2018届人教A版(理) 数学归纳法 检测卷
- 格式:doc
- 大小:78.00 KB
- 文档页数:8
课时跟踪检测(十七) 数学归纳法层级一 学业水平达标1.设S k =+++…+,则S k +1为( )1k +11k +21k +312k A .S k + B .S k ++12k +212k +112k +2C .S k +-D .S k +-12k +112k +212k +212k +1解析:选C 因式子右边各分数的分母是连续正整数,则由S k =++ (1)k +11k +2+,①12k 得S k +1=++…+++.②1k +21k +312k 12k +112(k +1)由②-①,得S k +1-S k =+-12k +112(k +1)1k +1=-.故S k +1=S k +-.12k +112(k +1)12k +112(k +1)2.利用数学归纳法证明不等式1+++…+<n (n ≥2,n ∈N *)的过程中,由121312n -1n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k 项解析:选D 当n =k 时,不等式左边的最后一项为,而当n =k +1时,最后一12k -1项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加12k +1-112k -1+2k 1,故增加了2k 项.3.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对解析:选B 由n =k 时命题成立可推出n =k +2时命题也成立,又n =2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.4.对于不等式 <n +1(n ∈N *),某同学用数学归纳法的证明过程如下:n 2+n (1)当n =1时, <1+1,不等式成立.12+1(2)假设当n =k (k ∈N *)时,不等式成立,即<k +1,则当n =k +1时,k 2+k =<==(k +1)+1,(k +1)2+(k +1)k 2+3k +2(k 2+3k +2)+k +2(k +2)2∴n =k +1时,不等式成立,则上述证法( )A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:选D 在n =k +1时,没有应用n =k 时的归纳假设,故选D.5.设f (n )=5n +2×3n -1+1(n ∈N *),若f (n )能被m (m ∈N *)整除,则m 的最大值为( )A .2 B .4C .8D .16解析:选C f (1)=8,f (2)=32,f (3)=144=8×18,猜想m 的最大值为8.6.用数学归纳法证明“对于足够大的自然数n ,总有2n >n 3”时,验证第一步不等式成立所取的第一个值n 0最小应当是________.解析:∵210=1 024>103,29=512<93,∴n 0最小应为10.答案:107.用数学归纳法证明++…+>-,假设n =k 时,不等式成立,1221321(n +1)2121n +2则当n =k +1时,应推证的目标不等式是____________________________________.解析:观察不等式中分母的变化便知.答案:++…++>-1221321(k +1)21(k +2)2121k +38.对任意n ∈N *,34n +2+a 2n +1都能被14整除,则最小的自然数a =________.解析:当n =1时,36+a 3能被14整除的数为a =3或5;当a =3且n =2时,310+35不能被14整除,故a =5.答案:59.已知n ∈N *,求证1·22-2·32+…+(2n -1)·(2n )2-2n ·(2n +1)2=-n (n +1)(4n +3).证明:(1)当n =1时,左边=4-18=-14=-1×2×7=右边.(2)假设当n =k (k ∈N *,k ≥1)时成立,即1·22-2·32+…+(2k -1)·(2k )2-2k ·(2k +1)2=-k (k +1)(4k +3).则当n =k +1时,1·22-2·32+…+(2k -1)·(2k )2-2k ·(2k +1)2+(2k +1)·(2k +2)2-(2k +2)·(2k +3)2=-k (k +1)(4k +3)+(2k +2)[(2k +1)(2k +2)-(2k +3)2]=-k (k +1)(4k +3)+2(k +1)·(-6k -7)=-(k +1)(k +2)(4k +7)=-(k +1)·[(k +1)+1][4(k +1)+3],即当n =k +1时成立.由(1)(2)可知,对一切n ∈N *结论成立.10.用数学归纳法证明1+≤1+++…+≤+n (n ∈N *).n 2121312n 12证明:(1)当n =1时,≤1+≤,命题成立.321232(2)假设当n =k (k ∈N *)时命题成立,即1+≤1+++…+≤+k ,k2121312k 12则当n =k +1时,1+++…++++…+>1++2k ·=1+.121312k 12k +112k +212k +2k k212k +1k +12又1+++…++++…+<+k +2k ·=+(k +1),121312k 12k +112k +212k +2k 1212k 12即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.层级二 应试能力达标1.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.2.设f (n )=1+++…+(n ∈N *),那么f (n +1)-f (n )等于( )121313n -1A. B.+13n +213n 13n +1C.+D.++13n +113n +213n 13n +113n +2解析:选D f (n +1)-f (n )=++.13n 13n +113n +23.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为f (k ),则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+k +1B .f (k +1)=f (k )+k -1C .f (k +1)=f (k )+kD .f (k +1)=f (k )+k +2解析:选C 当n =k +1时,任取其中1条直线记为l ,则除l 外的其他k 条直线的交点的个数为f (k ),因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为任何三条直线不过同一点,所以上面的k 个交点两两不相同,且与平面内其他的f (k )个交点也两两不相同,从而n =k +1时交点的个数是f (k )+k =f (k +1).4.若命题A (n )(n ∈N *)n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确解析:选C 由题意知n =n 0时命题成立能推出n =n 0+1时命题成立,由n =n 0+1时命题成立,又推出n =n 0+2时命题也成立…,所以对大于或等于n 0的正整数命题都成立,而对小于n 0的正整数命题是否成立不确定.5.用数学归纳法证明1+a +a 2+…+a n +1=(n ∈N *,a ≠1),在验证n =1成1-an +21-a立时,左边所得的项为____________.解析:当n =1时,n +1=2,所以左边=1+a +a 2.答案:1+a +a 26.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=20=1,右边=21-1=1,等式成立.②假设n =k (k ≥1,且k ∈N *)时,等式成立,即1+2+22+…+2k -1=2k -1.则当n =k +1时,1+2+22+…+2k -1+2k ==2k +1-1,1-2k +11-2所以当n =k +1时,等式也成立.由①②知,对任意n ∈N *,等式成立.上述证明中的错误是________.解析:由证明过程知,在证从n =k 到n =k +1时,直接用的等比数列前n 项和公式,没有用上归纳假设,因此证明是错误的.答案:没有用归纳假设7.平面内有n (n ∈N *)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n 个圆把平面分成n 2-n +2部分.证明:(1)当n =1时,n 2-n +2=2,即一个圆把平面分成两部分,故结论成立.(2)假设当n =k (k ≥1,k ∈N *)时命题成立,即k 个圆把平面分成k 2-k +2部分.则当n =k +1时,这k +1个圆中的k 个圆把平面分成k 2-k +2个部分,第k +1个圆被前k 个圆分成2k 条弧,这2k 条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k 个部分,故k +1个圆把平面分成k 2-k +2+2k =(k +1)2-(k +1)+2部分,即n =k +1时命题也成立.综上所述,对一切n ∈N *,命题都成立.8.已知某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2.(1)写出这个数列的前5项;(2)写出这个数列的通项公式并加以证明.解:(1)已知a 1=1,由题意,得a 1·a 2=22,∴a 2=22.∵a 1·a 2·a 3=32,∴a 3=.3222同理,可得a 4=,a 5=.42325242因此这个数列的前5项分别为1,4,,,.941692516(2)观察这个数列的前5项,猜测数列的通项公式应为:a n =Error!下面用数学归纳法证明当n ≥2时,a n =.n 2(n -1)2①当n =2时,a 2==22,结论成立.22(2-1)2②假设当n =k (k ≥2,k ∈N *)时,结论成立,即a k =.k 2(k -1)2∵a 1·a 2·…·a k -1=(k -1)2,a 1·a 2·…·a k -1·a k ·a k +1=(k +1)2,∴a k +1==·==.(k +1)2(a 1·a 2·…·ak -1)·ak (k +1)2(k -1)2(k -1)2k 2(k +1)2k 2(k +1)2[(k +1)-1]2这就是说当n =k +1时,结论也成立.根据①②可知,当n ≥2时,这个数列的通项公式是a n =.n 2(n -1)2∴这个数列的通项公式为a n =Error!。
2018年高考数学讲练测【新课标版理 】【练】第十三章 算法初步、推理与证明、复数第04节 数学归纳法A 基础巩固训练1. 用数学归纳证明“凸n 边形对角线的条数()()32n n f n -=”时,第一步应验证 ( )A. 1n =成立B. 2n =成立C. 3n =成立D. 4n =成立 【答案】C【解析】因为多边形至少有3条边, 故第一步只需验证n =3结论成立即可。
本题选择C 选项.2. 利用数学归纳法证明“()221*111,1n n a a a aa n a+--++++=≠∈N -”时,在验证1n =成立时,左边应该是( )A .1B .1a +C .21a a ++ D .231a a a +++ 【答案】C3. 用数学归纳法证明: *1111,(,1)2321n n n N n ++++<∈>-时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是( ) A. 2kB. 21k- C. 12k - D. 21k+【答案】A【解析】从n k =到1n k =+成立时,左边增加的项为1111,,,22121k k k ++- ,因此增加的项数是21012k k--+= ,选A. 4. 用数学归纳法证明22n n >, n 的第一个取值应当是A. 1B. 3C. 5D. 10 【答案】C5. 用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是____. 【答案】假设n =2k -1(k ∈N *)时正确,再推n =2k +1(k ∈N *)正确【解析】因为n 为正奇数,根据数学归纳法证题的步骤,第二步应先假设第k 个正奇数也成立,本题先假设n =2k -1(k ∈N *)正确,再推第k +1个正奇数,即n =2k +1(k ∈N *)正确.B 能力提升训练1. 用数学归纳法证明1+12+14+…+112n ->12764(n ∈N *)成立,其初始值至少应取( ) A .7 B .8 C .9 D .10 【答案】B【解析】左边=1+12+14+…+112n -=112112n --=2-112n -,代入验证可知n 的最小值是8.故选B. 2. 若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.nn +1 D .1【答案】D【解析】易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=n n +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x 1+2x ,f 3(x )=x1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n ,故选D.3. 已知f(n)=1+12+13+…+1n (n ∈N *),用数学归纳法证明f(2n )>112时,f(2k +1)-f(2k)等于________.【答案】121k ++122k ++…+112k + 【解析】∵f(2k +1)=1+12+13+14+…+1k +11k ++…+12k +121k ++122k ++…+112k +,f(2k)=1+12+13+14+…+1k +11k ++…+12k ,∴f(2k +1)-f(2k)=121k ++122k ++…+112k +.4. 【浙江省名校协作体2018届高三上学期考试】已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<; (Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <.(Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列。
