频数及其分布四种统计图
- 格式:doc
- 大小:70.00 KB
- 文档页数:4
频数及其分布一:基本定义1.极差:一组数据的最大值与最小值的差组别(kg) 2.75~3.15 3.15~3.55 3.55~3.95 3.95~4.35 4.35~4.75 4.75~5.15 划 记 ┬ 正┬ 正 一 ┬ ┬ 一 人 数 2 7 6 2 2 1合计202.频数:我们称数据分组后落在各小组内的数据个数为频数; 频数分布表:反映数据分布的统计表叫做频数分布表,也称频数表。
3.频率:一般地,每一组频数与数据总数(或实验总次数)的比,叫做这一组数 据的频率.例 1:填写下面这张频数分布表中未完成部分.组别 A B C D 合计频数 11 13频率 0.11 0.66 0.10变式:学生各组数据频率之和等于多少?所有频数之和呢?例 2:已知一组数据的频率为 0.35,数据总数为 500 个,则这组数据的频数为 变式:已知一组数据的频数为 56,频率为 0.8,则数据总数为 个例 3 某袋装饼干的质量的合格范围为 50±0.125g.抽检某食品厂生产的 200 袋该中饼干,质 量的频数分布如下表. (1) 求各组数据的频率; (2) 由这批抽检饼干估计该厂生产这种饼干的质量的合格率.某食品厂生产的 200 袋饼干的质量的频数分布表组别(g) 49.775~49.825 49.825~49.875 49.875~49.925 49.925~49.975 49.975~50.025 50.025~50.075 50.075~50.125 50.125~50.175组中值(g) 49.80 49.85 49.90 49.95 50.00 50.05 50.10 50.15频数 1 2 1 50 100 40 4 2频率二:频数分布直方图一:用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图(Mstogram). 在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴 表示频数,每个矩形的高代表对应的频数,我们称这样的统计图为频数分布直方图,如图 12-5 所示,直方图中各矩形之间没有空隙.【说明】 在画频数分布直方图时,首先要列出频数分布表.在分组时要注意: (1)组 数适当; (2)组距相等. 同时,分组要遵循三个原则: (1)不空,即该组必须有数据; (2)不重,即一个数据只 能在一个组中; (3)不漏,即不能漏掉某一个数据.思考:频数分布直方图与条形统计图的区别?(1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据。
第三章频数及其分布知识点整理在统计学中,频数及其分布是非常重要的概念。
频数是指某一数值在数据集中出现的次数,而频数分布则是描述不同数值出现次数的统计表或图形。
1. 频数和频率频数是指某一数值在数据集中出现的次数,通常用符号f表示。
频率是指频数与总体或样本容量的比值,通常用符号f/n表示,其中n为总体或样本的容量。
2. 频数分布表频数分布表是一种统计表,用于总结和展示数据集中不同数值的频数和频率。
它通常分为两列,一列是数值,另一列是频数或频率。
可以根据具体情况选择按升序或降序排列数值。
3. 频数分布图频数分布图是一种用图形方式展示数据集中不同数值的频数或频率的方法。
常见的频数分布图形包括直方图、饼图和条形图。
4. 直方图直方图是一种用矩形条形表示频数或频率的频数分布图。
横轴表示数值的范围,纵轴表示频数或频率。
每个矩形条形的高度表示对应数值的频数或频率。
5. 饼图饼图是一种用圆形划分扇形区域表示频数或频率的频数分布图。
每个扇形区域的面积或角度表示对应数值的频数或频率。
6. 条形图条形图是一种用长方形条形表示频数或频率的频数分布图。
横轴表示数值,纵轴表示频数或频率。
每个长方形条形的高度表示对应数值的频数或频率。
7. 频数分布的形状频数分布的形状可以反映数据集的分布特征。
常见的频数分布形状包括对称分布、偏态分布和峰态分布。
对称分布指数据集呈现左右对称的形态,偏态分布指数据集在左侧或右侧具有较长的尾部,峰态分布指数据集的形态呈现尖峰或平坦。
8. 分组频数及其分布当数据集较大时,可以对数据进行分组处理,将连续的数值划分为若干个区间,计算每个区间的频数及频率。
这样可以更好地展示数据的特征和规律。
9. 累计频数及其分布累计频数是指某一数值及其前面数值的频数的总和,累计频率则是指某一数值及其前面数值的频率的总和。
累计频数及其分布可以帮助我们更全面地理解数据的积累情况和分布特征。
总结:频数及其分布是统计学中重要的概念,可以帮助我们更好地理解和分析数据集。
频数分布表与频数分布图频数是指某一随机事件在n次试验中出现的次数。
各种随机事件在n次试验中出现的次数分布就称为频数分布。
