3[1].3频数分布折线图
- 格式:ppt
- 大小:692.50 KB
- 文档页数:14
频数分布一、频数与频率一般地,如果一组数据共有n个,而其中某一类数据出现了m次,那么m就叫做该类数据在该组数据中的出现频数,而m/n则成为该类数据在该组数据中的出现频率。
二、频数分布1、为了分析一批数据反映的情况,一般地,可按下列步骤来整理:(1)计算这批数据的极差:极差=最大值-最小值.由极差可以知道这些数据的变动范围。
(2)决定组距和组数:将这批数据分组。
组距是指每个小组的两个端点间的距离。
组数=极差/组距组距=极差/组数(3)决定分点:为了避免某些数据正好落在分点上,不好决定它们究竟属于哪一组,一般地把表示分点的数比原数据多取一位小数,并把第一组的起点定为比最小的数据稍小一点的数。
(4)列频数分布表:一批数据中落在每个小组内数据的个数就是这个组的频数,通常用选举时唱票的方法,对落在各个小组内的数据个数进行记录,算出每一个小组的频数,并制成频数分布表。
【频数分布表是表示数据分布的一种形式】注:一般来说,数据越多,分的组数就越多。
当数据在100个以内时,可分成5―12组,各组的组距可以相同,也可以彼此不同。
分组时,要注意使每个数据只落在一个组内。
2、频数(频率)分布直方图和频数分布折线图:(1)画出相互垂直的两条直线,用横轴表示分组情况,纵轴表示频数(或频率),绘出相应的长方形条,就得到了频数(频率)分布直方图。
直方图非常直观的反映了数据的分布状态。
(2)在频数分布直方图的基础上,我们把图中每个小长方形上边的中点描出,再在左右两边各增加一组,并把它的频数看作零,然后自左向右,依次用线段连接各点,这样就得到了相应的频数分布折线图。
★有上述作折线图的过程,可以看出,频数分布折线图可以不通过直方图而直接画出:根据频数分布表,求出各个小组两个分点数值的平均数,这些平均数称为组中值。
用组中值代表这个组的组距,对应这个组中值的纵轴方向上长度表示这组的频数(频率),描出各点。
另外,在横轴上再取两点(一点为最小组中值减去组距,另一点为最大组中值加上组距),就得到频数分布折线图了。
第二十一章统计数据的整理与显示第一节、品质数据的整理与显示本节学习要求:本节具体内容:一、分类数据的整理与显示(一)频数与频数分布1、频数的含义:频数也称次数,是落在各类别中的数据个数.2、频数分布(次数分布):各个类别及其相应的频数全部列出来就是频数分布或称次数分布。
3、频数分布表:频数分布用表格的形式表现出来就是频数分布表.4、分类数据进行整理时常用的指标如下:(1)比例:是指在一个总体当中,各个部分的数量占总体数量的比重,通常反映整体的构成或者整体结构.各部分比例之和等于1。
【例题1—-课后题第4题】比例是一个总体中各个部分的数量占总体数量的比重,各部分的比例之和()A。
大于1 B.小于1 C。
等于1 D.等于100(2)百分比:将比例乘以100就是百分比或百分数。
当分子的数值很小而分母的数值很大时,也可以用千分数来表示比例。
如人口的出生率、死亡率、自然增长率等(3)比率:各不同类别的数量的比值,可以是一个总体中各不同部分的数量对比。
由于比率不是总体中部分与整体之间的对比关系,因而比值可能大于1.为方便起见,比率可以不用1作为基数,而用100或其他便于理解的数作为基数。
比如:人口的性别比就用每100名女性人口所对应的男性人口来表示。
【例题2:2004年单选题】根据第5次人口全国普查的结果,我国男性占总人口的51.63%,女性占总人口的48.37%,那么人口的性别比例应该为()。
A。
100:106.74 B。
93。
67:100C。
106。
74:100 D。
100:93.67在经济和社会问题的研究中,经常使用比率.比如经济学中的积累和消费之比;国内生产总值中第一、二、三产业产值之比等。
比率也可以是同一现象在不同时间或空间上的数量之比.如:某年的国内生产总值与上年的国内生产总值进行对比,得出经济增长率;一个地区的国内生产总值同另一地区的国内生产总值进行对比,反映两个地区的经济发展水平差异。
【例题3:2007年单选题】计算我国国内生产总值中的第一、二、三产业产值之比,是采用了计算()的数据整理方法。
1、频数、频率分布图表制作精析2、“三数错解”剖析3、频数与频率典例剖析1、频数、频率分布图表制作精析 ★ 制图要领一、绘制频数、频率分布直方图的一般步骤:① 计算最大值与最小值的差(极差);② 决定组距与组数;③ 决定分点;④ 列频数、频率分布表;⑤ 分别画出频数、频率分布直方图.二、注意事项:1、绘制直方图的关键是决定组数和组距.分组时应注意:分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最大值与最小值的差,再确定组距与组数.数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.2、列频率分布表时应注意:①每个小组的频数是指落在这个小组的数据的个数.每个小组的频率是指这个小组的频数与数据总数的比值.②掌握几个等量关系:各小组的频数之和等于数据总数;各小组的频率之和等于1.3、画出频数、频率分布直方图:分别以横轴上每组别两边界点为端点的线段为底边,作高为相应频数(频率)的矩形,就得到所求的频数(频率)分布直方图.