第3讲数学归纳法一、选择题1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D3.用数学归纳法证明1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n,则当n=k+1时,左端应在n=k的基础上加上().A.12k+2B.-12k+2C.12k+1-12k+2D.12k+1+12k+2解析∵当n=k时,左侧=1-12+13-14+…+12k-1-12k,当n=k+1时,左侧=1-12+13-14+…+12k-1-12k+12k+1-12k+2.答案 C4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案 D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=12,b=c=14B.a=b=c=14C.a=0,b=c=14D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即⎩⎨⎧1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c ,整理得⎩⎨⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14. 答案 A 二、填空题7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n>1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________. 解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1(2k +1)(2k +2).答案 1(2k +1)(2k +2)8. 用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案k(k+1)2(2k+1)+(k+1)2(2k+1)(2k+3)=(k+1)(k+2)2(2k+3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n所拥有数对为(n-1)对.设1+2+3+…+(n-1)=60,∴(n-1)n2=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案(5,7)10.在数列{a n}中,a1=13且S n=n(2n-1)a n,通过计算a2,a3,a4,猜想a n的表达式是________.解析当n=2时,a1+a2=6a2,即a2=15a1=115;当n=3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n=4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想a n=1n-n+.答案a n=1n-n+三、解答题11.已知S n =1+12+13+…+1n (n >1,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *). 证明 (1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立; (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k 2, 则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n .(1)若a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:T 12n =-4n (n ∈N *).(1)解 a 1+a 2+a 3+…+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r . ∵48+4r =64,∴r =4.(2)证明 用数学归纳法证明:当n ∈N *时,T 12n =-4n .①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立. ②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r )+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.根据①和②可以断定:当n ∈N *时,T 12n =-4n .13.设数列{a n }满足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,…(1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n 成立的最小正整数n ,并给出证明.解(1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n=n(3+2n+1)2=n2+2n,使得Sn<2n成立的最小正整数n=6.下证:n≥6(n∈N*)时都有2n>n2+2n.①n=6时,26>62+2×6,即64>48成立;②假设n=k(k≥6,k∈N*)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;由①、②可得,对于所有的n≥6(n∈N*)都有2n>n2+2n成立.14.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.(1)证明先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)解①假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c-x n≤(1-c)n-1(c-x1)<(1-c)n-1,x n<1-c和c-x n<(1-c)n-1两式相加,知2c-1<(1-c)n-1对任意n≥1成立.根据指数函数y=(1-c)n的性质,得2c-1≤0,c≤14,故0<c≤14.②若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立. (i)当n =1时,x 1=0<c ≤12,结论成立. (ii)假设当n =k (k ∈N *)时,结论成立,即x n <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由①②知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。
课时跟踪检测 (三十九) 数学归纳法一保高考,全练题型做到高考达标1.若f (n )=1+12+13+…+16n -1(n ∈N *),则f (1)为( ) A .1B .15C .1+12+13+14+15D .非以上答案解析:选C 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C .2.利用数学归纳法证明“(n +1)(n +2) …(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +1解析:选B 当n =k (k ∈N *)时,左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1). 3.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3 解析:选A 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.4.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( )A .n +1B .2nC .n 2+n +22D .n 2+n +1解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域. 5.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2,故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.答案:(k 2+1)+(k 2+2)+…+(k +1)26.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得,S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得,S 2=23; 由(S 3-1)2=(S 3-S 2)S 3得,S 3=34. 猜想S n =n n +1. 答案:n n +17.用数学归纳法证明等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2. 证明:(1)当n =1时,左边=12=1,右边=(-1)0×1×(1+1)2=1,左边=右边,原等式成立. (2)假设n =k (k ∈N *)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1·k (k +1)2. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2 =(-1)k -1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)] =(-1)k (k +1)(k +2)2. ∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.8.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程; (2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上.解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13. ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1. (2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立.则2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a 2k·(2a k +1)=b k 1-2a k =1-2a k 1-2a k =1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.9.已知数列{}a n ,当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .证明:(1)当n =1时,∵a 2是a 22+a 2-1=0的负根,∴a 1>a 2.(2)假设当n =k (k ∈N *)时,a k +1<a k ,∵a 2k +1-a 2k =(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,∴a 2k +1-a 2k >0,又∵a k +2+a k +1+1<-1+(-1)+1=-1,∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立.由(1)(2)可知,当n ∈N *时,a n +1<a n .二上台阶,自主选做志在冲刺名校1.设等差数列{a n }的公差d >0,且a 1>0.记T n =1a 1a 2+1a 2a 3+…+1a n a n +1. (1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ;(2)用数学归纳法证明你的猜想.解:(1)T 1=1a 1a 2=1a 1(a 1+d ); T 2=1a 1a 2+1a 2a 3=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3×1d=⎝⎛⎭⎫1a 1-1a 1+2d ×1d =2a 1(a 1+2d ); T 3=1a 1a 2+1a 2a 3+1a 3a 4=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+1a 3-1a 4×1d=⎝⎛⎭⎫1a 1-1a 1+3d ×1d =3a 1(a 1+3d ).由此可猜想:T n =n a 1(a 1+nd ). (2)证明:①当n =1时,T 1=1a 1(a 1+d )结论成立. ②假设当n =k (k ∈N *)时结论成立,即T k =k a 1(a 1+kd ). 则当n =k +1时,T k +1=T k +1a k +1a k +2=k a 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=(k +1)(a 1+kd )a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ]. 即n =k +1时,结论成立.由①②可知,T n =n a 1(a 1+nd )对于一切n ∈N *恒成立. 2.已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *).(1)求证:对任意n ∈N *,a n >2恒成立;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43. 解:(1)证明:用数学归纳法证明a n >2(n ∈N *): ①当n =1时,a 1=a >2,结论成立;②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.故由①②及数学归纳法原理,知对一切的n ∈N *,都有a n >2成立.(2){a n }是单调递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2,所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是单调递减的数列.(3)证明:由a n +1=a n +2,得a 2n +1=a n +2, 所以a 2n +1-4=a n -2.根据(1)知a n >2(n ∈N *),所以a n +1-2a n -2=1a n +1+2<14, 所以a n +1-2<14(a n -2)<⎝⎛⎭⎫142(a n -1-2)<…<⎝⎛⎭⎫14n ·(a 1-2). 所以,当a =3时,a n +1-2<⎝⎛⎭⎫14n ,即a n +1<⎝⎛⎭⎫14n +2.当n =1时,S 1=3<2+43, 当n ≥2时,S n =3+a 2+a 3+…+a n<3+⎝⎛⎭⎫14+2+⎣⎡⎦⎤⎝⎛⎭⎫142+2+…+⎣⎡⎦⎤⎝⎛⎭⎫14n -1+2 =3+2(n -1)+141-14⎣⎡⎦⎤1-⎝⎛⎭⎫14n -1 =2n +1+13⎣⎡⎦⎤1-⎝⎛⎭⎫14n -1<2n +43. 综上,当a =3时,S n <2n +43(n ∈N *).。