对一批数据,将其频数分布用表格的形式表示出来就构成了频数分布表。
(1)编制频数分布表的步骤编制频数分布表是数据整理的基本方法,下面我们结合一个实例来说明频数分布表的编制步骤。
例1.一次物理测验之后,某班48位同学的成绩如下。
86 77 63 78 9272 66 87 75 83 74 47 83 8176 82 97 69 82 88 71 6765 75 70 82 77 86 60 9371 8076 78 57 95 78 6479 82 68 74 73 84 76 7986 68;根据这一成绩编制频数分布表,其具体步骤是:①求全距(用R表示)。
全距是原始数据中的最大值与最小值之差,即R=max{xi}-min{xi}。
式中R 是全距,max{xi}为这批数据中的最大数,min{xi}为这批数据中的最小数。
在本例中,max{xi}=97,min{xi}=47,因此R=97-47=50。
②定组数(用K表示)。
根据全距决定组数(K)。
组数就是对这批数据分组的个数。
一般而言,组数以10组为宜,多至20组,少至5组。
若组数太多,便会失去实行分组化繁为简的作用;若组数太少,又会引起计算结果的失真。
组数与数据的个数有关,若数据多时,要分10组以上;数据少时,可分5—10组。
③定组距(用i表示)。
组距就是每一个组内包含的间距,即组距(i)是指每个小组的组上限(即组的终点值)与组下限(即组的起点值)之间的距离。
显然,在一批数据中,组距一般是相同的。
组数与组距有关,组距越小,则组数越多;组距越大,则组数越少。
根据上面的讨论,我们得到全距R、组距i、组数K三者之间的关系即i=或K=根据上式,由全距R、组距i决定组数时,将全距R除以组距后取整数即得组数i。
在本例中,全距R=50,若取组距i=5,则组数K=10.④列组限。
教你绘制频数分布图教你绘制频数分布图频数分布直⽅图和频数分布折线统计图是描述数据的两种重要统计图,⽤这两种统计图把数据描述出来,就以直观地了解数据的分布情况及变化规律.下⾯谈谈这两种统计图的画法:⼀、频数分布直⽅图画频数分布直⽅图⼀般按下列步骤:1.计算极差(最⼤值与最⼩值的差).2.决定组数.3.列出频数分布表.4.画出频数分布直⽅图.例⼩明调查了他们班54名学⽣的⾝⾼,结果(单位:cm)如下:141 154 149 154 162 165 168 150 155 163 144 168 150 156 155 168 155 160 145 163 145 155 152 160 148 145 169 152 160 163 158 157 159 169 168 155 158 152 157 150 157 159 157 162 145 172 150 158 144 155 160 161 159 163 请将数据适当分组,并绘制相应的频数分布直⽅图.分析:要绘制频数分布直⽅图,需要把数据适当分组,数出每⼀组的频数,得出频数分布表,在此基础上绘制频数分布直⽅图.解:通过观察得到上⾯数据的最⼤值是172cm,最⼩值是141cm,它们的差是(172-141)=31cm.将该组数据按⾝⾼的范围分为141≤x<145,145≤x<149, ≤分成7组.整理可得下列统计表:⽤横轴表⽰⾝⾼,⽤纵轴表⽰频数,并在纵轴上等距离标出5,10,15,以各组学⽣⼈数为⾼画出与此组对应的长⽅形,得到频数分布直⽅图(如图1).图1⼆、频数折线图频数折线图画法如下:1.在频数分布直⽅图的基础上画频数折线图.(1)取频数分布直⽅图中每个长⽅形上边的中点;(2)在横轴上取两个频数为0的点,在直⽅图横轴的左边取点(139,0),在直⽅图横轴的右边取点(175,0);(3)将这些点⽤线段依次连接起来就得到了频数折线图(如图2).图22.根据已有的数据直接画频数折线图.(1)把数据分组,求出每个⼩组两端点的平均数,这些平均数称为组中值,如图141≤x<145这个⼩组的组中值为(141+145)÷2=143.(2)⽤横轴表⽰⾝⾼,⽤纵轴表⽰频数,以各⼩组的组中值为横坐标,各⼩组对应的频数为纵坐标描点,另取两个点(139,0)和(175,0).(3)依次连接这些点就得到了频数折线图(如图3).图3。
课题频数及其分布教学目标1.了解极差、组距、组数之间的关系,会将数据分组;2.理解样本容量、频数、频率之间的相互关系,会计算频率.3、会列频数分布表。
4、会画频数分布直方图和折线图重点、难点频数和频率的概念;频数分布直方图和频数分布折线图。
考点及考试要求教学内容知识框架1. 频数和频率频数:表示对象出现的次数。
频率:表示对象出现的次数与总次数的比值(或百分比)2. 频数与频率的关系式:频率频数样本容量注:此处各对象的频率总和等于1。
3. 频数分布表、频数分布直方图和频数折线图。
频数分布表:是一个关注样本数据在各小范围内所占比例多少的统计图。
