七年级下册8.1二元一次方程组同步练习
- 格式:doc
- 大小:40.50 KB
- 文档页数:2
8.1二元一次方程组(第1课时)1.两个数的和为8,两个数的差为6,求这两个数.设这两个数为x 、y.根据题意,列出两个二元一次方程: ______________=18 ______________=6 2.下面三对数值:x 0,y 2,⎧=⎨=-⎩ x 2,y 3,⎧=⎨=-⎩ x 1,y 5.⎧=⎨=-⎩(1)满足方程2x-y=7的是_______________;(2)满足方程x+2y=-4的是_______________; (3)同时满足方程2x-y=7,x+2y=-4的是_____________. 3.下面三对数值:x 1,y 1,⎧=⎨=-⎩ x 2,y 1,⎧=⎨=⎩ x 4,y 5.⎧=⎨=⎩ (1)是二元一次方程组2x y 33x 4y 10⎧-=⎨+=⎩的解的是_______________; (2)是二元一次方程组y 2x 34x 3y 1⎧=-⎨-=⎩的解的是_______________.4.找一找,二元一次方程组x y 6x y 2⎧+=⎨-=⎩的解是______________.8.2消元——二元一次方程组的解法(第1课时) 1.完成下面的解题过程: 解方程组①②y 2x 3, 3x 2y 8.⎧=-⎨+=⎩ 解:把①代入②,得___________________.解这个方程,得x=______.把x=______代入①,得y=______. 所以这个方程组的解是x ____,y ____.⎧=⎨=⎩2.解方程组①②2x y 12, y 3x 2 .⎧+=⎨=+⎩3.解方程组①②x 12y, 2x 3y 2.⎧=-⎨+=-⎩8.2消元——二元一次方程组的解法(第2课时) 1.填空:(1)由y+2x=1,得y=__________; (2)由x+2y=1,得x=__________; (3)由2x-y=1,得y=__________; (4)由2y-x=1,得x=__________. 2.完成下面的解题过程: 用代入法解方程组2x 3y 2, ①x 12y.②⎧+=-⎨=-⎩解:把②代入①,得____________________.解这个方程,得y=____. 把y=____代入②得x=____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩(组,这种解法的关键是通过代入消去一个未知3.完成下面的解题过程: 用代入法解方程组:①②2x y 5 , 3x 4y 2.⎧-=⎨+=⎩解:由①,得y=____________.③把③代入_____,得____________________.解这个方程,得x=_____.把x=_____代入_____,得y=_____. 所以这个方程组的解是x ____,y ____.⎧=⎨=⎩4.用代入法解方程组①②2x y 5, 5x y 9. ⎧+=⎨-=⎩5.辨析题:扎西在解方程组①②x y 3 5x y 9 ⎧-=⎨-=⎩时,先由①得x=y+3 ③.然后把③代入①,得到y+3-y=3.解到这里,扎西解不下去了.请你帮扎西分析分析,他在哪里出错了?为什么?8.2消元——二元一次方程组的解法(第3课时) 1.填空:(1)由3x+4y=1,得y=______________; (2)由3x+4y=1,得x=______________;(3)由5x-2y+12=0,得y=________________; (4)由5x-2y+12=0,得x=________________. 2.完成下面的解题过程: 用代入法解方程组x 3y 2, ①3x 4y 50.②⎧-=⎨--=⎩解:由①,得x=____________.③把③代入②,得_______________________.解这个方程,得y=_____.把y=_____代入_____,得x=_____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩3.完成下面的解题过程: 用代入法解方程组:①②4x 9y 8, 2x 3y 1.⎧-=⎨+=-⎩解法一:由①,得x=____________.③把③代入②,得_______________________.解这个方程,得y=_____.把y=____代入,_____得x=____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩解法二:由②,得y=____________.③把③代入①,得_______________________.解这个方程,得x=_____.把x=_____代入_____,得y=_____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩8.2消元——二元一次方程组的解法(第4课时) 1.