课时跟踪检测(十七)数学归纳法一、选择题1.某个与正整数有关的命题:如果当n=k(k∈N*)时命题成立,则可以推出当n=k+1时该命题也成立.现已知n=5时命题不成立,那么可以推得()A.当n=4时命题不成立B.当n=6时命题不成立C.当n=4时命题成立D.当n=6时命题成立解析:选A 因为当n=k(k∈N*)时命题成立,则可以推出当n =k+1时该命题也成立,所以假设当n=4时命题成立,那么n=5时命题也成立,这与已知矛盾,所以当n=4时命题不成立.2.证明1+错误!+错误!+错误!+…+错误!〉错误!(n∈N*),假设n=k 时成立,当n=k+1时,左端增加的项数是( )A.1 B.k-1C.k D.2k解析:选D 当n=k时,不等式左端为1+错误!+错误!+错误!+…+错误!;当n=k+1时,不等式左端为1+错误!+错误!+…+错误!+错误!+…+错误!,增加了错误!+…+错误!项,共(2k +1-1)-2k +1=2k 项.3.已知数列{a n }的前n 项之和为S n 且S n =2n -a n (n ∈N *),若已经算出a 1=1,a 2=错误!,则猜想a n 等于( )A 。
2n -1n B.错误!C 。
错误!D.错误! 解析:选D ∵a 1=1,a 2=错误!,S 3=1+32+a 3=6-a 3, ∴a 3=错误!.同理可得a 4=错误!.观察1,错误!,错误!,错误!,…,猜想a n =错误!错误!。
4.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么下列命题总成立的是( )A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立B .若f (5)≥25成立,则当k ≥4时,均有f (k )≥k 2成立C .若f (7)<49成立,则当k ≥8时,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立解析:选D 对于A,若f(3)≥9成立,由题意只可得出当k≥3时,均有f(k)≥k2成立,故A错;对于B,若f(5)≥25成立,则当k≥5时均有f(k)≥k2成立,故B错;对于C应改为“若f(7)≥49成立,则当k≥7时,均有f(k)≥k2成立”.5.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+错误!对一切n∈N*都成立,那么a,b的值为()A.a=错误!,b=错误! B.a=b=错误!C.a=0,b=错误!D.a=错误!,b=错误!解析:选A 法一:特值验证法,将各选项中a,b的值代入原式,令n=1,2验证易知选A.法二:∵1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+错误!对一切n∈N*都成立,∴当n=1,2时有错误!即错误!解得错误!二、填空题6.设f(n)=1+12+错误!+…+错误!(n∈N*),那么f(n+1)-f(n)等于________.解析:f(n+1)-f(n)=13n+错误!+错误!.答案:错误!+错误!+错误!7.用数学归纳法证明错误!+错误!+…+错误!>错误!-错误!。
第七节数学归纳法【最新考纲】 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)用数学归纳法证明问题时,归纳假设可以不用.( ) (3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案:(1)× (2)× (3)× (4)√2.(2016·银川九中月考)在应用数学归纳法证明凸n 边形的对角线为12n(n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0 解析:因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.答案:C3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n=2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k(k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立 解析:k 为偶数,则k +2为偶数. 答案:B4.利用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的差为________.解析:当n =k 时,左边=1k +1+1k +2+…+1k +k,①当n =k +1时,左边=1k +2+1k +3+…+1k +k +12k +1+12k +2,②②-①得,12k +1+12k +2-1k +1=12k +1-12k +2.答案:12k +1-12k +25.用数学归纳法证明:“1+12+13+…+12n -1<n(n>1)”由n =k(k>1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.解析:当n =k 时,不等式为1+12+13+…+12k -1<k.则n=k+1时,左边应为:1+12+13+…+12k-1+12k+12k+1+…+12k+1-1则增加的项数为2k+1-1-2k+1=2k.答案:2k一种方法数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.两点注意运用数学归纳法应注意1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.一、选择题2.如果命题p(n)对n=k(k∈N*)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是()A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立解析:由题意知n=k时成立,则n=k+2时也成立,又n=2时成立,则p(n)对所有正偶数都成立.答案:B3.用数学归纳法证明“2n>2n+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取()A.2B.3C.5D.6解析:∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.∴n的第一个取值n0=3.答案:B4.凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n+1)为()A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.答案:C5.用数学归纳法证明3(2+7k)能被9整除,证明n=k+1时,应将3(2+7k+1)配凑成()A.6+21·7k B.3(2+7k)+21C.3(2+7k) D.21(2+7k)-36解析:要配凑出归纳假设,故3(2+7k+1)=3(2+7·7k)=6+21·7k =21(2+7k)-36.答案:D二、填空题6.已知数列{a n}满足a1=1,a n+1=12a n+1(n∈N*),通过计算a1,a2,a3,a4,可猜想a n=________.解析:a1=1,a2=12a1+1=32,a3=12a2+1=74,a4=12a3+1=158.所以猜想a n =2n -12n -1.答案:2n -12n -1三、解答题 9.设a>0,f(x)=axa +x,令a 1=1,a n +1=f(a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.(1)解:因为a1=1,所以a2=f(a1)=f(1)=a1+a;a3=f(a2)=a2+a;a4=f(a3)=a3+a.猜想a n=a(n-1)+a(n∈N*).(2)证明:①当n=1时,a1=1猜想正确.②假设n=k(k≥1,k∈N*)时猜想正确,则a k=a(k-1)+a,则a k+1=f(a k)=a·a ka+a k=a·a(k-1)+aa+a(k-1)+a=a(k-1)+a+1=a[(k+1)-1]+a.这说明,n=k+1时猜想正确.由①②知,对于任何n∈N*,都有a n=a(n-1)+a.10.(2014·安徽卷节选)设实数c>0,整数p>1,p∈N*.证明:当x>-1且x≠0时,(1+x)p>1+px.证明:用数学归纳法证明.①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以当p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.。
2018高考数学人教A 版课后作业1.(2018·广东中山模拟)用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大的项为122-1=13,故选B.2.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立. 2°假设n =k (k ∈N *)时不等式成立,即k 2+k <k +1,则n =k +1时,k +2+k +=k 2+3k +2<k 2+3k ++k +2=k +2=(k +1)+1.∴当n =k +1时,不等式成立. 上述证法( ) A .过程全都正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析] 上述证明过程中,在由n =k 变化到n =k +1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D.3.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立 [答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断.4.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验第一个值n 0等于( )A .1B .2C .3D .4 [答案] C[解析] 因为凸n 边形的边数最少为3,故验证的第一个值n 0=3. 5.已知S k =1k +1+1k +2+1k +3+ (12)(k =1,2,3,…),则S k +1等于( ) A .S k +1k +B .S k +12k +2-1k +1C .S k +12k +1-12k +2D .S k +12k +1+12k +2[答案] C [解析] S k +1=1k ++1+1k ++2+…+1k +=1k +2+1k +3+…+12k +2=1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 6.(2018·厦门月考)用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n·1·3·…·(2n -1)”,从“n =k 到n =k +1”左端需增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1 D.2k +3k +1[答案] B[解析] n =k 时,左端为(k +1)(k +2)…(k +k );n =k +1时,左端为[(k +1)+1]·[(k +1)+2]…[(k +1)+(k +1)]=(k +2)(k +3)…(k+k )·(k +k +1)·(k +k +2)=2(k +1)(k +2)(k +3)…(k +k )(2k +1),故左端增加了2(2k +1).7.(2018·吉林市检测、浙江金华十校联考)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,则可以猜想:当n ≥2时,有__________________. [答案] 1+122+132+…+1n 2<2n -1n(n ≥2)[解析] 观察式子左边都是自然数的平方的倒数求和,右边分母为左边的项数,分子为项数的2倍减1,故右边表达式为2n -1n.8.如果不等式2n >n 2+1对于n ≥n 0的正整数n 都成立,则n 0的最小值为________. [答案] 5[解析] 当n =1时,2>2不成立, 当n =2时,4>5不成立. 当n =3时,8>10不成立 当n =4时,16>17不成立 当n =5时,32>26成立当n =6时,64>37成立,由此猜测n 0应取5.1.观察下式:1+3=221+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D. 2.