频数分布直方图:是一个用一个个小矩形将频数分布表中的结果直观表现出来的统计图,其中矩形的宽表示组距,矩形的高表示频数。
频数折线图:将频数分布直方图中每一个小矩形宽的中点顺次连接所成的统计图。
4. 绘制频数分布直方图的步骤①计算极差②确定组距与组数以及分点③列频数分布表④画频数分布直方图5.频数分布折线图是反映频数分布的另一种形式的统计图.画频数分布折线图的主要步骤:①计算极差,确定组距、组数,并将数据分组;②列出频数分布表,并确定组中值;③根据组中值所在的组的频数在坐标系中描点,依次用线段把它们连成折线(画频数分布折线图,并不一定要先画频数分布直方图).【基础知识回顾】1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角= 3600X2、频数分布直方圆中每个长方形的高时就有小长方形高的和为】【典型例题解析】考点一:用样本估计总体例1 (2012•资阳)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势A级B级C级随机抽取棵数(棵) 3 6 1所抽取果树的平均产量(千克)80 75 70考点:用样本估计总体;加权平均数.:80×30+75×60+70×10=7600.对应训练1.(2012•苏州)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.考点:用样本估计总体;条形统计图;加权平均数.专题:数形结合.1550=30%,故全校坐公交车到校的学生有:720×30%=216人.极差、方差、标准差例 2 (2012•徐州)如图是某地未来7日最高气温走势图,这组数据的极差为℃.(32-25=7)3(2012•株洲)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是.甲乙丙丁平均数8.2 8.0 8.0 8.2方差 2.1 1.8 1.6 1.4考点:方差;算术平均数故答案为:丁.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.对应训练4.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28 B.3,29 C.2,27 D.3,28考点:极差;众数.(2012•襄阳)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株数(株) 5 6 7小组个数 3 4 3则这10个小组植树株数的方差是.考点:方差.分析:首先求出平均数,再利用方差计算公式:s2= 1n[(x1- x)2+(x2- x)2+…+(x n-x)2]求出即可.0.6统计图表的综合运用例3 (2012•镇江)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.考点:条形统计图;用样本估计总体;扇形统计图.(2012•朝阳)某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.1)在这次调查活动中,一共调查了名学生,并请补全统计图.(2)“羽毛球”所在的扇形的圆心角是度.(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?考点:折线统计图;用样本估计总体;扇形统计图.如图所示:对应训练6.(2012•湛江)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?考点:条形统计图;用样本估计总体;扇形统计图.(2012•聊城)为进一步加强中小学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容,为此,某县教育组管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0~4.2 15 0.054.3~4.5 45 0.154.6~4.8 105 0.354.9~5.1 a 0.255.2~5.4 60 b请根据图表信息回答下列问题:(1)求表中a、b的值,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,估计该县5600名初中毕业生视力正常的学生有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)先求出这次调查的人数,则a=300×0.25,b=60÷300,即可将频数直方图补充完整;(2)用总人数乘以视力在4.9以上(含4.9)的人数的频率,即可求出答案.解答:解:(1)这次调查的人数是:15÷0.05=300(人),所以a=300×0.25=75,b=60÷300=0.2,因为a=75,所以4.9~5.1的人数是75,如图:(2)根据题意得:5600×(0.25+0.2)=2520(人).