完成下面的解题过程: 用加减法解方程组①②3x 7y 9 , 4x 7y 5.⎧+=⎨-=⎩解:①+②,得__________________.解这个方程,得x=____.把x=____代入____,得_______________, y=_____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩2.辨析题:在学习例1的时候,卓玛有一个地方不明白:x+2y=7的左边加上3x-2y=5的左边,为什么等于x+2y=7的右边加上3x-2y=5的右边?你明白其中的道理吗?3.解方程组①②3x 7y 9 , 4x 7y 5.⎧+=⎨+=⎩解法一(用代入法解):解法二(不用代入法解):4.比较上题解法一和解法二,你认为哪一种解法简单?8.2消元——二元一次方程组的解法(第5课时) 1.完成下面的解题过程: 用加减法解方程组①②3x 2y 4 , 3x 3y 10.⎧+=⎨+=⎩解:①-②,得__________________.解这个方程,得y=_____.把y=_____代入_____,得_______________, x=_____. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩2.用加减法解方程组①②3x y 5 , 2x 3y 7. ⎧-=⎨+=⎩3.完成下面的解题过程: 用加减法解方程组①②3x 4y 16 , 5x 6y 33.⎧+=⎨-=⎩解:①×5,得 ___________________. ③②×3,得 ___________________. ④ ③-④,得 _______________. 解这个方程,得y=_____. 把y=_____代入_____,得_________________,x=______.所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩4.比较例2与上题的解题过程,你认为哪个更简单?原因在哪里?5.用加减法解方程组①②2x 3y 6 , 3x 2y 2.⎧+=⎨-=-⎩8.2消元——二元一次方程组的解法(第6课时) 1.填空:(1)化简解方程组3(x 1)y 55(y 1)3(x 5)⎧-=+⎨-=+⎩得_________________________;(2)化简解方程组x3y20 34x3y314312⎧-++=⎪⎪⎨--⎪-=⎪⎩得_________________________.2.用加减法解方程x y1,353(x y)2(x3y)15.⎧+=⎪⎨⎪++-=⎩8.3实际问题与二元一次方程组(第1课时)1.填空:某校组织198名毕业学生到林卡玩,一部分学生坐在草地上唱歌,另一部分学生在河边散步,唱歌的学生是散步学生的2倍还多10人.问唱歌、散步的学生各有多少人?设唱歌的学生有x人,散步的学生有y人.根据题意列二元一次方程组,得____________________________. 2.填空:某班师生56人到某旅游景点参观,教师每张门票8元,学生每门票5元,共付304元.问教师学生各多少人?设教师x人,学生y人.根据题意列二元一次方程组,得____________________________.3.列方程组解应用题:篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得40分,那么这个队胜负场数分别是多少?8.3实际问题与二元一次方程组(第2课时)1.填空:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?这些图书共有多少本?设这个班有x名学生,这些图书共有y本.根据题意列方程组,得___________________________.2.完成下面的解题过程:某藏药厂生产的珍珠70丸有大小盒两种包装,2大盒5小盒共装50粒,3大盒4小盒共装54粒.大盒与小盒每盒各装多少粒?解:设大盒装x粒,小盒装y粒.根据题意列方程组,得_____________________.解方程组,得____________.答:大盒装______粒,小盒装______粒.3.(选做题)填空:5辆卡车和4辆拖拉机2次能运货68吨;3辆卡车和2辆拖拉机3次能运货60吨.问一辆卡车和一辆拖拉机一次各运货多少吨?设一辆卡车一次运x吨,一辆拖拉机一次运货y吨.根据题意列方程组,得______________________.8.3实际问题与二元一次方程组(第3课时)1.填“×”或“÷”:路程=速度_____时间,速度=路程_____时间,时间=路程____速度.2.哥哥行走的速度是每秒x米,弟弟行走的速度是每秒y米,则:(1)走了16秒,哥哥走了_______米,弟弟走了_______米,哥哥和弟弟一共走了_____________ __________米;(2)走了2分钟,哥哥走了_______米,弟弟走了_______米,哥哥比弟弟多走了_______________米.3.