复变函数第三章第7节
- 格式:ppt
- 大小:1.38 MB
- 文档页数:21
第三章小结本章主要介绍了求解曲线积分的各种方法,另外还介绍了解析函数与调和函数的关系一、求解曲线积分()Cg z dz ⎰的步骤先利用C 的复数方程将被积函数化简情况1. C 非封闭若能找到包含C 的单连通域B 使得在B 内()g z 处处解析,在此邻域内将给定的曲线积分转化为定积分利用牛-莱公式求解,否则利用参数方程法求解例 计算1C dz z ⎰,其中C 为上半平面的圆1z =,起点为负实轴上的点,终点为正实轴上的点 解:111111C dz dz L nz z z --==⎰⎰判断上述解法的对错情况2. C 封闭1. 寻找被积函数在整个复平面上的全部奇点2. 分析这些奇点与曲线的位置关系,从而确定出曲线内奇点的个数3. 若曲线内无奇点,则由基本定理知()0Cg z dz =⎰,否则 4. 在曲线内分别做一些包围这些奇点的正向圆i C 使得这些圆互不相交互不包含且每个圆内只有()g z 的一个奇点i z ,利用复合闭路定理将计算曲线积分()Cg z dz ⎰的问题转化为计算()iC g z dz ⎰的问题5. 若()()()()n i f z g z n N z z =∈-且()f z 在C 上及C 内解析,利用高阶导公式或柯西积分公式求解,否则参数方程法二、解析函数与调和函数的关系1.解析函数的实虚部均为调和函数2. 满足一定条件的调和函数也可确定解析函数:例知调和函数v ,求解析函数u iv +不定积分法步骤(1). 将'()vvf z i y x ∂∂=+∂∂中的,x y 用z 表示:将关于y 的运算转为关于iy 的运算(2). 将'()f z 关于z 求不定积分得()f z偏积分步骤:围绕C-R 方程展开由C-R 方程中的任一个uvx y ∂∂=∂∂得1(,)()uu dx h x y g y x ∂==+∂⎰利用v ux y∂∂=-∂∂得12'()()g y g y=。
第三章:幂级数展开1. 一致收敛的复变项级数已知复变项级数: +++++=∑∞=)()()()()(2100z w z w z w z w z w k k k ,该级数的前1+n 项和)()()()()(2100z w z w z w z w z w n nk k ++++=∑= 称为级数的部分和。
把部分和序列∑=n k k z w 0)(表示为∑∑∑===+=nk k n k k n k k y x v i y x u z w 0),(),()(,则有:∑∑∑=∞→=∞→=∞→+=nk k n n k k n n k k n y x v i y x u z w 0),(lim ),(lim )(lim这样把复变项级数的收敛问题归结为两个实变项级数。
复变项级数的收敛性和一致收敛性:任给一个数0>ε,总可找出一个),(z N ε,使得当),(z N n ε>时,对于区域E (或曲线l )上的所有点z 来说,部分和满足不等式ε<-∑=)()(0z w z w nk k ,则称级数∑∞=0)(k k z w 在区域E (或曲线l )上收敛于函数)(z w ,如果)(εN 只与ε有关,则称级数∑∞=0)(k k z w 在区域E (或曲线l )上一致收敛于函数)(z w 。
复变项级数在区域E (或曲线l )上收敛和一致收敛的充要条件(柯西判据): 对于区域E (或曲线l )上的所有点z ,任给一个数0>ε,总可找出一个),(z N ε,使得当),(z N n ε>时,有不等式ε<∑++=pn n k kz w1)((其中p 为任意正整数),则级数∑∞=0)(k kz w在区域E (或曲线l )上收敛于函数)(z w ;如果)(εN 只与ε有关,则级数∑∞=0)(k k z w 在区域E (或曲线l )上一致收敛于函数)(z w 。
绝对收敛:如果复变项级数各项的模组成的级数∑∞=0)(k k z w 收敛,则称复变项级数∑∞=0)(k kz w绝对收敛。
第三章 复变函数的积分1.复积分的定义:1()d lim (),nkk k Cf z z f z λξ→==∆∑⎰2.复变函数积分的性质性质3.1(方向性)若函数f (z )沿曲线C 可积,则()d ()d .CC f z z f z z -=-⎰⎰ (3.1)性质3.2(线性性)若函数f (z )和g (z )沿曲线C 可积,则(()())d ()d ()d ,CCCf zg z z f z z g z z αβαβ+=+⎰⎰⎰ (3.2)其中αβ,为任意常数.性质3.3(对积分路径的可加性)若函数f (z )沿曲线C 可积,曲线C 由曲线段12,,,n C C C ,依次首尾相接而成,则12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰ (3.3)性质3.4(积分不等式)若函数f (z )沿曲线C 可积,且对z C ∀∈,满足()f z M ≤, 曲线C 的长度为L ,则()d ()d ,CCf z z f z s ML ≤≤⎰⎰3.复变函数积分的基本计算方法定理3.1 若函数f (z )=u (x,y )+iv (x,y )沿曲线C 连续,则f (z )沿C 可积,且()d d d d d .CCCf z z u x v y i v x v y =-++⎰⎰⎰ (3.5)计算公式:设C 为一光滑或为分段光滑曲线,其参数方程为()()()(),z z t x t iy t a t b ==+≤≤则:()d (())()d .baCf z z f z t z t t '=⎰⎰4. 