答:该县初中毕业生视力正常的学生有2520人.点评:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.(2012•黄石)某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为.考点:频数(率)分布直方图;用样本估计总体.专题:计算题.分析:先根据频率分布直方图,利用频数= 频数组距×组距,求出每一阶段内的频数,然后让60减去已求的每一阶段内的人数,易求70≤x<80阶段内的频数,再把所有大于等于60分的频数相加,然后除以60易求及格率.解答:解:∵频数=频数组距×组距,∴当40≤x<50时,频数=0.6×10=6,同理可得:50≤x<60,频数=9,60≤x<70,频数=9,80≤x<90,频数=15,90≤x<100,频数=3,∴70≤x<80,频数=60-6-9-9-15-3=18,∴这次测试的及格率=91815360+++×100%=75%,故答案是75%.点评:本题考查了频率分布直方图,解题的关键是利用公式频数= 频数组距×组距,求出每一阶段内的频数.(2012•深圳)为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:分数段频数频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x≤10060 0.2请根据以上图表中提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= ,n= ;(3)补全频数分布直方图;(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.专题:计算题.分析:(1)利用第一组的频数除以频率即可得到样本容量;(2)90÷300即为70≤x<80组频率---n的值;300×0.4即为80≤x<90组频数,m的值.(3)根据80≤x<90组频数即可补全直方图;(4)根据中位数定义,找到位于中间位置的两个数所在的组即可.(5)将比赛成绩80分以上的两组数的频率相加即可得到计该竞赛项目的优秀率.解答:解:(1)此次调查的样本容量为30÷0.1=300;(2)n=90300=0.3;m=0.4×300=120;(3)如图:(4)中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组;(5)将80≤x<90和90≤x≤100这两组的频率相加即可得到优秀率,优秀率为60%.点评:本题考查了频数分布直方图、用样本估计总体、频率分布表、中位数等知识,要具有读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三:【课后训练】1.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售的百分比,应该用( ) A .扇形统计图 B .折线统计图 C .条形统计图 D .以上都可以2.为了了解本校九年级学生的体能情况,随机抽查了其中30名学生, 测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直 方图,请根据图示计算,仰卧起坐次数在25~30次的频率为( ) A .0.1 B .0.2 C .0.3 D .0.43.某校初中二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以统一标准划分成“不合格”、“合格”、“优秀”三个 等级。
常见的统计图有长条图四方直方图圆形图曲线图和散点图常用的统计图有哪几种?1.扇形统计图特点:用一个圆的面积来表示总数用圆内扇形的大小来表示占总数的百分比作用:可以清楚地表示出各个部分与总体的关系 2.条形统计图特点:用一个单位长度表示一定的数量用直条的长短来表示数量的多少作用:用于表示各个数量的多少对比鲜明 3.折线统计图特点:用一个单位长度表示一定的数量用折线得上升或下降表示数量的多少和增减变化情况作用:即可表示各种数量的多少又可反映出数量的增减变化趋势统计图有名多少种类?统计图的种类:常见统计图的有线状图、直条图、饼状图和散点图。
1、线状图是以坐标系中曲线的形状、斜率变化,位置高低等来表现统计资料。
线状图可以形象、直观地显示出事物的变化发展趋势。
研究对象中不同的各组可以用不同颜色或线型的线条表示。
2、直条图是在直角坐标系中,用相同宽度长条的不同长短来表示数量资料的多少,还可在同一张图表中用不同颜色或阴影的条形表示研究对象中不同的各组,能直观地进行数量多少的对比。
如果用柱形代替条形就得到柱形图,其原理与直条图相同。