填空:运动场的跑道一圈长400米.甲练习骑自行车,乙练习跑步,两人从同一处同时出发,4分钟后两人碰上了;碰上后两人改为反向出发,40秒后又碰上了.问两人的速度各是多少?设甲的速度为每分钟x米,乙的速度为每分钟y米.根据题意列方程组,得____________________________.8.3实际问题与二元一次方程组(第4课时)1.填空:某市现在的城镇人口为x万,农村人口为y万.计划一年后城镇人口增加0.8%,农村人口增加1.1%,则:(1)这个市现有总人口是___________万;(2)计划一年后城镇人口增加___________万;(3)计划一年后农村人口增加___________万;(4)计划一年后全市人口增加____________________________万.2.列二元一次方程组解应用题:扎西把含糖为6%和12%的两种饮料倒在一起,配成了含糖8%的混合饮料240克.问两种饮料各用了多少克?8.3实际问题与二元一次方程组(第5课时)1.完成下面的探究过程:打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?设打折前买1件A商品需要x元,买1件B商品需要y元.根据题意列方程组,得______________________ ,______________________.⎧⎨⎩解方程组,得x________ ,y________.⎧=⎨=⎩这就是说,打折前,买1件A商品需要______元,买1件B商品需要______元.因此,打折前,买500件A商品和500件B商品需要_________元.因此,买500件A商品和500件B商品,打折后比打折前可以少花_______元.第八章二元一次方程组复习(第1、2课时)1.填空:(以下内容是本章的基础知识,是需要你真正理解的.你最好直接填,想不起来再在课本中找,请用铅笔填)(1)含有_____个未知数,并且含有未知数的项的次数都是_____,像这样的方程叫做二元一次方程.(2)把具有相同未知数的两个二元一次方程合在一起,就组成了一个______________________. (3)既满足第一个二元一次方程,又满足第二个二元一次方程的两个未知数的值,叫做________ ________________.(4)二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的_______________方程,我们可以先求出一个未知数,然后再求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做_________思想.(5)把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做_______________法,简称________法.(6)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去未知数,得到一个一元一次方程.这种方法叫做______________法,简称________法.(7)用二元一次方程组解应用题一般有五步:________、设未知数、___________、解方程组、答. 2.填空:在x 2y 2⎧=-⎨=⎩与x 1y 1⎧=⎨=-⎩两组值中,是二元一次方程组x y 02x y 3⎧+=⎨-=⎩的解的是=y=_____.x _____ ,⎧⎨⎩ 3.完成下面的解题过程: 用代入法解方程组①②x y 4, 4x 2y 1.⎧-=⎨+=-⎩解:由①,得x=________________.③把③代入②,得_____________________.解这个方程,得y=_____.把y=_____代入③,得x=_____.所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩4.用代入法解方程组5x y 110,9y x 110.⎧-=⎨-=⎩5.完成下面的解题过程: 用加减法解方程组①②5x 2y 9, 2x 6y 7.⎧+=⎨-=⎩解:①×3,得___________________.③②+③,得_________________________.x=______.把x=______代入____,得_______________, y=______. 所以这个方程组的解是x ____ ,y ____.⎧=⎨=⎩6.用加减法解方程组0.6x 0.4y 1.1,0.2x 0.4y 2.3.⎧-=⎨-=⎩7.解方程组2(x y)x y1,346(x y)4(2x y)16.⎧-+-=-⎪⎨⎪+--=⎩8.填空:已知二元一次方程组x my4nx3y2⎧+=⎨+=⎩的解是x1y3⎧=⎨=-⎩,则m=_____,n=_____.9.