(2018·天津滨海新区五校)若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=( )A .n B.9n +1 C.nn +1D .1[答案] A[解析] 易知f (1)=12,f (2)=23,f (3)=34,…,f (n )=nn +1;由f n (x )=f n -1(f (x ))得,f 2(x )=x1+2x ,f 3(x )=x 1+3x ,…,f n (x )=x 1+nx ,从而f 1(1)=12,f 2(1)=13,f 3(1)=14,…,f n (1)=1n +1,,所以f (n )+f n (1)=1,故f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=n . 3.如图,一条螺旋线是用以下方法画成的:△ABC 是边长为1的正三角形,曲线CA 1、A 1A 2,A 2A 3是分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心,AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n )π B .(3n 2-n +1)π C.n 2+n π2D.3n 2-n +π2[答案] A[解析] 由条件知CA 1︵,A 1A 2︵,A 2A 3︵,…,A n -1A n ︵对应的中心角都是2π3,且半径依次为1,2,3,4,…,故弧长依次为2π3,2π3×2,2π3×3…,据题意,第一圈长度为2π3(1+2+3),第二圈长度为2π3(4+5+6),第n 圈长度为2π3[(3n -2)+(3n -1)+3n ],故L n =2π3(1+2+3+…+3n )=2π3·3n+3n 2=(3n 2+n )π. 4.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形,第三件首饰由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断前10件首饰所用珠宝总颗数为( )A .190B .715C .725D .385 [答案] B[解析] 由条件可知前5件首饰的珠宝数依次为:1,1+5,1+5+9,1+5+9+13,1+5+9+13+17,即每件首饰的珠宝数为一个以1为首项,4为公差的等差数列的前n 项和,通项a n =4n -3.由此可归纳出第n 件首饰的珠宝数为n [1+n -2=2n 2-n .则前n 件首饰所用的珠宝总数为2(12+22+…+n 2)-(1+2+…+n )=4n 3+3n 2-n6.当n =10时,总数为715.5.(2018·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n(n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n n +n -3.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n=[2+(x -1)]n,所以a 2=C 2n ·2n -2b n =a 22n -3=2C 2n =n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2, 右边=+-3=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k k +k -3成立那么,当n =k +1时,左边=T k +b k +1=k k +k -3+(k +1)[(k +1)-1]=k k +k -3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k k +k +3=k +k ++k +-1]3=右边.故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n n +n -3.6.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n . ∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n .下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N)时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ), ∵0<a k <1,∴1a k +1≥1a k-a k =1a k +11-a k, ∴1a k +1-1a k ≥11-a k>1.令k =1,2,3,…,n -1得: 1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1,∴1a n >1a 1+n -1>n ,∴a n <1n.7.(2018·湖南理,22)已知函数f (x )=x 3,g (x )=x +x . (1)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(2)设数列{a n }(n ∈N *)满足a 1=a (a >0),f (a n +1)=g (a n ),证明:存在常数M ,使得对于任意的n ∈N *,都有a n ≤M .[解析] (1)由h (x )=x 3-x -x 知,x ∈[0,+∞),而h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此h (x )至少有两个零点.解法1:h ′(x )=3x 2-1- 12 x -12,记φ(x )=3x 2-1-12x - 12 ,则φ′(x )=6x +14x - 32 .当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ(33)<0,则φ(x )在(33,1)内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以当x ∈(0,x 1)时,h (x )单调递减,而h (0)=0,则h (x )在(0,x 1]内无零点;当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.解法2:由h (x )=x (x 2-1-x- 12),记φ(x )=x 2-1-x- 12,则φ′(x )=2x +12x - 32 .当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点.综上所述,h (x )有且只有两个零点.(2)记h (x )的正零点为x 0,即x 30=x 0+x 0. ①当a <x 0时,由a 1=a ,即a 1<x 0.而a 32=a 1+a 1<x 0+x 0=x 30,因此a 2<x 0,由此猜测:a n <x 0,下面用数学归纳法证明. a .当n =1时,a 1<x 0显然成立.b .假设当n =k (k ≥1)时,a k <x 0成立,则当n =k +1时,由a 3k +1=a k +a k <x 0+x 0=x 30知,a k +1<x 0.因此,当n =k +1时,a k +1<x 0成立. 故对任意的n ∈N *,a n <x 0成立.②当a ≥x 0时,由(1)知,h (x )在(x 0,+∞)上单调递增,则h (a )≥h (x 0)=0,即a 3≥a +a ,从而a 32=a 1+a 1=a +a ≤a 3,即a 2≤a .由此猜测:a n ≤a ,下面用数学归纳法证明. a .当n =1时,a 1≤a 显然成立.b .假设当n =k (k ≥2)时,a k ≤a 成立,则当n =k +1时,由a 3k +1=a k +a k ≤a +a ≤a 3知,a k +1≤a .因此,当n =k +1时,a k +1≤a 成立. 故对任意的n ∈N *,a n ≤a 成立.综上所述,存在常数M =max{x 0,a },使得对于任意的n ∈N *,都有a n ≤M .1.在数列{a n } 中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是____________.[答案] a n =1n -n +2.(2018·广东湛师附中模拟)设n ∈N *,n >1,求证:1+12+13+…+1n>n . [解析] (1)当n =2时,不等式左边=1+12>2=右边.(2)假设n =k (k >1,k ∈N *)时,不等式成立,即1+12+13+…+1k>k ,那么当n =k+1时,有1+12+13+…+1k +1k +1 >k +1k +1=k k ++1k +1>k 2+1k +1=k +1k +1=k +1. 所以当n =k +1时,不等式也成立. 由(1)(2)可知对任何n ∈N *,n >1,1+12+13+…+1n>n 均成立. 3.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点⎝ ⎛⎭⎪⎫n ,S n n 都在函数f (x )=x +a n2x 的图象上.(1)求a 1,a 2,a 3的值,猜想a n 的表达式,并用数学归纳法证明;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值.[分析] (1)将点⎝ ⎛⎭⎪⎫n ,S n n 代入函数f (x )=x +a n2x 中,通过整理得到S n 与a n 的关系,则a 1,a 2,a 3可求;(2)通过观察发现b 100是第25组中第4个括号内各数之和,各组第4个括号中各数之和构成首项为68、公差为80的等差数列,利用等差数列求和公式可求b 100.[解析] (1)∵点⎝ ⎛⎭⎪⎫n ,S n n 在函数f (x )=x +a n2x 的图象上, ∴S n n =n +a n 2n ,∴S n =n 2+12a n . 令n =1得,a 1=1+12a 1,∴a 1=2;令n =2得,a 1+a 2=4+12a 2,∴a 2=4;令n =3得,a 1+a 2+a 3=9+12a 3,∴a 3=6.由此猜想:a n =2n . 用数学归纳法证明如下:①当n =1时,由上面的求解知,猜想成立. ②假设n =k (k ≥1)时猜想成立,即a k =2k 成立, 则当n =k +1时,注意到S n =n 2+12a n (n ∈N *),故S k +1=(k +1)2+12a k +1,S k =k 2+12a k .两式相减得,a k +1=2k +1+12a k +1-12a k ,所以a k +1=4k +2-a k .由归纳假设得,a k =2k ,故a k +1=4k +2-a k =4k +2-2k =2(k +1). 这说明n =k +1时,猜想也成立.由①②知,对一切n∈N*,a n=2n成立.(2)因为a n=2n(n∈N*),所以数列{a n}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,所以b100=68+24×80=1988,又b5=22,所以b5+b100=2018.[点评] 由已知求出数列的前几项,做出猜想,然后利用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式问题的方法.证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1间的关系,使命题得证.。
高中数学数学归纳法检测试题(有答案)高中数学数学归纳法检测试题(有答案)数学归纳法及其应用举例一、选择题(共49题,题分合计245分)1.用数学归纳法证明:1+ + +…+ 1)时,由n=k(k1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k+12.球面上有n个大圆,其中任何三个都不相交于同一点,设球面被这n个大圆所分成的部分为f(n),则下列猜想:①f(n)=n,②f(n)=f(n-1)+2n,③f(n)=n2-n+2中,正确的是A.①与②B.①与③C.②与③D.只有③3.某个命题与自然数m有关,若m=k(kN)时该命题成立,那么可以推得m=k+1时该命题成立,现已知当m=5时,该命题不成立,那么可推得A.当m=6时该命题不成立B.当m=6时该命题成立C.当m=4时该命题不成立D.当m=4时该命题成立4.设f(n)= (nN),那么f(n+1)-f(n)等于A. B. C. + D. -5.用数学归纳法证明1+a+a2+…+ = (nN,a1)中,在验证n=1时,左式应为A.1B.1+aC.1+a+a2D.1+a+a2+a312.用数字归纳法证明1+2+…+(2n+1)=(n+1)(2n+1)时,在验证n=1成立时,左边所得的代数式是A.1B.1+3C.1+2+3D.1+2+3+413.用数学归纳法证明当n是非负数时,34n+2+52n+1能被14整除的第二步中,为了使用归纳假设应将34k+6+52k+3变形为A.34k+281+52k+125B.34k+1243+52k125C.25(34k+2+52k+1)+5634k+2D.34k+49+52k+2514.用数学归纳法证明+ + +……+ = (nN)时,从n=k到n=k+1,等式左边需增添的项是A. B. C. D.15.利用数学归纳法证明不等式 ,(n2,nN)的过程中,由n=k 变到n=k+1时,左边增加了A.1项B.k项C.2k-1项D.2k项16.用数学归纳法证明5n-2n能被3整除的第二步中,n=k+1时,为了使用假设,应将5k+1-2k+1变形为A.(5k-2k)+45k-2kB.5(5k-2k)+32kC.(5-2)(5k-2k)D.2(5k-2k)-35k17.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线后,它们的交点个数最多为A.f(k)+1B.f(k)+kC.f(k)+k+1D.kf(k)18.已知一个命题P(k),k=2n(nN),若n=1,2,…,1000时,P(k)成立,且当n=1000+1时它也成立,下列判断中,正确的是A.P(k)对k=2019成立 B.P(k)对每一个自然数k成立C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立19.用数学归纳法证明: ,从k到k+1需在不等式两边加上A. B. C. D.20.设 ,则f(2k)变形到f(2k+1)需增添项数为A.2k+1项B.2k项C.2项D.1项21.