得x=2,即O到折痕EF的距离为2.故答案为2.7.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.【解析】设⊙O与A′D′相切于点F,连接OF,OE,则OF⊥A′D′,∵OC=OE,∴∠OCE=∠OEC,∵四边形ABCD是矩形,∴∠A=∠B=A′=90°,由折叠的性质得:∠AEC=∠A′EC,∴∠B+∠BCE=∠A′EO+∠OEC,∴∠OEA′=∠B=90°,∵OE=OF,∴四边形A′FOE是正方形,∴A′E=AE=OE=OC,∵BE=AE,设BE=3x,AE=5x,∴OE=OC=5x,∵BC=AD=4,∴OB=4﹣5x,在R t BOE中,OE2=BE2+OB2,∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),∴AB=8x=.故答案为:.8.如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=2,⊙O半径=.【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,∵△ADE折叠至△A′DE,∴DA′=DA=x,∠DA′E=∠A=90°,∴DA′与⊙O相切,在△ODA′和△OCF中∴△DOA′≌△FOC.∴DA′=CF=x,∵DG是⊙O的切线,OH⊥DG,∴H点为切点,∴DH=DA′=x,GH=GC=CF+GF=x+1,在Rt△DCG中,∵DC2+CG2=DG2,∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,∴AD=2,设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,在Rt△DOA′中,∵DA′2+OA′2=DO2,∴22+r2=(4﹣r)2,解得r=,即⊙O的半径为.故答案为2,.9.如图1,在△ABC中,AC=6,BC=8,AB=10,分别以△ABC的三边AB,BC,AC为边在三角形外部作正方形ABDE,BCIJ,AFGC.如图2,作正方形ABDE关于直线AB对称的正方形ABD′E′,AE′交CG于点M,D′E′交IC于点N点D′在边IJ上.则四边形CME′N 的面积是24.【解析】∵正方形ABDE关于直线AB对称的正方形ABD′E′,∴AE′=AB=10,∠E′AB=90°,∠AE′N=90°,∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ACB为直角三角形,∴AC2=BC•MC,∴MC==,∵∠MAC=∠NAE′,∴Rt△ACM∽Rt△AE′N,∴=,即=,∴E′N=,∴四边形CME′N的面积=S△AE′N﹣S△ACM=×10×﹣×6×=24.故答案为24.10.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为.【解析】设BC与D′F交于点K.CF=a,D′K=b,∵四边形ABCD是菱形,∠A=60°,∴∠C=60°,∠D′=∠D=120°,∵KF⊥CD,∴∠KFC=90°,∴∠FKC=∠BKD′=30°,∴∠KBD′=180°﹣∠D′﹣∠BKD′=30°,∴BD′=b,BK=b,KC=2a,KF=a,∵BC=CD=D′F+CF,∴b+2a=b+a+a,∴(﹣1)a=(﹣1)b,∴a=b,∴==,故答案为.11.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=﹣1.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为:﹣1.12.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,当线段AF=AC时,BE的长为.【解析】连接AD,作EG⊥BD于G,如图所示:则EG∥AC,∴△BEG∽△BAC,∴==,设BE=x,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∴==,解得:EG=x,BG=x,∵点D是边BC的中点,∴CD=BD=2,∴DG=2﹣x,由折叠的性质得:DF=BD=CD,∠EDF=∠EDB,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS),∴∠ADC=∠ADF,∴∠ADF+∠EDF=×1880°=90°,即∠ADE=90°,∴AD2+DE2=AE2,∵AD2=AC2+CD2=32+22=13,DE2=DG2+EG2=(2﹣x)2+(x)2,∴13+(2﹣x)2+(x)2=(5﹣x)2,解得:x=,即BE=;故答案为:.13.在正方形ABCD中,(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.【解析】(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∵∠AOF=90°,∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中∵,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH=∠AMD,∵四边形ABCD是正方形,∴AD=CD=FH=5,在△ADM和△FHE中,∵,∴△ADM≌△FHE(AAS),∴EF=AM===.14.