柯西-古萨定理定理3.2(柯西-古萨定理) 若函数f (z )是单连通域D 内的解析函数,则f (z )沿D 内任一条闭曲线C 的积分为零,即()d 0.Cf z z =⎰5. 复合闭路定理:定理 3.5 若f (z )在复闭路012n C C C C C ---=++++ 及其所围成的多连通区域内解析,则12()d ()d ()d ()d nC C C C f z z f z z f z z f z z =+++⎰⎰⎰⎰ , (3.10)也就是()d 0Cf z z =⎰ .6. 原函数与不定积分(1)上限函数:固定下限z 0,让上限z 1在区域D 内变动,并令z 1=z ,则确定了一个关于上限z 的单值函数()()d .zz F z f ξξ=⎰ (3.8)并称F (z )为定义在区域D 内的积分上限函数或变上限函数. (2)定理3.3 若函数f (z )在单连通域D 内解析,则函数F (z )必在D 内解析,且有F '(z )=f (z ). (3)原函数:定义3.2 若在区域D 内,()z ϕ的导数等于f (z ),则称()z ϕ为f (z )在D 内的原函数.(4)不定积分:全体原函数可以表示为()()z F z C ϕ=+,其中C 为任意常数.称为f (z )的不定积分(5)定理3.4 若函数f (z )在单连通域D 内处处解析,()z ϕ为f (z )的一个原函数, 则11010()d ()()()z zz z f z z z z z ϕϕϕ=-=⎰, (3.9)其中z 0、z 1为D 内的点. 7.柯西积分公式定理3.6 若f (z )是区域D 内的解析函数,C 为D 内的简单闭曲线,C 所围内部全含于D 内,z 为C 内部任一点,则1()()d 2πC f f z i zξξξ=-⎰ , (3.11) 其中积分沿曲线C 的正向.8.高阶导数公式定理3.7 定义在区域D 的解析函数f (z )有各阶导数,且有()1!()()d (1,2,),2π()n n C n f f z n i z ξξξ+==-⎰ (3.13) 其中C 为区域D 内围绕z 的任何一条简单闭曲线,积分沿曲线C 的正向.9.调和函数(1)定义3.3 在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程22220x y ϕϕ∂∂+=∂∂ 的二元实函数(,)x y ϕ称为在D 内的调和函数.调和函数是流体力学、电磁学和传热学中经常遇到的一类重要函数.(2)定理3.10 任何在区域D 内解析的函数f (z )=u (x ,y )+iv (x ,y ),它的实部u (x ,y )和虚部v (x ,y )都是D 内的调和函数.(3)使u (x ,y )+iv (x ,y )在区域D 内构成解析函数的调和函数v (x ,y )称为u (x ,y )的共轭调和函数.或者说,在区域D 内满足柯西-黎曼方程u x =v y ,v x =-u y 的两个调和函数u 和v 中,v 称为u 的共轭调和函数.解析函数f (z )=u +iv 的虚部v 为实部u 的共轭调和函数,u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u+iv 不一定是解析函数.已知单连通域D 内的解析函数f (z )的实部或虚部求f (z )的方法书上已经详细介绍了三种方法,这里不再赘述求积分2e d 1zCz z +⎰ ,其中C 为: |z |=2.。
《复变函数》教学大纲课程编号:121062B课程类型:□通识教育必修课□通识教育选修课□专业必修课□√专业选修课□学科基础课总学时: 32 讲课学时:32 实验(上机)学时:0 学分: 2适用对象:金融数学专业先修课程:数学分析毕业要求:1.掌握数学、统计及计算机的基本理论和方法2.建立数学、统计等模型解决金融实际问题3.具备国际视野,能够与同行及社会公众进行有效沟通和交流一、课程的教学目标《复变函数》是我校金融数学专业的专业选修课程之一,是《数学分析》的后续课程,主要研究复变数之间的相互依赖关系。
复变函数论现已成为微分方程、奇异积分方程、计算数学和概率论等数学分支的主要解析方法,同时也为众多学科提供了广泛的几何定性研究方法。
因此这门课程在专业理论研究与实际应用方面都起着非常重要的作用。
通过本课程的学习,可以进一步培养学生的逻辑思维能力,扩展学生的数学知识,为学生掌握复变函数在科学和技术中的应用打下扎实的基础。
《复变函数》的思想方法与《数学分析》紧密相关。
但是,《复变函数论》并非对《数学分析》内容在复数域中作简单平行推广,而是更注重研究新问题,建立新理论,因此,学生在学习本课程的过程中,应重视基本概念的正确理解、基本理论的系统阐述以及基本运算能力的培养,注意本课程与《数学分析》相关理论的联系与区别。
二、教学基本要求通过本课程的学习,使学生熟练掌握复变函数的基本理论和基本方法,对解析函数、柯西积分定理、柯西积分公式、解析函数的泰勒展开与罗朗展开、留数理论、共性映射理论等有较深入的理解,并能用来解决简单的实际问题。
具体包括:正确理解复数、复平面、复变函数等概念,熟练掌握复数与复变函数运算、性质及应用;熟练掌握解析函数的等价刻划定理特别是柯西-黎曼条件,掌握初等函数的解析性;正确理解复变函数积分的定义,熟练掌握柯西积分定理及其推广形式、柯西积分公式、高阶导数公式以及它们的各种应用;掌握解析函数的泰勒展式、罗朗展式,并能用它来解决实际问题;正确理解留数的定义及留数定理,会用留数计算实积分;理解并掌握分式线性映射概念及其的各种性质,并学会应用。