欲用数学归纳法证明:对于足够大的自然数n,总有2n >n3,n0为验证的第一个值,则A.n0=1B.n0为大于1小于10的某个整数C.n0D.n0=222.某同学回答用数字归纳法证明 n+1(nN)的过程如下:证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有 k+1那么当n=k+1时, =(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(nN),命题都是正确的.以上证法是错误的,错误在于A.当n=1时,验证过程不具体B.归纳假设的写法不正确C.从k到k+1的推理不严密D.从k到k+1的推理过程没有使用归纳假设23.平面上有k(k3)条直线,其中有k-1条直线互相平行,剩下一条与它们不平行,则这k条直线将平面分成区域的个数为A.k个B.k+2个C.2k个D.2k+2个24.已知凸k边形的对角线条数为f(k)(k3),则凸k+1边形的对角线条数为A.f(k)+kB.f(k)+k+1C.f(k)+k-1D.f(k)+k-225.平面内原有k条直线,它们将平面分成f(k)个区域,则增加第k+1条直线后,这k+1条直线将平面分成的区域最多会增加A.k个B.k+1个C.f(k)个D.f(k)+1个26.同一平面内有n个圆,其中每两个圆都有两个不同交点,并且三个圆不过同一点,则这n个圆把平面分成A.2n部分B.n2部分C.2n-2部分D.n2-n+2部分27.平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,这n个圆把平面分成f(n)个部分,则满足上述条件的n+1个圆把平面分成的部分f(n+1)与f(n)的关系是A.f(n+1)=f(n)+nB.f(n+1)=f(n)+2nC.f(n+1)=f(n)+n+1D.f(n+1)=f(n)+n+228.用数学归纳法证明不等式成立时,应取的第一个值为A.1B.3C.4D.529.若,则等于A. B.C. D.30.设凸n边形的内角和为f (n),则f (n+1) - f (n) 等于A. B. C. D.31.用数学归纳法证明不等式成立,则n的第一个值应取A.7B.8C.9D.1032. 等于A. B. C. D.33.已知ab是不相等的正数,若 ,则b的取值范围是A.02B.02C.bD.b234.利用数学归纳法证明对任意偶数n,an-bn能被a+b整除时,其第二步论证,应该是A.假设n=k时命题成立,再证n=k+1时命题也成立B.假设n=2k时命题成立,再证n=2k+1时命题也成立C.假设n=k时命题成立,再证n=k+2时命题也成立D.假设n=2k时命题成立,再证n=2(k+1)时命题也成立35.用数学归纳法证明42n-1+3n+1(nN)能被13整除的第二步中,当n=k+1时为了使用假设,对42k+1+3k+2变形正确的是A.16(42k-1+3k+1)-133k+1B.442k+93kC.(42k-1+3k+1)+1542k-1+23k+1D.3(42k-1+3k+1)-1342k-136.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)(nN)时,从两边同乘以一个代数式,它是A.2k+2B.(2k+1)(2k+2)C.D.37.用数学归纳法证明某命题时,左式为+cos+cos3+…+cos(2n-1)(kZ,nN),在验证n=1时,左边所得的代数式为A. B. +cos C. +cos+cos 3 D. +cos+cos 3+cos 538.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)时,第二步n=k+1时的左边应是n=k时的左边乘以A.(k+1+k+1)B.(k+1+k)(k+1+k+1)C.D.39.设Sk= + + +……+ ,则Sk+1为A. B.C. D.40.用数字归纳法证明某命题时,左式为1- +…+ ,从n=k到n=k+1,应将左边加上A. B. C. D.41.用数学归纳法证明当n为正奇数时,xn+yn能被x+y整除时,第二步应是A.假设n=k(kN)时命题成立,推得n=k+1时命题成立B.假设n=2k+1(kN)时命题成立,推得n=2k+3时命题成立C.假设k=2k-1(kN)时命题成立,推得n=2k+1时命题成立D.假设nk(k1,kN)时命题成立,推得n=k+2时命题成立42.设p(k):1+ (k N),则p(k+1)为A.B.C.D.上述均不正确43.k棱柱有f(k)个对角面,则k+1棱柱有对角面的个数为A.2f(k)B.k-1+f(k)C.f(k)+kD.f(k)+244.已知,则等于A. B.C. D.45.用数学归纳法证明,在验证n=1等式成立时,左边计算所得的项是A. B. C. D.46.用数学归纳法证明某不等式,其中证时不等式成立的关键一步是:,括号中应填的式子是A. B. C. D.47.对于不等式,某人的证明过程如下:当时,不等式成立。
2017-2018学年度xx学校xx月考卷一、选择题(共20小题,每小题 5.0分,共100分)1.方程组的解集是()A.B. {x,y|x=3且y=-7}C. {3,-7}D. {(x,y)|x=3且y=-7}2.下列四组函数中,表示同一函数的一组是()A.f(x)=,g(x)=()2B.f(x)=x,g(x)=|x|C.f(x)=x2,g(x)=(x+2)2D.f(x)=,g(x)=3.满足A?{1,2,3,4}且A∩{1,2,3}={1,2}的集合A的个数是()A. 1B. 2C. 3D. 44.已知集合A={x|x(x-1)=0},那么()A. 0∈AB. 1?AC.-1∈AD. 0?A5.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B等于()A. (-∞,2]B. [1,2]C. [-2,2]D. [-2,1]6.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>BB.A BC.B AD.A∈B7.给出下列四个关系:π∈R,0?Q,0.7∈N,0∈?,其中正确的关系个数为()A. 4B. 3C. 2D. 18.设全集U=R,集合M={y|y=x2+2,x∈U},集合N={y|y=3x,x∈U},则M∩N等于() A. {1,3,2,6}B. {(1,3),(2,6)}C.MD. {3,6}9.下列各图中,以x为自变量的函数的图象是()A.B.C.D.10.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合?U(A∪B)等于() A. {x|x≥0}B. {x|x≤1}C. {x|0≤x≤1}D. {x|0<x<1}11.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合;(2)倒数等于它自身的实数构成一个集合;(3)质数的全体构成一个集合;(4)由2,3,4,3,6,2构成含有6个元素的集合.A. 1B. 2C. 3D. 412.给出下列对应f:A→B:①A=R,B={x∈R|x>0},f:x→|x|;②A=N*,B=N,f:x→|x-1|;③A={x∈R|x<0},B=R,f:x→x2.其中是从集合A到B映射的有()A.①②③B.①②C.②③D.①③13.方程组的解的集合为()A. {1,2}B. {x=1,y=2}C.D. {(1,2)}14.已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的真子集共有() A. 1个B. 2个C. 4个D. 8个15.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2-2x-1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2+2x+116.已知集合A={x|5-|2x-3|∈N*},则集合A的非空真子集数为()A. 14B. 512C. 511D. 51017.下列各组函数相同的是()A.f(x)=与g(x)=x+1B.f(x)=与g(x)=x·C.f(x)=2x+1与g(x)=D.f(x)=|x2-1|与g(t)=18.已知函数f(x)=ax2+bx+3a+b是定义域为[a-1,2a]的偶函数,a+b的值是() A. 0B.C. 1D.-119.若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是() A. (-1,0)∪(0,1)B. (-1,0)∪(0,1]C. (0,1)D. (0,1]20.如图表示某人的体重与年龄的关系,则()A.体重随年龄的增长而增加B. 25岁之后体重不变C.体重增加最快的是15岁至25岁D.体重增加最快的是15岁之前二、填空题(共10小题,每小题 5.0分,共50分)21.函数f(x)=-x2+b在[-3,-1]上的最大值是4,则它的最小值是________.22.已知集合A={x|x2-2x>0},B={x|-<x<},则A∪B=________.23.A={m,2},B={m2-2,2},且A=B,则实数m=________.24.若函数f(x)是偶函数,且f(x)在x∈[0,+∞)上单调递增,f(1)=0,则f(x-1)<0的解集是________.25.已知数集M={-1,0,x-2}中有3个元素,则实数x不能取的值构成的集合为________.26.用列举法表示集合{x||x|<6,且x∈Z}=________.27.用描述法表示平面内不在第一与第三象限的点的集合为________.28.若集合A,B,C满足A∩B=A,B∪C=C,则A与C之间的关系是________.29.满足{0,2,4}A{0,2,4,6,8,10}的集合A的个数是________个.30.函数f(x)=的定义域是___________.三、解答题(共0小题,每小题12.0分,共0分)答案解析1.【答案】D【解析】解方程组得用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选 D.2.【答案】D【解析】因为同一函数要求定义域和对应关系相同,那么选项A中f(x)的定义域为R,g(x)的定义域为x≥0,故定义域不同.选项B,f(x)=x,g(x)=|x|,对应关系不同.选项C,显然f(x)=x2,g(x)=(x+2)2,对应关系不同.选项D中定义域都是x>0,对应关系为f(x)==1,g(x)==1,故选 D.3.【答案】B【解析】4.【答案】A【解析】由x(x-1)=0得x=0或x=1,∴A={0,1},∴0∈A,故选A.5.【答案】D【解析】∵A={x||x|≤2}={x|-2≤x≤2},∴A∩B={x|-2≤x≤2}∩{x|x≤1,x∈R}={x|-2≤x≤1}.故选D.6.【答案】C【解析】7.【答案】D【解析】∵R表示实数集,Q表示有理数集,N表示自然数集,?表示空集,∴π∈R,0∈Q,0.7?N,0??,∴正确的个数为1,故选D.8.【答案】C【解析】M=[2,+∞),N=R.9.【答案】B【解析】根据函数的定义可知,A中当x取值时,存在两个y与x对应,不满足对应的唯一性;B.满足条件;C.当x>0时,存在两个y与x对应,不满足对应的唯一性;D.当x取值时,存在无数多个y与x对应,不满足对应的唯一性.故选B.10.【答案】D【解析】由已知得A∪B={x|x≤0或x≥1}.故?U(A∪B)={x|0<x<1}.故选 D.11.【答案】C【解析】(1)正确,(2)若=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确,(3)任何一个质数都在此集合中,不是质数的都不在,(3)正确,(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选 C.12.【答案】C【解析】①当x=0时,B中没有元素对应,不是从集合A到B的映射,②③符合映射的定义,是从集合A到B的映射,故选 C.13.【答案】D【解析】解方程组可得故选D.。
2015高中数学 2.3数学归纳法练习 新人教A 版选修2-2一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13,故选B. 2.(2014·秦安县西川中学高二期中)用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+ (12)(n ∈N *),那么f (n +1)-f (n )等于( ) A .12n +1 B .12n +2 C .12n +1+12n +2 D .12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1n ++1+1n ++2+…+12n +12n +1+1n +-⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+1n +-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C .当n =4时该命题不成立D .当n =4时该命题成立[答案] C[解析] 原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在第二步的证明时,正确的证法是( )A .假设n =k (k ∈N *)时命题成立,证明n =k +1时命题也成立 B .假设n =k (k 是正奇数)时命题成立,证明n =k +1时命题也成立 C .假设n =k (k 是正奇数)时命题成立,证明n =k +2时命题也成立 D .假设n =2k +1(k ∈N )时命题成立,证明n =k +1时命题也成立 [答案] C[解析] ∵n 为正奇数,当n =k 时,k 下面第一个正奇数应为k +2,而非k +1.故应选C. 6.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -2[答案] C[解析] 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.二、填空题7.