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,∠BFC=90°,求的值.【解析】如图,延长EF交CB于M,连接CM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM,∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,设MF=MC=BM=a,AE=EF=x,∵BE2+BM2=EM2,即(2a﹣x)2+a2=(x+a)2,解得:x=a,∴AE=a,∴==3.15.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.【解析】(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠F AE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.16.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD 上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解析】(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.。
几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=A.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.335.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.712.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.413.(2018·湖北省武汉·3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A. B.C.D.二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.【探究篇】19.(2018年江苏省泰州市•12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)20.(2018年江苏省宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD 沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=,∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=.故选:C.【点评】本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π【考点】MO:扇形面积的计算;P9:剪纸问题.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=OA=OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=﹣×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.故选A3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.33【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=12AB,EF=32,∴AB=AC=3,∵∠BAC=90°,∴BC=2,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.7【解答】解:由折叠的性质可得AE=A1E.∵△ABC为等腰直角三角形,BC=8,∴AB=8.∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x.在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5.故答案为:5.故选B12.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.故选B.13. (2018·湖北省武汉·3分)如图,在⊙O 中,点C 在优弧上,将弧沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为,AB=4,则BC 的长是( )A .B .C .D .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=3 2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB , ∴AD=BD=AB=2,在Rt △OBD 中,OD=22(5)2 =1, ∵将弧沿BC 折叠后刚好经过AB 的中点D .∴弧AC 和弧CD 所在的圆为等圆, ∴=,∴AC=DC , ∴AE=DE=1,易得四边形ODEF 为正方形, ∴OF=EF=1,在Rt △OCF 中,CF=22(5)1 , ∴CE=CF+EF=2+1=3, 而BE=BD+DE=2+1=3, ∴BC=3.故选:B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理. 