填空:某班学生共40人,男生比女生少3人,问男女生各多少人?设男生x人,女生y人.根据题意列方程组,得_________________ , _________________.⎧⎨⎩10.填空:2本练习本及3支铅笔的价格为3.2元,4本练习本和5支铅笔的价格为5.8元.问一本练习本和一支铅笔的价格各为多少?设一本练习本的价格为x元,一支铅笔的价格为y元.根据题意列方程组,得_________________ ,_________________.⎧⎨⎩11.填空:某班上数学课的时候,准备分组讨论.如果每组7人,则余下3人;如果每组8人,则又不足5人.问全班有多少人?要分几组?设全班有x人,要分y组.根据题意列方程组,得_________________ ,_________________.⎧⎨⎩12.填空:某家存入银行甲、乙两种不同性质的存款20万元,甲种存款的年利率为2.4%,乙种存款的年利率为4.6%,该家一年共得利息7800元.求甲、乙两种存款各是多少万元?设甲、乙两种存款各是x万元、y万元.根据题意列方程组,得_______________________ ,_______________________.⎧⎨⎩13.列二元一次方程组解应用题:根据市场调查,常觉大盒装(每盒10粒)和小盒装(每盒6粒)两种产品的销售量(按盒计算)比为2:5.某藏药厂每天生产常觉7000粒,问应分装大、小盒两种产品各多少盒?。
8.1 二元一次方程组(专项练习)-人教版七年级下册一.选择题1.把方程2x﹣y=3改写成用含x的式子表示y的形式为()A.B.C.y=2x+3D.y=2x﹣32.将方程3x﹣y=1变形为用含x的代数式表示y()A.3x=y+1B.y=3x﹣1C.y=1﹣3x D.x=3.二元一次方程x+2y=9的所有正整数解有()组.A.无数B.9C.5D.44.在3x+4y=10中,已知y=1,则x的值是()A.﹣2B.﹣1C.1D.25.下列方程组是二元一次方程组的有()①;②;③;④A.1个B.2个C.3个D.4个6.由3x﹣4y=6可以得到用x表示y的式子为()A.B.y=x﹣C.D.7若是关于x,y的二元一次方程,那么的值是()A.7B.C.D.8关于x,y的二元一次方程(k﹣2)x﹣(k﹣1),当k取一个确定的值时就得到一个方程,所有这些方程有一个公共解()A.B.C.D.9若(a﹣2)x|a|﹣1+3y=1是关于x,y的二元一次方程,则a=()A.2B.﹣2C.2或﹣2D.010二元一次方程x+3y=10的非负整数解共有()对.A.1B.2C.3D.411将方程﹣x+y=1中x的系数变为5,则以下变形正确的是()A.5x+y=1B.5x+10y=10C.5x﹣10y=10D.5x﹣10y=﹣10二.填空题12.一个正整数被7除余2,被6除余5,这个正整数的最小值是.13.定义一种新的运算:a☆b=2a﹣b,例如:3☆(﹣1)=2×3﹣(﹣1)若a☆b=0,且关于x,y的二元一次方程(a+1),当a,b取不同值时,那么这个公共解为.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.已知二元一次方程.若用含x的代数式表示y,可得y=;方程的正整数解是.三.解答题16.已知和是关于x,y的二元一次方程y=kx+b的解,b的值.17.设x、y都是有理数,且满足方程(+)x+(+),求x﹣y的值.18.已知点B(0,3),正数a的平方根x、y既是方程2x﹣y=6的一组解,又是第四象限内点A的横纵坐标:(Ⅰ)是否存在符合条件的点A(填“存在”或“不存在”);(Ⅱ)若存在,请求出三角形AOB的面积;若不存在19.已知二元一次方程ax+3y+b=0(a,b均为常数,且a≠0).(1)当a=2,b=﹣4时,用x的代数式表示y;(2)若是该二元一次方程的一个解;①探索a与b关系,并说明理由;②若该方程有一个解与a,b的取值无关,请求出这个解.20.若整系数方程ax+by=c(ab≠0)有整数解,则(a,b)|c,若(a,b)|c,则整系数方程ax+by=c(ab≠0)(a,b)表示a,b的最大公约数,(a,b)(a,b)能整除c.根据这种方法判定下列二元一次方程有无整数解.(1)3x+4y=33;(2)2x+6y=15.。
初一数学下第8章《二元一次方程组》试题及答案§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。
5、方程2x+y=5的正整数解是______。
6、若(4x-3)2+|2y+1|=0,则x+2= 。