(2014·湖北重点中学高二期中联考)用数学归纳法证明(n +1)(n +2)…(n +n )=2n·1·3…(2n -1)(n ∈N *)时,从“n =k 到n =k +1”左边需增乘的代数式为( )A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +1[答案] B[解析] n =k 时,等式为(k +1)(k +2)…(k +k )=2k·1·3·…·(2k -1),n =k +1时,等式左边为(k +1+1)(k +1+2)…(k +1+k +1)=(k +2)(k +3)…(2k )·(2k +1)·(2k +2),右边为2k +1·1·3·…·(2k -1)(2k +1).左边需增乘2(2k +1),故选B.8.已知数列11×2,12×3,13×4,…,1n n +,通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案]nn +1[解析] 解法1:通过计算易得答案. 解法2:S n =11×2+12×3+13×4+…+1nn +=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.9.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是________.[答案] 1-12=12[解析] 当n =1时,等式的左边为1-12=12,右边=12,∴左边=右边.三、解答题10.(2013·大庆实验中学高二期中)数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74.由此猜想a n =2n-12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k-12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k∴a k +1=2+a k 2=2k +1-12k, ∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n-12n -1成立.一、选择题11.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C .k +4+k +22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2[答案] D[解析] n =k 时,左边=1+2+3+…+k 2,n =k +1时,左边=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2,故选D.12.设凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________.( ) A .2π B .π C .π2D .π3[答案] B[解析] 将k +1边形A 1A 2…A k A k +1的顶点A 1与A k 相连,则原多边形被分割为k 边形A 1A 2…A k 与三角形A 1A k A k +1,其内角和f (k +1)是k 边形的内角和f (k )与△A 1A k A k +1的内角和π的和,故选B.13.(2014·揭阳一中高二期中)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3[答案] A[解析] 因为从n =k 到n =k +1的过渡,增加了(k +1)3,减少了k 3,故利用归纳假设,只需将(k +3)3展开,证明余下的项9k 2+27k +27能被9整除.14.(2014·合肥一六八中高二期中)观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=( )A .26B .27C .28D .29[答案] D[解析] 观察发现,1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,∴a 7+b 7=29. 二、填空题15.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立 [解析] 当n =1时,左≥右,不等式成立, ∵n ∈N *,∴第一步的验证为n =1的情形. 16.对任意n ∈N *,34n +2+a2n +1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.三、解答题17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点. 求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立.当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=k +2+k ++22块区域.所以n =k +1时命题也成立. 由(1)(2)可知,原命题成立.18.试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论. [分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系; ②利用数学归纳法证明猜想的结论. 解答本题的关键是先利用特殊值猜想. [解析] 当n =1时,21+2=4>n 2=1, 当n =2时,22+2=6>n 2=4, 当n =3时,23+2=10>n 2=9, 当n =4时,24+2=18>n 2=16, 由此可以猜想, 2n +2>n 2(n ∈N *)成立 下面用数学归纳法证明: (1)当n =1时,左边=21+2=4,右边=1,所以左边>右边, 所以原不等式成立.当n =2时,左边=22+2=6, 右边=22=4,所以左边>右边;当n =3时,左边=23+2=10,右边=32=9, 所以左边>右边.(2)假设n =k 时(k ≥3且k ∈N *)时,不等式成立, 即2k+2>k 2.那么当n =k +1时, 2k +1+2=2·2k +2=2(2k +2)-2>2·k 2-2.又因:2k 2-2-(k +1)2=k 2-2k -3 =(k -3)(k +1)≥0, 即2k 2-2≥(k +1)2,故2k +1+2>(k +1)2成立.根据(1)和(2),原不等式对于任何n ∈N *都成立.。
课时跟踪检测(十二) 数学归纳法1.数学归纳法证明中,在验证了n =1时命题正确,假定n =k 时命题正确,此时k 的取值范围是( )A .k ∈NB .k >1,k ∈N +C .k ≥1,k ∈N +D .k >2,k ∈N +解析:选C 数学归纳法是证明关于正整数n 的命题的一种方法,所以k 是正整数, 又第一步是递推的基础,所以k 大于等于1. 2.用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为( )A .1B .1+2C .1+2+22D .1+2+22+23.解析:选D 当n =1时,左边=1+2+22+23.3.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:选A 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.4.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2nC.n 2+n +22D .n 2+n +1解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +2=n 2+n +22个区域.5.观察式子1=1,1-4=-(1+2),1-4+9=1+2+3,…猜想第n 个式子应为________.答案:1-4+9-16+…+(-1)n -1n 2=(-1)n +1·n n +26.用数学归纳法证明:“1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.n ∈N +”时,若n =1,则左端应为________.解析:n =1时,左端应为1×4=4. 答案:47.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________.解析:由凸k 边形变为凸k +1边形时,增加了一个三角形图形.故f (k +1)=f (k )+π.答案:π8.用数学归纳法证明对于整数n ≥0,A n =11n +2+122n +1能被133整除.证明:(1)当n =0时,A 0=112+12=133能被133整除. (2)假设n =k 时,A k =11k +2+122k +1能被133整除.当n =k +1时,A k +1=11k +3+122k +3=11·11k +2+122·122k +1=11·11k +2+11·122k +1+(122-11)·122k +1=11·(11k +2+122k +1)+133·122k +1.∴n =k +1时,命题也成立.根据(1)(2)可知,对于任意整数n ≥0,命题都成立.9.有n 个圆,任意两个圆都相交于两点,任意三个圆不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2(n ∈N +)个部分.证明:(1)当n =1时,一个圆将平面分成两个部分,且f (1)=1-1+2=2,所以n =1时命题成立.(2)假设n =k (k ≥1)时命题成立.即k 个圆把平面分成f (k )=k 2-k +2个部分.则n =k +1时,在k +1个圆中任取一个圆O ,剩下的k 个圆将平面分成f (k )个部分,而圆O 与k 个圆有2k 个交点,这2k 个点将圆O 分成2k 段弧,每段弧将原平面一分为二,故得f (k +1)=f (k )+2k =k 2-k +2+2k=(k +1)2-(k +1)+2. ∴当n =k +1时,命题成立.综合(1)(2)可知,对一切n ∈N +,命题成立.10.试用n (n ≥2,n ∈N +)表示⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19·⎝ ⎛⎭⎪⎫1-116·…·⎝ ⎛⎭⎪⎫1-1n 2的值,并用数学归纳法证明.解:当n =2时,原式=1-14=34;当n =3时,原式=⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19=46;当n =4时,原式=⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116=58.猜想⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19·…·⎝ ⎛⎭⎪⎫1-1n 2=n +12n.下面用数学归纳法证明这个结论. (1)当n =2时,易知结论成立.(2)假设n =k (k ∈N +,k ≥2)时结论成立,即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19·…·⎝ ⎛⎭⎪⎫1-1k 2=k +12k, 则当n =k +1时,⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19·…·⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎡⎦⎥⎤1-1k +2=k +12k ·k k +k +2=k +2k +=k ++1k +,即当n =k +1时,结论成立.由(1)(2)可知对一切n ∈N +,结论都成立.。
高中数学数学归纳法的应用检测试题(附答案)试卷分析题目高中数学复习专题讲座数学归纳法的解题应用高考要求数学归纳法是高考考查的重点内容之一类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法重难点归纳(1)数学归纳法的基本形式设P(n)是关于自然数n的命题,若1P(n0)成立(奠基)2假设P(k)成立(kn0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立(2)数学归纳法的应用具体常用数学归纳法证明恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等典型题例示范讲解例1试证明不论正数a、b、c是等差数列还是等比数列,当n>1,nN_且a、b、c互不相等时,均有an+cn>2bn命题意图本题主要考查数学归纳法证明不等式知识依托等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤错解分析应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况技巧与方法本题中使用到结论 (ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>akc+cka证明 (1)设a、b、c为等比数列,a= ,c=bq(q>0且q1)an+cn= +bnqn=bn( +qn)>2bn(2)设a、b、c为等差数列,则2b=a+c猜想>( )n(n2且nN_)下面用数学归纳法证明①当n=2时,由2(a2+c2)>(a+c)2,②设n=k时成立,即则当n=k+1时, (ak+1+ck+1+ak+1+ck+1)> (ak+1+ck+1+akc+cka)= (ak+ck)(a+c)>( )k( )=( )k+1也就是说,等式对n=k+1也成立由①②知,an+cn>2bn对一切自然数n均成立例2在数列{an}中,a1=1,当n2时,an,Sn,Sn-成等比数列(1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{an}所有项的和命题意图本题考查了数列、数学归纳法、数列极限等基础知识知识依托等比数列的性质及数学归纳法的一般步骤采用的方法是归纳、猜想、证明错解分析 (2)中,Sk=-应舍去,这一点往往容易被忽视技巧与方法求通项可证明{ }是以{ }为首项,为公差的等差数列,进而求得通项公式解∵an,Sn,Sn-成等比数列,Sn2=an(Sn- )(n (_)(1)由a1=1,S2=a1+a2=1+a2,代入(_)式得:a2=-由a1=1,a2=- ,S3= +a3代入(_)式得a3=-同理可得a4=- ,由此可推出an=(2)①当n=1,2,3,4时,由(_)知猜想成立②假设n=k(k2)时,ak=-成立故Sk2=- (Sk- )(2k-3)(2k-1)Sk2+2Sk-1=0Sk= (舍)由Sk+12=ak+1(Sk+1- ),得(Sk+ak+1)2=ak+1(ak+1+Sk- )由①②知,an= 对一切nN成立(3)由(2)得数列前n项和Sn= ,S= Sn=0例3是否存在a、b、c使得等式122+232+…+n(n+1)2= (an2+bn+c)解假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+…+n(n+1)2=记Sn=122+232+…+n(n+1)2设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2= (k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)= [3(k+1)2+11(k+1)+10]也就是说,等式对n=k+1也成立综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立学生巩固练习1已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为( )A30 B26 C36 D62用数学归纳法证明3k3,nN)第一步应验证( )An=1 Bn=2 C n=3 Dn=43观察下列式子…则可归纳出________4已知a1= ,an+1= ,则a2,a3,a4,a5的值分别为________,由此猜想an=________ 5用数学归纳法证明4 +3n+2能被13整除,其中nN_6若n为大于1的自然数,求证7已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+ )(其中a>0且a1)记Sn是数列{an}的前n项和,试比较Sn与 logabn+1的大小,并证明你的结论8设实数q满足|q|<1,数列{an}满足a1=2,a20,anan+1=-qn,求an表达式,又如果 S2n<3,求q的取值范围参考答案1解析∵f(1)=36,f(2)=108=336,f(3)=360=1036f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除证明n=1,2时,由上得证,设n=k(k2)时,f(k)=(2k+7)3k+9能被36整除,则n=k+1时,f(k+1)-f(k)=(2k+9)3k+1?-(2k+7)3k=(6k+27)3k-(2k+7)3k=(4k+20)3k=36(k+5)3k-2?(k2)f(k+1)能被36整除∵f(1)不能被大于36的数整除,所求最大的m值等于36答案C2解析由题意知n3,应验证n=3答案C3解析(nN_)(nN_)、、、5证明 (1)当n=1时,421+1+31+2=91能被13整除(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+142+3k+23-42k+13+42k+13=42k+113+3(42k+1+3k+2?)∵42k+113能被13整除,42k+1+3k+2能被13整除当n=k+1时也成立由①②知,当nN_时,42n+1+3n+2能被13整除6证明 (1)当n=2时,(2)假设当n=k时成立,即7 (1)解设数列{bn}的公差为d,由题意得 ,bn=3n-2(2)证明由bn=3n-2知Sn=loga(1+1)+loga(1+ )+…+loga(1+ )=loga[(1+1)(1+ )…(1+ )]而 logabn+1=loga ,于是,比较Sn与 logabn+1?的大小比较(1+1)(1+ )…(1+ )与的大小取n=1,有(1+1)=取n=2,有(1+1)(1+推测(1+1)(1+ )…(1+ )> (_)①当n=1时,已验证(_)式成立②假设n=k(k1)时(_)式成立,即(1+1)(1+ )…(1+ )>则当n=k+1时,,即当n=k+1时,(_)式成立由①②知,(_)式对任意正整数n都成立于是,当a>1时,Sn> logabn+1?,当 0<a<1时,Sn< logabn+1?8 解∵a1a2=-q,a1=2,a20,q0,a2=- ,∵anan+1=-qn,an+1an+2=-qn+1?两式相除,得 ,即an+2=qan于是,a1=2,a3=2q,a5=2qn…猜想a2n+1=-qn(n=1,2,3,…)综合①②,猜想通项公式为an=下证(1)当n=1,2时猜想成立(2)设n=2k-1时,a2k-1=2qk-1则n=2k+1时,由于a2k+1=qa2k-1? a2k+1=2qk即n=2k-1成立可推知n=2k+1也成立设n=2k时,a2k=- qk,则n=2k+2时,由于a2k+2=qa2k?,所以a2k+2=- qk+1,这说明n=2k成立,可推知n=2k+2也成立综上所述,对一切自然数n,猜想都成立这样所求通项公式为an=S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1?)-(q+q2+…+qn)由于|q|<1, =依题意知<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<。
【三维设计】2018届高考数学 第六章第七节数学归纳法课后练习 理 人教A 版一、选择题1.(2018·济南模拟)用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C. k +1 4+ k +1 22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:当n =k 时,等式左端=1+2+…+k 2,当n =k +1时,等式左端=1+2+…+k2+.答案:D2.如果命题p (n )对n =k 成立,则它对n =k +2也成立.若p (n )对n =2成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解析:若n =2p (n )成立,则n =4,6,8,…,时p (n )成立. 答案:B3.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( )A .7B .8C .9D .10解析:可逐个验证,n =8成立. 答案:B4.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k)解析:(1)当k =1时,显然只有3(2+7k)能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n)-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立. 答案:D5.若凸n (n ≥4)边形有f (n )条对角线,是凸(n +1)边形的对角线条数f (n +1)为( ) A .f (n )+n -2 B .f (n )+n -1 C .f (n )+nD .f (n )+n +1解析:由题意知f (n +1)-f (n )=n -1, 故f (n +1)=f (n )+n -1. 答案:B 二、填空题6.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是____________.解析:a 1=13=11×3,a 2=115=13×5, a 3=135=15×7, ∴a n =12n -1 2n +1 .答案:a n =12n -1 2n +17.(2018·徐州模拟)用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析:∵n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +1 三、解答题8.用数学归纳法证明下面的等式 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.证明:(1)当n =1时,左边=12=1, 右边=(-1)0·1× 1+1 2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +12.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k k +12+(-1)k·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)kk +1 k +22,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N *有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12.9.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n (n ∈N *),且点P 1的坐标为(1,-1). (1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2(13,13).∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k·(2a k +1)=b k1-2a k =1-2a k1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.10.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解:∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n-1.下面用数学归纳法证明这个猜想: ①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k-1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k-1≥2k +1-1,即n =k +1时,结论也成立.由①、②知,对任意n ∈N *,都有a n ≥2n-1. 即1+a n ≥2n.∴11+a n ≤12n . ∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-⎝ ⎛⎭⎪⎫12n<1.。
课外拓展阅读由递推公式求通项的常用方法和技巧递推数列是高考考查的热点,由递推公式求通项时,一般需要先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.下面给出几种常见的递推数列,并讨论其通项公式的求法.类型1 a n+1=a n+f(n)把原递推公式转化为a n+1-a n=f(n),再利用累加法(逐差相加法)求解.已知数列{a n}中,a1=2,a n+1=a n+n+1,求数列{a n}的通项公式.因为a1=2,a n+1-a n=n+1,所以a n-a n-1=(n-1)+1,an-1-a n-2=(n-2)+1,a n-2-a n-3=(n-3)+1,…a2-a1=1+1,由已知,a1=2=1+1,将以上各式相加,得an=+n+1=n-n-+1]2+n+1=n n-2+n+1=n n+2+1.类型2 a n+1=f(n)a n把原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解.已知数列{a n}满足a1=23,a n+1=nn+1·a n,求数列{a n}的通项公式.由a n+1=nn+1·a n,得an+1an=nn+1.当n≥2,n∈N*时,a n=anan-1·an-1an-2·…·a2a1·a1=n-1n·n-2n-1·…·12·23=23n,即a n=23n .又当n=1时,23×1=23=a1,故a n=23n.类型3 a n+1=pa n+q先用待定系数法把原递推公式转化为a n+1-t=p(a n-t),其中t=q1-p,再利用换元法转化为等比数列求解.已知数列{a n}中,a1=1,a n+1=2a n+3,求数列{a n}的通项公式.设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ), 即a n +1=2a n -t ,解得t =-3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,以2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. 类型4 a n +1=pa n +q n(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ⎝ ⎛⎭⎪⎫q p n,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用累加法(逐差相加法)求解.已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求数列{a n }的通项公式.解法一:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以2n +1,得2n +1a n +1=23(2n a n )+1.令b n =2na n ,则b n +1=⎝ ⎛⎭⎪⎫23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是首项为b 1-3=2×56-3=-43,公比为23的等比数列.所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2·⎝ ⎛⎭⎪⎫23n.于是,a n =b n 2n =32n -23n .解法二:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以3n +1,得3n +1a n +1=3na n +⎝ ⎛⎭⎪⎫32n +1.