二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若=,则= .【解答】解:连接GE .∵点E 是CD 的中点,∴EC=DE .∵将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,∴EF=DE ,∠BFE=90°.在Rt △EDG 和Rt △EFG 中,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=95,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=13﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长. 【答案】(1)解:连接OC,OD,由翻折可得OD=OC,∵OC是⊙O的半径,∴点D在⊙O上。
八年级上册数学翻折问题(一)八年级上册数学翻折问题简介该问题是八年级上册数学课程中的一个重要问题,是培养学生逻辑思维和解决问题能力的有效方式。
相关问题及解释说明以下是与该问题相关的一些具体问题及其解释说明:1.什么是翻折问题?–解释:翻折问题是指给定一张平面图形,通过折叠或翻折来得到新的图形或特定属性。
2.翻折问题有哪些应用?–解释:翻折问题在日常生活中有许多应用,如折叠纸飞机、纸盒等;在几何学中,其应用包括判定图形的对称性、相似性等。
3.如何解决一个翻折问题?–解释:解决一个翻折问题需要先理解给定的图形、折叠方式和要求的结果,然后通过逻辑推理和实践操作来找到解决方案。
4.有哪些常见的翻折问题?–解释:常见的翻折问题包括:给定一个正方形纸张,如何将其折叠成一个三角形;给定一个长方形纸张,如何将其折叠成一个心形等。
5.翻折问题与几何学有何关联?–解释:翻折问题与几何学密切相关,通过翻折可以展现图形的对称性、相似性,帮助学生理解几何形状的抽象概念。
6.翻折问题对学生的培养有何益处?–解释:翻折问题能够培养学生的逻辑思维和解决问题的能力,同时也可以增强学生对几何形状的认识和理解。
7.有哪些解决翻折问题的方法?–解释:解决翻折问题的方法有很多,可以采用试错法、逆向思维、构造法等,具体方法取决于问题的要求和复杂程度。
8.如何培养学生解决翻折问题的能力?–解释:培养学生解决翻折问题的能力需要多进行练习和实践,同时引导学生合理利用几何知识和思维方法,通过提出问题、讨论、解决问题等方式进行培养。
9.翻折问题在数学教学中的重要性?–解释:翻折问题可以帮助学生将抽象的数学概念转化为具体的操作和实践,增强学生对数学的兴趣和理解,提高数学教学的有效性。
10.如何将翻折问题与其他数学知识联系起来?–解释:将翻折问题与其他数学知识联系起来可以通过引入几何形状的属性、相关定理和公式等方式,以及与代数、数学模型等内容的结合。
通过解决八年级上册数学翻折问题,学生能够培养自己的逻辑思维和解决问题的能力,并且加深对数学知识的理解和运用。
初中数学翻折教案一、教学目标:1. 让学生理解翻折变换的定义及基本性质。
2. 培养学生运用翻折变换解决实际问题的能力。
3. 提高学生对几何图形的认识,培养学生的空间想象力。
二、教学内容:1. 翻折变换的定义及基本性质。
2. 翻折变换在实际问题中的应用。
3. 练习题解析。
三、教学重点与难点:1. 翻折变换的定义及基本性质。
2. 如何运用翻折变换解决实际问题。
四、教学过程:1. 导入:利用实物或图片,如折叠纸张、折扇等,引导学生观察并思考:什么是翻折?翻折后物体的形状是否发生变化?2. 新课讲解:a) 翻折变换的定义:在平面内,将一个图形沿着某条直线折叠,使得折叠前的图形与折叠后的图形重合,这种变换称为翻折变换。
b) 翻折变换的基本性质:(1) 翻折变换不改变图形的大小和形状。
(2) 翻折变换的中心线(折叠线)垂直于被折叠的边。
(3) 翻折变换的对应点、对应线段、对应角相等。
c) 翻折变换在实际问题中的应用:如制作对称图案、计算几何题等。
3. 练习题解析:设计一些有关翻折变换的练习题,让学生独立解答,然后进行讲解和分析。
4. 课堂小结:总结本节课所学内容,强调翻折变换的定义、基本性质及实际应用。
5. 作业布置:布置一些有关翻折变换的练习题,让学生巩固所学知识。
五、教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对翻折变换的理解和应用能力。
同时,注重培养学生的空间想象力,为学生后续学习立体几何打下基础。
六、教学评价:通过课堂表现、练习题解答和课后作业,评价学生对翻折变换的掌握程度。
同时,关注学生在解决问题时的创新意识和实践能力。
数学翻折问题解题思路1. 嘿,宝子们!说到数学翻折问题的解题思路啊,就像是给图形玩一场变形魔法。
你得先把翻折前后的图形关系搞清楚,这就好比你要知道魔术师在把东西变没之前和之后的联系。
比如说一个三角形沿着某条线翻折,那翻折前后对应的边肯定是相等的,对应的角也是相等的。
这就像双胞胎,虽然可能位置变了,但本质上是一样的。
要是连这个都搞不明白,那在解题的时候就像盲人摸象,完全没方向啦。
2. 哟呵,数学翻折问题可没那么可怕!你看啊,解题思路里很重要的一点就是找对称轴。
对称轴就像是图形的脊梁骨一样,沿着它翻折图形才不会乱了套。
就像折千纸鹤,你得按照那条中线来折,千纸鹤才能成型。
我有次看我同学做翻折题,连对称轴都找错了,那结果能对吗?简直就是在黑暗里乱撞的无头苍蝇,太惨咯。