7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( ) A 、2 B 、-2 C 、2或-2 D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a§8.2消元——二元一次方程组的解法一、用代入法解下列方程组 (1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x (5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组 (1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x (3)⎩⎨⎧=--=-7441156y x y x(4)⎩⎨⎧-=+-=-53412911y x y x (5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( a 为常数)三:用适当的方法解方程:1、⎩⎨⎧=-=+-6430524m n n m2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x 3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x 5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数)1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
第8章二元一次方程组8.1二元一次方程组班级:姓名:知识点1二元一次方程的概念1.下列四个方程中,是二元一次方程的是()A.x-3=0B.2x-z=5C.3xy-5=8D.3x-2y=12.已知下列方程,其中是二元一次方程的是(填序号).①3x+2=2y;②2x+y=a;③x 2+y=2;④1x+3-2y;⑤x +2y3=1;⑥3x=1.3.若方程2x 2m+3+3y 5n-9=4是关于x,y 的二元一次方程,求m 2+n 2的值.4.判断下列各式是否是二元一次方程:(1)x+2y=2;(2)xy+y=2-x;(3)7-x+5y=0;(4)7x+2y=z;(5)8x-y;(6)5x+2y=7;(7)x+π=3;(8)x-2y 2=3.不是的请说明理由.知识点2二元一次方程组的概念5.下列方程组中是二元一次方程组的是()A.{xy =1,x +y =2B.{5x -2y =3,1x+y =3C.{2x +z =0,3x -y =15D.{x =5,x 2+y3=76.x,y 是未知数,下列方程组中,不是二元一次方程组的有()A.{x +1=0,y +4=0 B.{x -2y =3,y =-1C.{x +2y =-1,3x -2y =1D.{xy=1,x -y =37.下列方程组①{3x =2y +3,x +y =3x -7;②{x +y =-1,3x +z =5;③{x 2+y =1,4x -y =2;④{x +2=0,y -3=0中,是二元一次方程组的是(填序号).8.小明有1元和5角的硬币共9枚,小明能买到单价为1.5元的圆珠笔4支,若设一元的硬币有x 枚,5角的硬币有y 枚,根据题意可列出方程组,这是一个方程组.知识点3二元一次方程的解的概念9.二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A.{x =0,y =-12B.{x =1,y =1C.{x =1,y =0D.{x =-1,y =-110.二元一次方程3x+2y=11()A.只有一个解B.只有两个解C.任何一对有理数都是它的解D.有无数个解11.若{x =1,y =2是关于x,y 的二元一次方程ax-3y=1的解,则a 的值为()A.-5B.-1C.2D.712.在方程2x+4y=7中,用含x 的代数式表示y,则y=.用含y 的代数式表示x,则x=.13.写出二元一次方程2x+3y=15的两组解:、.知识点4二元一次方程组的解的概念14.二元一次方程组{x -y =4,x +y =2的解是()A.{x =3,y =-7B.{x =1,y =1C.{x =7,y =3D.{x =3,y =-115.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是()A.{x +y =-3x -y =-2 B.{x +y =-3x -2y =1C.{2x =y x +y =-3D.{x +y =03x -y =516.已知{x =12,y =-1是二元一次方程组{ax +y =1,2x -by =3的解,则a=,b=.17.下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x -2y =11,2x +3y =16的解?为什么?①{x =1,y =-4;②{x =5,y =2;③{x =7,y =23;④{x =15,y =6.综合点1二元一次方程组与求代数式的值的综合应用18.已知方程x 2m-1-2y 3n+4=100是二元一次方程,则(m+n)2013的值为.19.