频数、频率分布直方图不同点是纵轴,一个是频数,一个是频率.4、我们可先列出适当的频数分布表,再作出相应的频数分布直方图,然后顺次连结每个长方形上面一边的中点,就可得所求的频数分布折线图.★ 典例分析 下面以盐城市中考试题为例剖析制作过程:【题目】某中学为了解某年级1200名学生每学期参加社会实践活动的时间,随机对该年时间(天) 4 5 6 7 8 9 10 11 12 13人 数 1 2 4 5 7 11 8 6 4 2① 适当分组:3.5天~5.5天,5.5天~7.5天,…共分为5组;② 计算各组的频数:4天1人,5天2人,所以3.5天~5.5天内共3人;其余类似计算.③ 计算各组的频率:数据总数频数频率,如:503=0.06; 分组频数 频率 3.5~5.53 0.06 5.5~7.59 0.18 7.5~9.518 0.36 9.5~11.514 0.28 11.5~13.5 60.12合计50 1.00(2)画频数与频率分布直方图.①频数分布直方图:横轴表示时间(天数),纵轴为频数.②频率分布直方图:横轴表示时间(天数),纵轴为频率.(3)画频数折线图:2、“三数错解”剖析我们知道,平均数、中位数和众数都是反映数据集中趋势的量,平均数反映的是数据平均水平,中位数反映的是一组数据的中间水平,众数反映的是一组数据的大多数水平。
教你绘制频数分布直方图与折线图频数分布直方图和频数分布折线统计图是描述数据的两种重要统计图,用这两种统计图把数据描述出来,就以直观地了解数据的分布情况及变化规律下面谈谈这两种统计图的画法:一、频数分布直方图画频数分布直方图一般按下列步骤:1计算极差(最大值与最小值的差)2决定组数3列出频数分布表4画出频数分布直方图例小明调查了他们班54名学生的身高,结果(单位:cm)如下:4555请将数据适当分组,并绘制相应的频数分布直方图分析:要绘制频数分布直方图,需要把数据适当分组,数出每一组的频数,得出频数分布表,在此基础上绘制频数分布直方图解:通过观察得到上面数据的最大值是172cm,最小值是141cm,它们的差是(172-141)=31cm将该组数据按身高的范围分为141≤<145,145≤<149,≤…分成7组整理可得下列统计表:身高/cm频数统计学生数(频数)141≤<1453145≤<149正5149≤<153正8153≤<157正9157≤<161正正14161≤<165正7165≤<169正5169≤<1733用横轴表示身高,用纵轴表示频数,并在纵轴上等距离标出5,10,15,以各组学生人数为高画出与此组对应的长方形,得到频数分布直方图(如图1)图1二、频数折线图频数折线图画法如下:1在频数分布直方图的基础上画频数折线图(1)取频数分布直方图中每个长方形上边的中点;(2)在横轴上取两个频数为0的点,在直方图横轴的左边取点(139,0),在直方图横轴的右边取点(175,0);(3)将这些点用线段依次连接起来就得到了频数折线图(如图2)图22根据已有的数据直接画频数折线图(1)把数据分组,求出每个小组两端点的平均数,这些平均数称为组中值,如图141≤<145这个小组的组中值为(141145)÷2=143(2)用横轴表示身高,用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另取两个点(139,0)和(175,0)(3)依次连接这些点就得到了频数折线图(如图3)图3。
频数分布表和频数分布直方图(1)教学目标知识目标1•掌握频数、频率的概念.2•会求一组数据的频数与频率.能力目标1•通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2•培养学生利用图表获取信息的能力/吏学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.情感与价值观目标培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.■教学重点频臺与频数的概念,选择数据表示方式.教学难点各洛统计图表的绘制,识别各种图表所含的信息,各自优缺点.教学方法合作探讨法教具准备投影片教学过程一、导入新课$上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性•使所抽取的样本尽可能准确地反映总体的真实情况•本节课我们继续学习统讣初步中反映数据出现频繁程度的两个量频数与频率.二、讲授新课1•例题讲解我们不仅要学好基础知识,还要强健自己的体呱长大后才能更好地工作•同学们,你们平时最喜爱的体育运动是什么乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毬子……・你最喜爱的体育明星是谁下面是小亮调查的七(1)班50位同学喜欢的足球明星,结果如下:(投影片)A BC D A B AC 呂 d A C 呂 C A A 呂 CA A EA C D A A C DB A.CD A A AC D A C& AAC C (-?D AA CA 代表贝兗汶姆 昌代我费戈 C 代表罗纳尔多 D 代表巴乔根据上面结果,你能很快说出该班同学最喜欢的足球明星吗他的数据表示 方式是什么这些数据没有经过统计、整理,必须把A 、B 、C 、D 的个数全部数清,才 能比较出哪位球星是该班同学最喜欢的•数据越多越不方便,所以我认为小亮的 数据表示方式不太好. (你能设计出一个比较好的表示方式吗小组相互交流,共同探讨. 