统计数量刻度比例要合适,并在适当位置作必要说明,如图例、单位等。
3、饼状图是以圆形代表研究对象的整体,用以圆心为共同顶点的各个不同扇形显示各组成部分在整体中所占的比例,要注明各扇形所代表的项目的名称(可用图例表示)及其所占百分比。
4、散点图是在坐标系中点出各个分析数据的相关位置,直观地显示出一组数据的分布情况。
有哪几种形式统计图?统计图的类型(1)条图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。
(2)百分条图和圆图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。
(3)线图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。
(4)半对数线图:纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。
(5)直方图:描述计量资料的频数分布。
频数分布直方图与频数分布折线统计图一、频率分布直方图的意义在整理数据时,把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,然后根据表格数据信息,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的长方形,即可得到频数分布直方图。
频数分布直方图本质是一种条形统计图,具有两个指标:一是横向指标(相当于横坐标,自变量),反映考察的对象的类别,如身高,体重等;二是纵向指标(相当于纵坐标,因变量),反映考察对象的数量特征,也是就频数。
频数分布直方图包括两种类型,一是横向指标为离散型统计量,频数分布直方图比较简单;二是横向指标为连续型统计量的频数分布直方图。
我们主要学习连续型统计量的频数分布直方图,即各“条形”之间是连续的,中间没有间隔。
连续频数分布直方图的作用:(1)能显示各组频数分布情况;(2)能够显示各组频数之间的差别;二、频数分布直方图的画法1.绘制频数分布直方图的一般步骤:(1)计算最大值与最小值的差,找出数据的变化范围.首先通过观察,找出数据中最大的数据和最小的数据,并计算最大的数据与最小的数据之间的差值.(2)决定组距与组数,分组.根据最大数据与最小数据的差值,决定组距的大小,组距和组数的确定没有固定的标准,一般数据越多,分成的组数就越多,当数据不超过50个,可以分5~7组;当数据在50~100之间时,一般分8~12组.分组时同一个数据不能出现在两个组中,为了避免出现这种情况,分组时一般规定包括最低值,而不包括最高值。
(3)列频数分布表.频数分布表一般由三部分组成,一是数据分组;二是划记;三是频数.(4)画频数分布直方图.2.频数分布直方图的特点(1)频数分布直方图中各组频数的和等于数据总数;各组频率的和等于1;(2)频数分布直方图中每个小长方形的高代表相应的频数,频数越大,相应的小长方形的高度越高。
三、频数分布折线图同频数分布直方图相比,频数分布折线图能更直观地反映分布的变化情况;在同一个坐标系中可以画多个频数分布折线图,易于比较不同数据之间的变化情况。
中位数、众数、条形统计图和频率分布直方图中位数(Median)统计学名词。
将数据排序后,位置在最中间的数值。
即将数据分成两部分,一部分大于该数值,一部分小于该数值。
中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值众数(Mode)统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。
修正定义:是一组数据中出现次数最多的那个数值,就是众数,有时众数在一组数中有好几个。
用M表示。
理性理解:简单的说,就是一组数据中占比例最多的那个数。
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。
在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
条形统计图一般简称条形图,也叫长条图或直条图。
条形统计图是用条形的长短来代表数量的大小,便于比较。
条形统计图又分为条形统计图和复式条形统计图,复式条形统计图由多种数据组成,用不同的颜色标出。
频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
(在图中,各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为1)把全体样本分成的组的个数称为组数。
每一组两个端点的差称为组距。
落在不同小组中的数据个数为该组的频数。
各组的频数之和等于这组数据的总数。
频数与数据总数的比为频率(总频率=各组频率之和,且它的值为1)。
频数及其分布
一:基本定义
1.