若{x =a ,y =b是方程3x-2y=2的一个解,求12a-8b+3的值.20.若{x =-1,y =2是方程2x+3y=m 和5x+2y=n 的解,求m 2-n 的值.21.甲、乙两同学共同解关于x,y 的方程组{ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a,得到方程组的解为{x =-3,y =-1,乙看错了方程②中的b,得到方程组的解为{x =5,y =4,求a 2009+()-110b2008的值.综合点2列二元一次方程(组)22.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =7823.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能用二元一次方程组表示题中的数量关系吗?24.根据下列条件,设适当的未知数列出二元一次方程或二元一次方程组.(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子年龄的2倍;(3)某同学到书店去买甲、乙两种书共用去39元,其中购甲种书的钱比购乙种书的钱多1元.拓展点1由解写方程或方程组25.请写出一个以x,y 为未知数的二元一次方程组,且同时满足下列条件:①由两个二元一次方程组成;②方程组的解为{x =2,y =3.这样的方程组可以是.26.请你用方程组{x +y =38,2x -y =1编写一道具有实际背景的题,使列出的方程组为上述方程组.拓展点2二元一次方程的整数解27.求方程3x+2y=10的正整数解.28.求方程3y=9-6x 的非负整数解.第8章二元一次方程组8.1二元一次方程组答案与点拨1.B(点拨:x-3=0是一元一次方程;2x-z=5是二元一次方程;3xy-5=8是二元二次方程;3x-2y=1不是整式方程.故选B.)2.①⑤(点拨:根据二元一次方程的定义判定.②含有三个未知数,不是二元一次方程;③中x 2的次数是2,不是二元一次方程;④中1x不是整式,所以不是二元一次方程;⑥中只有一个未知数,不是二元一次方程.只有①⑤符合二元一次方程的定义.)3.由题意可得:{2m +3=1,5n -9=1,解得{m =-1,n =2.由此可得m 2+n 2=(-1)2+22=5.4.二元一次方程有(1),(3);因为(2),(8)含未知数的项有2次,故它们不是二元一次方程;(4)含有3个未知数;(5)不是方程;(6)不是整式方程;(7)中的π不是未知数,它是一元一次方程,所以它们都不是二元一次方程.5.D(点拨:选项A 第一个方程中的xy 是二次的;选项B 的第二个方程有1x,不是整式方程;选项C 含有3个未知数;选项D 符合二元一次方程组的定义.故选D.)6.D(点拨:二元一次方程组的每一个方程都是二元一次方程(或一元一次方程).)7.①④(点拨:②是三元一次方程组,③是二元二次方程组.)8.{x +0.5y =6,x +y =9二元一次9.B(点拨:把四个选项逐一代入二元一次方程x-2y=1,选项B 不能使方程成立.)10.D(点拨:由二元一次方程的解的特性求解.)11.D(点拨:把{x =1,y =2代入方程ax-3y=1中即可求出a 的值,即a-3×2=1,解得a=7.)12.7-2x 4或()74-12x7-4y 2或()72-2y (点拨:表示y(x)则把x(y)看作常数,解方程即可.)13.{x =3,y =3{x =6,y =1(点拨:用一个未知数x(或y)表示出另一个未知数y(或x),然后给x(或y)一个值,求出y(或x)就可得到一组解.答案不唯一.)14.D(点拨:把{x =3,y =-1代入方程组{x -y =4,x +y =2,成立.)15.C(点拨:把{x =-1,y =-2分别代入方程组,使方程组成立即可.)16.42(点拨:把x,y 的值代入方程组得12a-1=1,1+b=3.)17.①②是方程3x-2y=11的解,②③是方程2x+3y=16的解.②是方程组{3x -2y =11,2x +3y =16的解.因为方程组的解必须是方程组中两个方程的公共解.18.0(点拨:由二元一次方程的定义可得2m-1=1,3n+4=1.解得m=1,n=-1.把m=1,n=-1的值代入(m+n)2013可得(m+n)2013=(1-1)2013=0.)19.把{x=a,y=b代入方程3x-2y=2得3a-2b=2,①又因为12a-8b+3=4(3a-2b)+3,②把①式代入②式可得12a-8b+3=4×2+3=11.20.把{x=-1,y=2代入方程可得{2×(-1)+3×2=m,5×(-1)+2×2=n,∴m=4,n=-1,则可得m2-n=42-(-1)=17.21.由于甲看错了①,则{x=-3,y=-1符合4x-by=-2,则可得4×(-3)-b×(-1)=-2,③由于乙看错了②,则{x=5,y=4符合ax+5y=15.