3. 宝子们,解数学翻折问题啊,你得学会在脑海里把图形还原。
这就跟玩拼图似的,你得知道每一块原来是在什么位置的。
比如说一个矩形翻折了一部分,你要想象它没翻折之前的样子。
我自己刚开始做这种题的时候,就老是想不出来原来的图形,急得我像热锅上的蚂蚁。
可后来我就慢慢掌握窍门了,只要把已知条件都利用起来,就像把拼图的线索都找齐,就能还原出原来的图形啦。
4. 嘿呀,数学翻折问题的解题思路里,关注那些不变量超级重要!就像在一个变化的世界里找到定海神针一样。
不管图形怎么翻折,有些东西是不会变的,比如线段的长度、角的大小。
就拿一个正方形翻折来说,翻折之后虽然形状好像变复杂了,但是原来正方形的边长可不会变啊。
要是你忽略了这些不变量,就像在大海里航行却弄丢了罗盘,肯定迷失方向。
5. 哇塞,解数学翻折问题的时候,要懂得用勾股定理哦。
这就像是在图形的迷宫里找到一把万能钥匙。
你看啊,当图形翻折后形成直角三角形的时候,勾股定理就可以大显身手啦。
我记得有一道题,是一个直角三角形沿着斜边翻折,要求翻折后某条线段的长度。
我当时就想到了勾股定理,就像突然开窍了一样。
要是不会用勾股定理,那这题可就像一座难以翻越的大山横在面前咯。
立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。
解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。
2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。
因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。
实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。
图形
(图形的平移与旋转)
班级: 姓名: 座号: 评分:
一、选择题(每小题3分,共30分)
1、在下列实例中,不属于平移过程的有( )
①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程。
A 、1个 B 、2个 C 、3个 D 、4个
2、如图所示的每个图形中的两个三角形是经过平移得到的是( )
3、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能
4、在图形平移的过程中,下列说法中错误的是( )
A 、图形上任意点移动的方向相同
B 、图形上任意点移动的距离相同
C 、图形上可能存在不动的点
D 、图形上任意两点连线的长度不变 5、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点
D 6、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。
7、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形
8、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°
9、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180° 10、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)
11、经过平移, 和 平行且相等, 相等。
A B
C D 图1
12、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12, 将△ABC 沿射线BC 的方向平移一段距离后得到 △DCE ,那么CD= ;BD= 。
13、我国国旗中五星图案的四颗小五角星可以看作是由 一个小五角星 为旋转中心旋转而成的。
14、到现在为止,已研究过的图形变换有 , , 。
15、如右图3所示,∠AOB=∠COB=60°,OA=OB,OC=OD,把△AOC
绕点O 顺时针旋转60°,点A 将与点 重合,点C 将与 点 重合,因此△AOC 与△BOD 可以通过
得到。
16、正方形至少旋转 能与自身重合,正六边形至少 旋转
能与自身重合。
17、如图4,等边三角形ABC 旋转后能与等边三角形DBC 重合,
那么在图形所在的平面上可以作为旋转中心的点共有 个。
18、如图5,△ABC ≌△CDA,BD 交AC 于点O ,则△ABC 绕点O 旋转 后与△CDA 重合,△ABO 可以由△CDO 绕点 旋转 得到。
三、解答题(5819、(10分)如图,△ABC 沿MN 方向平移3㎝后,成为△DEF 。
(1)点A 的对应点是哪个点? (2)线段AD 的长是多少? (3)∠ABC 与∠DEF 有何关系? (4)从图形中你发现了什么,
说说你的理由。
A B C
F
D
E
M N
C
D
E 图2
A B C D
O 图3 图4
图5
20、(8分)如图,将△ABC 沿MN 方向平移,平移的距离为线段MN 的长,画出平移后的图形。
21、(10分)如右图所示,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后, 能与△ACP ′重合,如果AP=3,求PP ′的长。
22、(10分)如图所示,在等腰直角三角形ABC 中,AD 为斜边上的高,点E 、F 分别在AB 、AC 上,△AED 经过旋转到了△CDF 的位置。
⑴ △BED 和△AFD 之间可以看成是经过怎样的变换得到的?