2.频数:我们称数据分组后落在各小组内的数据个数为频数;
频数分布表:反映数据分布的统计表叫做频数分布表,也称频数表。
3.频率:一般地,每一组频数与数据总数(或实验总次数)的比,叫做这一组数据的频率.
例1:填写下面这张频数分布表中未完成部分.
变式:学生各组数据频率之和等于多少?所有频数Array
之和呢?
例2:已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为
变式:已知一组数据的频数为56,频率为0.8,则数据总数为个
例3 某袋装饼干的质量的合格范围为50±0.125g.抽检某食品厂生产的200袋该中饼干,质量的频数分布如下表.
(1)求各组数据的频率;
(2)由这批抽检饼干估计该厂生产这种饼干的质量的合格率.
某食品厂生产的200袋饼干的质量的频数分布表
二:频数分布直方图
一:用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图(Mstogram).在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,我们称这样的统计图为频数分布直方图,如图12-5所示,直方图中各矩形之间没有空隙.
【说明】在画频数分布直方图时,首先要列出频数分布表.在分组时要注意:(1)组数适当;(2)组距相等.
同时,分组要遵循三个原则:(1)不空,即该组必须有数据;(2)不重,即一个数据只能在一个组中;(3)不漏,即不能漏掉某一个数据.
思考:频数分布直方图与条形统计图的区别?
(1)条形统计图中,横轴上的数据是孤立的,是一个具体的数据。
而直方图中,横轴上的数据是连续的,是一个范围。
(2)条形统计图中,各个数据之间是相对独立的,各个条形之间是有空隙的。
而在直方图中,各长方形对应的是一个范围,由于每两个相邻范围之间不重叠、不遗漏,因此在直方图中,长方形之间没有空隙。
例.请观察图,并回答下面的问题:
(1)被检测的矿泉水总数有多少种?
(2)被检测矿泉水的最低pH为多少?
(3)组界为6.9~7.3这一组的频数、频率分别是多少(每一组包括前一个边界值,不包括后一个边界值)?
(4)根据我国2001年公布的生活饮用水卫生规范,饮用水的pH应在6.5—8.5的范围内.被检测的矿泉水不符合这一标准的有多少种?占总数的百分之几?
思考:图中的频数分布直方图的每一组的边界值为多少?
A.10.5 B.14.5 C.12.5 D.8.5
三:拆线统计图及其特点
折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段
顺次把各点连接起来.它既可以表示出项目的具体数量,又能清楚地反映事物变化的情况.
折线统计图的特点:易于显示数据的变化趋势,如图12-4所示.
例.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图
(1)这一天7:00~9:00经过该观察点的车辆总数是多少
(2)数据分组的组距是多少
(3)若该路段汽车限速为110km/h,请问超速行驶的汽车有多少辆?占总数的百分之几
(4)简单描述折线的波动情况,并说明它所表示的实际意义
四:扇形统计图
用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.扇形统计图主要是反映具体问题中的部分与整体的数量关系.扇形统计图的各部分占总体的百分比之和为100%或1,如图12-2所示.
例1 如图12-6所示的是扇形统计图,求扇形B占总体的百分比.
例
每人捐书的册数/册 5 10 15 20
相应的捐书人数/人17 22 4 2
(1)该班的学生共多少名?
(2)全班一共捐了多少册书?
(3)若该班所捐图书按图12-7所示的比例分,则送给山区学校的书比送给本市兄弟学校的书多多少册?
总结:条形统计图显示每组中的具体数据;扇形图显示部分在总体中占的百分比;频数直方图显示数据的分布情况;折线图显示数据的变化趋势综合练习:
1 为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图12-11所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5,则第四小组的频率是,参加这次测试的学生有人.
2某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组,绘制成频率分布直方图,如图12-12所示,图中从左到右各小组的长方形的高的比是1∶3∶6∶4∶2,最右边一组的频数是6,结合直方图提供的信息,解答下列问题.。