则可得5a+20=15,④由③④可得b=10,a=-1.把a=-1,b=10代入a2009+()-110b2008=(-1)2009+(-1)2008=-1+1=0.22.D(点拨:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵数+女生种树的总棵数=78棵,根据等量关系列出方程组即可.)23.本题的等量关系可表示为:钢笔的单价=笔记本的单价+2元,10支钢笔的价钱+15本笔记本的价钱= 100元-5元.设钢笔每支为x元,笔记本每本为y元,根据题意得{x=y+2,10x+15y=100-5.24.(1)设甲数为x,乙数为y,8%x+11%y=(x+y)10%.(2)设今年父亲x岁,儿子y岁,{x-10=3(y-10),x=2y.(3)设购甲种书用x元,购乙种书用y元,{x+y=39,x-y=1.25.答案不唯一,如{x+y=5,2x-2y=-226.小明昨天上街买了一支钢笔和一个书夹共花去38元钱,已知两个书夹比一支钢笔贵1元,问钢笔和书夹的单价各是多少?(答案不唯一)27.由3x+2y=10,得y=5-32x.设x=2k,则y=5-3k.故3x+2y=10的整数解为{x=2k,y=5-3k.(k为整数)又∵x>0,y>0,∴{2k>0,5-3k>0,则0<k<53.∴k=1,则{x=2,y=2.28.∵3y=3(3-2x),∴y=3-2x.又∵y≥0,x≥0,∴0≤x≤32,x为整数,∴x=0或1.则非负整数解为{x=0,y=3;{x=1,y=1.。
§8.1 二元一次方程第一课时学习目标:1、理解二元一次方程、二元一次方程组和它的解的概念。
2、会检验一组数据是否是二元一次方程(组)的解 3、会列简单的二元一次方程(组)课前预习:一、阅读教材P93-P94的内容 二、独立思考:1、下列方程是二元一次方程的是( )A 、11=-xB 、122=-y x C 、1x1=-y D 、1x =-y2、下列方程组中是二元一次方程组的是( ) A 、22x 2=-=-y x y B 、yx y ==-31x 4 C 、yx y 21x1==- D 、402x 2==-y3、已知12x ==y ,能使方程3=-y ax 左右两边的值相等,那么a 的值是_________.4、二元一次方程12x 3=-y 的解是( )A 、任何一个有理数对B 、无穷多个数对,但不是任意一个有理数对C 、仅有一个有理数对D 、有限多个有理数对 互动教学过程:探究一: 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队为了争取好的成绩,想 在全部22场比赛中得到40分,那么这个队胜负场数应各是多少?探究二:如果(m-1)x + (1+m)y+4=0是关于x 、y 的二元一次方程,则m 必须满足的条件是什么?探究三:.若⎪⎩⎪⎨⎧-==121y x 是方程组⎩⎨⎧=-=-1253by x y ax 的解,那么a 2+b 2等于多少?探究四:为保护生态环境,我省某山区某县响应国家“退耕还林”的号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米,设耕地面积为 x km 2,林地面积为y km 2.根据题意,列出如下四个方程组,其中正确的是( ) A ⎩⎨⎧==+xy y x %25180 B ⎩⎨⎧==+yx y x %25180C ⎩⎨⎧=-=+%25180y x y x D ⎩⎨⎧=-=+%25180x y y x自我能力评估 一、课堂练习1、教材P94练习题2、在方程7x 6=-y 中,用含x 的式子表示y 是______________,用含y 的式子表示x 是_____________.3、若311x ==y 是关于x 的方程y x 31m =-的解,则42-m =_____________。
8.1 二元一次方程组同步练习一、选择题1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x 为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41 xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?参考答案一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。
8.1 二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则x/y的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=7时,x=-1;m=-7时x=1.。