令b n =3n a n ,则b n +1=b n +32n +1, 所以b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322.将以上各式叠加,得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n , 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n =1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n +11-32=2·⎝ ⎛⎭⎪⎫32n +1-2,即b n =2·⎝ ⎛⎭⎪⎫32n +1-2.故a n =b n 3n =32n -23n .类型5 a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)这种类型的题目一般是利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),然后与已知递推式比较,解出x ,y ,从而得到{a n +xn +y }是公比为p 的等比数列.设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求数列{a n }的通项公式.a n =3a n -1+2n -1→利用待定系数法得到一个等比数列→ 利用等比数列的知识可解 设递推公式可以转化为a n +An +B =3,化简后与原递推式比较,得 ⎩⎨⎧2A =2,2B -3A =-1,解得⎩⎨⎧A =1,B =1.则a n +n +1=3. 令b n =a n +n +1,(*) 则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*),得a n =2·3n -n -1. 类型6 a n +1=pa r n (p >0,a n >0)这种类型的题目一般是将等式两边取对数后转化为a n +1=pa n +q 型,再利用待定系数法求解.已知数列{a n }中,a 1=1,a n +1=1m·a 2n (m >0),求数列{a n }的通项公式.对a n +1=1m·a 2n 两边取对数,得lg a n +1=2lg a n +lg 1m.令b n =lg a n ,则b n +1=2b n +lg 1m.因此得b n +1+lg 1m =2⎝⎛⎭⎪⎫b n +lg 1m ,记c n =b n +lg 1m,则c n +1=2c n .所以数列{c n }是首项c 1=b 1+lg 1m =lg 1m,公比为2的等比数列.所以c n =2n -1·lg 1m.所以b n =c n -lg 1m =2n -1·lg 1m -lg 1m =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,即lg a n =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,所以a n =m ·⎝ ⎛⎭⎪⎫1m 2n -1.类型7 a n +1=pa nqa n +r(p ,q ,r ≠0且a n ≠0,qa n +r ≠0) 这种类型的题目一般是将等式两边取倒数后,再进一步处理.若p =r ,则有1a n +1=r +qa n pa n =1a n +qp ,此时⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 为等差数列.若p ≠r ,则有1a n +1=r p ·1a n +qp,此时可转化为类型3来处理.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.因为a n +1=2a na n +2,a 1=1, 所以a n ≠0, 所以1a n +1=1a n +12, 即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,以12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n +12,所以a n =2n +1(n ∈N *). 类型8 a n +1+a n =f (n )将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=1,a n +1+a n =2n ,求数列{a n }的通项公式.因为a n +1+a n =2n ,所以a n +2+a n +1=2n +2,故a n +2-a n =2,即数列{a n }是奇数项与偶数项都是公差为2的等差数列. 当n 为偶数时,a 2=1, 故a n =a 2+2⎝ ⎛⎭⎪⎫n 2-1=n -1.当n 为奇数时,因为a n +1+a n =2n ,a n +1=n (n +1为偶数),故a n =n . 综上知,a n =⎩⎨⎧n ,n 为奇数,n -1,n 为偶数,n ≥1,n ∈N *.类型9 a n +1·a n =f (n )将原递推关系改写成a n +2·a n +1=f (n +1),两式作商可得a n +2a n =f n +f n,然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求数列{a n }的通项公式.因为a n +1·a n =2n , 所以a n +2·a n +1=2n +1,故a n +2a n=2, 即数列{a n }是奇数项与偶数项都是公比为2的等比数列.当n 为偶数时,a 2=23,故a n =a 2·2n2-1=23·2n2-1 ,即a n =13·2n2;当n 为奇数时,n +1为偶数,故a n +1=13·2n2+1 ,代入a n +1·a n =2n,得a n =3·2n2-1 .综上知,a n=⎩⎪⎨⎪⎧3·2n2-1 ,n 为奇数,13·2 n2 ,n 为偶数.。
[高考基础题型得分练]1.用数学归纳法证明“2n >2n +1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6答案:B解析:∵当n =1时,21=2,2×1+1=3,2n >2n +1不成立; 当n =2时,22=4,2×2+1=5,2n >2n +1不成立; 当n =3时,23=8,2×3+1=7,2n >2n +1成立, ∴n 的第一个取值n 0=3.2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案:D解析:由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14. 3.某个命题与正整数有关,如果当n =k (k ∈N *)时该命题成立,那么可以推出n =k +1时该命题也成立.现已知n =5时该命题成立,那么( )A .n =4时该命题成立B .n =4时该命题不成立C .n ≥5,n ∈N *时该命题都成立D .可能n 取某个大于5的整数时该命题不成立 答案:C解析:显然A ,B 错误,由数学归纳法原理知C 正确. 4.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10答案:B解析:左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3 答案:A解析:假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3.6.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式k 2+k <k +1成立,当n =k +1时,(k +1)2+k +1=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案:D解析:在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 7.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1) D.1(2n +1)(2n +2)答案:C解析:当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5;当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7;故猜想a n =1(2n -1)(2n +1).8.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C.2k +1k +1D.2k +3k +1答案:B解析:当n =k (k ∈N *)时, 左式为(k +1)(k +2)·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).9.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.答案:1+12+13<2 解析:∵n >1且n ∈N , ∴当n =2时,1+12+13<2.10.[2017·江苏无锡调研]利用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n >1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果为________.答案:12k +1-12k +2解析:当n =k 时,左边=1k +1+1k +2+…+1k +k,①当n =k +1时,左边=1k +2+1k +3+…+1k +k +12k +1+12k +2,②②-①,得12k +1+12k +2-1k +1=12k +1-12k +2.11.用数学归纳法证明1+2+3+…+n 2=n 4+n22,则当n =k +1时左端应在n =k 的基础上加上的项为______________________________.答案:(k 2+1)+(k 2+2)+…+(k +1)2解析:当n =k 时,左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2,故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.[冲刺名校能力提升练]1.用数学归纳法证明:“1+a +a 2…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”,在验证n =1时,等式左边是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案:C解析:由题意,根据数学归纳法的步骤可知,当n =1时,等式的左边应为1+a +a 2,故选C.2.[2017·天津模拟]设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f (1)<1成立,则f (10)<100成立B .若f (2)<4成立,则f (1)≥1成立C .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立答案:D解析:选项A ,B 的答案与题设中不等号方向不同,故A ,B 错;选项C 中,应该是k ≥3时,均有f (k )≥k 2成立;对于选项D ,满足题设原理,该命题成立.3.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________.答案:1(2k +1)(2k +2)解析:不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1(2k +1)(2k +2).4.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n-1(n ∈N *).(1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.解:(1)当n =1时,方程x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,∴(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,∴⎝ ⎛⎭⎪⎫a 2-122-a 2⎝ ⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16. (2)由题意知(S n -1)2-a n (S n -1)-a n =0, 当n ≥2时,a n =S n -S n -1,代入上式整理得 S n S n -1-2S n +1=0,解得S n =12-S n -1.由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23, 猜想S n =nn +1(n ∈N *).下面用数学归纳法证明这个结论: ①当n =1时,结论成立.②假设n =k (k ∈N *,k ≥1)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k=12-k k +1=k +1k +2=k +1(k +1)+1,即当n =k +1时结论成立.由①②知S n =nn +1对任意的正整数n 都成立.5.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明. 解:(1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118, 所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216, 所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2.那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3.因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.。