我们小组用如下方式表示:(二)此种表示方式的优点是什么简单明了,一眼可以看岀哪个最多、哪个最少. 我们小组采用如下方式表示数据.此种表示方式的优点是什么直观,一目了然•不仅可以很快判断出哪个最多,哪个最少,还可比较出 差别是否悬殊很大.从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们 出现的频繁程度不同•我们称每个对象出现的次数为频数(absolute,frequency )・ 而每个对象出现的次数与总次数的比值为频率(relative frequency )・ 分别计算A 、B 、C 、D 的频数与频率. A 的频数为23, A 的频率为兰.50 B 的频数为& B 的频率为殳.25 C 的频数为13, C 的频率为 D 的频数为6, D 的频率为箱.三、课堂练习1. 设汁一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢 分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原 因.(课后完成)[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图•可不可以用频率分布来表示,2•议一议:(投影片)小明、小亮从同一本书中分别随机抽取了 6页,在统计了 1页、2页.3页、 4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率, 并绘制了下图[师]随着统计页数的增加,这两个字岀现的频率是如何变化的[生]频率在至之间变化的字是“的”字•“了”字的频率在至之间变化.的”字 0.10 0. 09 0. 08 0. 07 0. 06 0. 05讹0. 02 0.01卄了”字1 2 3 4 5 6图5-1[师]你认为该书中“的”和“了”两个字使用的频率哪个高[生]我认为是“的"字.3•做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量•结果如下.(单位:厘米)(投影片)158167154■159166169159156166162159156166164160157156160157161158158153158164158163158153157162162159154165166157151146151158160165158163162161154163165162162159157159149164168159153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高•但是,有时只知道这一点还不够,还希望知道身高在哪个范11内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范用内所占的比的大小.(学生填下表)落在各个小组内的数据的个数叫做频数. 小结:整理数据时,可以按照下面的步骤进行.1••计算最大值与最小值的差.2.决定组距与组数.3.决定分点4 •列频率分布表.下节课我们将继续学习对各种数据的统讣表的处理.四、课时小结本节课主要学习了如下内容.1・频数与频率两个基本概念.2 •会求一组数据的频数与频率,并会选择合理的表示方式来表示数据•例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.五、课后作业习题六、活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情•提出问题、探讨解决问题的方法•写一些实习作业,逐步掌握统讣里的实习作业的问题如何表述,完成的步骤、实习报告的写法. 例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象•在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的佔讣更加精确,所确定的抽取样本的对象力求具有代表性•例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校•可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)讣算和分析数据,写出书面报告•为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误•为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.板书设计频数分布表与频数分布直方图(2)教学目标知识目标1•如何收集与处理数据.2•会绘制频数分布直方图与频数分布折线图.3•了解频数分布的意义,会得出一组数据的频数分布.能力H标[•初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2•通过经历调查、统讣、研讨等活动,发展学生实践能力与合作意识. 