⑵ AD 与EF 相交于点G ,试判断∠AED 与∠AGF 的大小关系,并说明理由。
A
B
C
M
N
A
B C
P ′ P
23、(10分)某产品的标志图案如图1所示,要在所给的图形图2中,把A 、B 、C 三个菱形通过一种或几种变换,使之变为与图1一样的图案。
(1)请你在图2中作出变换后的图案(最终图案用实线表示) (2)你所用的变换方法是 。
(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述。
)
①将菱形B 向上平移;②将菱形B 绕点O 旋转120°;③将菱形B 绕点O 旋转120°。
24、(10分)如图所示,正方形ABCD 的边长是3㎝,点O 是正方形ABCD 的中心,正方形OGEF 的边长也是3㎝.
(1)求这两个正方形重叠的阴影部分的面积;
(2)如果正方形OGEF 的边长是4㎝,阴影部分的面积又如何? (3)如果正方形OGEF 的边长是5㎝、6㎝,又如何? (4)由此你发现了什么?
图
1 图2
答案
(图形的平移与旋转)
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、C
5、A
6、B
7、C
8、B
9、D 10、B 二、填空题(每小题4分,共32分)
11、对应点所连的线段和对应线段;对应角。
12、13;612。
13、以大五角星的中心。
14、平移,旋转,轴对称。
15、B ;D ;相互旋转。
16、90°;60°。
17、三。
18、180°;O ;180°。
三、解答题(58分)
19、解:(1)点A 的对应点是点D ;
(2)AD=3㎝;
(3)∠ABC=∠DEF ;
(4)从图形发现了:①对应线段、对应角相等;②对应点所连的线段平行(或在同一直线)且相等。
20、解:作图如下:
所以△DEF 就是△ABC 平移后的图形。
21、解:∵△ABP 绕点A 逆时针旋转后与△ACP ′重合,
∴A P ′= AP=3,∠BAP=∠CAP ′, ∴∠PAP ′=∠PAC+∠CAP ′=∠PAC+∠BAP=∠BAC=90°, ∴PP ′=22AP =232 =23.
22、解:⑴△BED 绕点D 顺时针旋转90°得到的△AFD ; △AFD 绕点D 逆时针旋转90°得到的△BED 。
(2)∵△AED 经过旋转到了△CDF 的位置,∴∠ADE=∠CDF,DE=DF,
∵∠EDF=∠ADE+∠ADF, ∴∠EDF=∠CDF+∠ADF, ∵AD 为斜边上的高,∴∠ADC=90°, ∴∠EDF=90
∴△EFD 是等腰直角三角形,∴∠ DFE=45°,
∴∠AGF=∠ADF+∠ DFE=∠ADF+45°, ∵∠CFD=∠ADF+∠DAF=∠ADF+45°,
∴∠AGF=∠CFD, ∵∠AED=∠CFD,
∴∠AED=∠AGF.
A B
C
P ′
P
23、解:(1)变换后的图案如右图所示:
(2)你所用的变换方法是:①将菱形B 向上平移 。
24、解:(1)过点O 分别作OP ⊥AB 于P,OQ ⊥AD 于Q 。
则∠OPM=∠OQN=90°,OP=OQ,
∵∠POM+∠MOQ=∠QON+∠MOQ=90°, ∴∠POM=∠QON, ∴△POM ≌△QON,
∴ABCD APOQ AMON S S S 正方形正方形四边形4
1
== =
4
93412=⨯㎝2。
(2)如果正方形OGEF 的边长是4㎝,则 ABCD APOQ AMON S S S 正方形正方形四边形4
1
== =
4
93412=⨯㎝2。
所以阴影部分的面积不变,仍为
4
9㎝2。
(3)如果正方形OGEF 的边长是5㎝或6㎝,则 ABCD APOQ AMON S S S 正方形正方形四边形4
1
== =
4
93412=⨯㎝2。
所以阴影部分的面积不变,仍为
4
9
㎝2。
(4)由此可以发现:若正方形ABCD 的边长是3㎝不变,改变正方形OGEF 的边长,但两个正方形重叠的阴影部分的面积仍为4
9㎝2。
图2。