情感与价值观目标通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1•决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1•首先通过确定调查H的,确定调查对象.2•收集有关数据.3•选择合理的数据表示方式统计数据.4•根据所收集的数据进行数据计算•根据特征数字,估讣总体情况,设计可行的计划与方案,并不断实施与改进方案.大家能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少首先应开展调查•统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.二、讲授新课(出示投影片)这是小丽统讣的最近一个星期李大爷平均每天能卖出的久B、C、D、E五个牌子雪糕的数量.雪糕A 数量131频数131频率B182182C6868D3939E9898合计518518根据上表绘制一张频数分布直方图.(如下)(投影片)根据小丽的统计结果,请你为李大爷设讣一个进货方案.A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些. A多进多少B多进多少D进多少如何通过比例确定A占总数的25%, B占总数的35%, C占总数的13%, D占总数的8%, E占总数的19%.如何确定进货的总数,还应考虑哪些因素还应考虑当天气温情况,天气凉,气温低时少进货•天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化•不能每天都进518支雪糕.2•做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高, 结果(单位cm)•如下:(投影片)141165144171145145158150157150154168168155155169157157157158149150150160152152159152159144154155157145160160160158162155162163155163148163168155145172(表一)填写下表,并将上述数据用适当的统计图表示出来.(表二)同学们想一想,你同父母一起去商丿占买衣服时,衣服上的号码都有哪些,标志是什么我看到有些衣服上标有M、S、L. XL、XXL等号码•但我不清楚代表的具体范用・适合什么人穿•但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察・S代表最小号,身髙在150-155 cm的人适合穿S 号・M号适合身高在155-160 cm的人群着装……•厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范圉分组批量生产.如何确定组距与组数呢分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关•在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数•看看这个组数是否大致符合确定组数的经验法则•在尝试中,往往要比较相应于儿个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm 以下145T49 cm 150754 cm3 6 9155^159 cm 160764 cm 165769 cm16 9 5170 cm以上2小亮是怎么做的先分组,再得到相应各组的学生人数. 根据上表绘制统计图(如下)(投影片)半收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取 点、连线,得到如下的频数分布折线图.(投影片)比较一下各种统计图各自的优缺点. 表一是没有经过整理的数据•数据多,而且数量表示上不简单、不直观•各个 数据所占人数多少也没有直接给岀,还需要计算.表二,优点:数量表示上确切•即准确表示出各个数据所占的人数•缺点:不 能直观反映数据的总体规律•数据也较多.图5 — 3、图5 — 4能直观形象地将数据表示出来,而且能刻画岀数据的总体 规律•中间人数较集中,两边较少.小结•我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的 数据•常用表格与图表两种方式•何时用哪种方式,应根据我们研究问题的侧重点 来定•具体问题具体分析•不要生搬硬套,应多总结、提炼硏究问题的思想和方法. 不要一味去模仿•只要多动脑去思考•我相信同学们会创新岀更好的方法.三、课堂练习-~1•储蓄所太多必将增加银行支出,太少乂难以满足顾客的需求.为此,银行在 某逆蓄所抽样调查了 50名顾客,他们的等待时间(进入银行到接受受理的时间 间隔,单位mi 门)如下:1520 18 3 25 34 6 024 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 42 34 26 14 25 40 14 24 11(1) 将数据适当分组,并绘制相应的频数分布直方图.(2) 这50名顾客的平均等待时间是多少根据这个数据,你认为应该给银行 提什么建议分析:①先计算最大值与最小值的差•在上面的数据中,最大值为42,最 小值为16-9//\\.9_--、7715 10馳分布臓图学生人数 20身高图5 —450. A42-0=42.®决定组距与组数•③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.四、课时小结本节课学习了如下内容.1•如何整理所收集的数据.2•将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3•各种统计图、表的优缺点.4•根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作•例如频率分布直方图, 以及它的意义.五、课后作业习题六、活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么2 •分组时应注意哪些问题。
交流意识优秀率、极差、标准差[新课学习]一、数据的分组整理将一组数据分成若干个数段,每个分数段是一个“组区间”,分数段两端的数值是“组限”,在一组两端数值中最大的数值为上限,最小的数值为下限,分数段的最大值与最小值的差为“组距”,分数段的个数是“组数”。
小结:分组整理的方法——⑴确定分组的方法并分组①计算极差;②确定组距和组数,,组数取大于商的最小整数;③决定组限并分组。
注意:各分数段中的分数,通常包括分数段的最低分,不包括最高分。
二、频数、频率与频数分布表频数:落在各个小组内的数据的个数是这一小组的频数。
(每个分数写P153表格通过引导学生动手实践完成数据的整理,使学生掌握一定统计知识和方法通过对数据分段的分数的个数)频率:每个小组的频数与数据总数的比值叫做这一小组的频率。
计算公式:完成频数分布表思考回答问题分组讨论回答问题学生练习:书P155小结所学黑板布的整理使学生学会用统计知识分析解决实际问题,体会统计在社会生活和科学领域中的作用和价值想一想:根据上表,回答以下问题⑴组数是多少?举例说明组区间是什么?⑵在“80~90”这一组中,组限各是什么?哪个是下限,哪个是上限?组距是多少?频数是多少?频率有多大?⑶假设在“70~80”这一组中,如果频数已知,频率漏掉,怎样补上?如果频数漏掉,怎样补上?如果频数、频率都漏掉,又怎样补上?小结规律:①各小组的频数之和等于数据总数;②各小组的频率之和等于1。
观察频数分布表,从以下几方面对数据分布信息进行分析:⑴数据在哪个组分布最多最集中(称该组为众数组),在哪个组分布最少,各占总数的比值(或百分比)是多少。
⑵各组数据分布的数量变化趋势是什么。
⑶测算中位数在哪个组(该组称为中位数组),获得数据分布状态的信息。
⑷测算平均数=各组组中值×该组频率的积之和(组中值=),从中体会频数分布的作用。
[课堂小结]:分组整理的方法⑴确定分组的方法并分组⑵累计各组的数据个数(频数),有时要计算频率[作业]:白皮练习册18.3内容板书设计§ 18.3 频数分布表与频数分布图(一)一、数据的分组整理二、频数、频率与频数分布表1. (略)2.教学后记学科数学课题§18.3 频数分布表与频数分布图(二)授课人张莉班级二(5,6)时间月日课型新课教学目标知识与技能:1.会画频数分布直方图和频数分布折线图;2.能从频数分布图中观察数据分布的特征;3.能解决一些实际问题;过程与方法:教师讲解引导,学生动手实践,观察思考探究情感态度与价值观:通过实例了解统计应用的广泛性和统计工作的基本步骤,能根据统计结果作出合理的判断和预测,并进行交流,初步学会用统计知识解决一些简单的实际问题,体会统计在社会生活和科学领域中的作用和价值。
庖丁巧解牛知识·巧学一、关于频率分布直方图的概念由于频率分布表数字较多,阅读困难,为了将频率分布表中的结果直观形象地表示出来,我们通常画频率分布直方图。
画图时,应以横轴表示分组,纵轴表示频率与组距的比值.以每个组距为底,以各频率除以组距的商为高,分别画成矩形,这样得到的直方图就是频率分布直方图.二、关于频率分布直方图的绘制方法频率分布直方图是在频率分布表的基础上绘制而成的,它的前期工作就是准确列出频率分布表,然后在平面直角坐标系中画出频率分布直方图,具体步骤如下:(1)求极差,即计算最大值与最小值的差.(2)决定组距和组数。
组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准。
太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多。
(3)决定分点,将数据分组.分组时,通常规定分组的区间是“左闭右开”的,避免数据被重复计算。
(4)列频率分布表.一般分“分组"“频数”“频率”三列,最后一行是“合计”。
注意频数的合计应是样本容量,频率合计应是1。
(5)画频率分布直方图。
建立直角坐标系,图中横轴为分组,图中的纵轴表示“频率/组距".各组数据以小长方形表示,其中,小长方形的宽为组距,小长方形的高=组距频率,频率=样本容量频率=组距×组距频率=小长方体的面积。
各小长方形的面积总和为1.由此可以看出,直方图中的各小长方形的面积表示相应的各组的频率。
这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小。
误区警示 直方图中小长方形的高并不表示各组数据的频率,而是频率与组距之比,小长方形的面积才是各组数据的频率.辨析比较 频率分布表在数量表示上比较确切,但不够直观、形象,分析数据的总体态势不太方便,频率分布直方图形象、直观,与频率分布表相比较,频率直方图能直观地表明数据的分布形状,但原始数据不能在图中表示,说明直方图丢失了一些信息。