8.1 二元一次方程组一、选择题1.某部队第一天行军5 h,第二天行军6 h,两天共行军120 km,且第二天比第一天多走2 km,设第一天和第二天行军的速度分别为x km/h和y km/h,则符合题意的二元一次方程是()A. 5x+6y=118B. 5x=6y+2C. 5x=6y-2D. 5(x+2)=6y2.一轮船顺流航行的速度为a千米/小时,逆流航行的速度为b千米/小时,(a>b>0).那么船在静水中的速度为()A. (a+b)千米/小时(a-b)千米/小时B.12C.1(a+b)千米/小时2D. (a-b)千米/小时3.根据“x与y的差的8倍等于9”的数量关系可列方程()A.x-8y=9B. 8(x-y)=9C. 8x-y=9D.x-y=9×84.一列快车和一列慢车的长分别为180米和225米,若同向行驶,从快车追及慢车起到全部超过,需81秒.现设快车的车速为x米/秒,慢车的车速为y米/秒,则表示其等量关系的式子是() A. 81(x-y)225B. 81(x-y)=180C. 81(x-y)=225-180D. 81(x-y)=225+1805已知3xn+m-1-4yn-2=5是关于x和y的二元一次方程,则m2-n的值为()A. 1B. 2C.-2D.-16.若方程x|a|-1+(a-2)y=3是二元一次方程,则a的取值范围是()A.a>2B.a=2C.a=-2D.a<-27.方程■x-2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是-1B.不可能是-2C.不可能是1D.不可能是2二、填空题8.甲、乙两人练习跑步,速度分别为x m/h和y m/h(x>y),乙在甲的前方30 m处,若两人同时起跑,方向相同,20 s时甲赶上乙,则x、y应满足________.9.已知方程xm-1+2ym+n+1=0是二元一次方程,那么m-n=______.三、解答题10.根据下列语句,设适当的未知数,列出二元一次方程:(1)甲数比乙数的3倍少7;(2)甲数的2倍与乙数的5倍的和是44;5(3)甲数的15%与乙数的23%的差是11;(4)甲数与乙数的和的2倍比乙数与甲数差的1多0.25.311.是否存在m值,使方程(|m|-2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.12.已知方程(m-2)x|m|-1+(n+3)yn2-8 =6是关于x,y的二元一次方程.(1)求m,n的值;(2)求x=1时,y的值.2答案解析1.【答案】C【解析】根据某部队第一天行军5 h,第二天行军6 h,两天共行军120 km,且第二天比第一天多走2 km,设第一天和第二天行军的速度分别为x km/h和y km/h,可以列出相应的方程,①5x+6y=120;②6y-5x=2,由方程组中②6y-5x=2,可得5x=6y-2,故选项A错误,选项B错误,选项C正确,选项D错误.故选C.2.【答案】C【解析】设船在静水中的速度为x千米/小时,(a+b).故选C.由题意知,a-x=x-b,解得x=123.【答案】B【解析】x与y的差的8倍等于9列出方程,得8(x-y)=9.故选B.4.【答案】D【解析】∵快车的车速为x米/秒,慢车的车速为y米/秒,∴追击中实际的车速为(x-y)米/秒,∴根据路程为两车车长的和列方程可得81(x-y)=225+180,故选D.5.【答案】C【解析】由3xn+m-1-4yn-2=5是关于x和y的二元一次方程,得n+m-1=1,n-2=1.解得m=-1,n=3.m2-n=1-3=-2,故选C.6.【答案】C【解析】根据二元一次方程的定义,得|a|-1=1且a-2≠0,解得a=-2.故选C.7.【答案】C【解析】方程可化为(■-1)x -2y =5,根据题意,得■-1≠0,则■的值一定不可能是1.故选C.8.【答案】x 180=30+y 180【解析】由题意,可得20 s =203600h =1180h ,故利用两人行驶的路程关系可列方程为x 180=30+y 180.9.【答案】4【解析】根据二元一次方程的定义,得m -1=1,m +n +1=1,解得m =2,n =-2,所以m -n =2-(-2)=2+2=4,故答案为4.10【答案】解 (1)设乙数为x ,甲数为y ,则3x -y =7;(2)设甲数为x ,乙数为y ,则2x +5y =445; (3)设甲数为x ,乙数为y ,则15%x -23%y =11;(4)设甲数为x ,乙数为y ,则2(x +y )-13(y -x )=0.25. 【解析】(1)关系式为甲数=乙数的3倍-7,设出两个未知数,把相关数值代入即可求得所列代数式;(2)关系式为甲数的2倍+乙数的5倍=445,设出两个未知数,把相关数值代入即可求得所列代数式;(3)关系式为甲数的15%-乙数的23%=11,设出两个未知数,把相关数值代入即可求得所列代数式;(4)关系式为甲数与乙数的和的2倍-乙数与甲数差的13=0.25,设出两个未知数,把相关数值代入即可求得所列代数式.11.【答案】解 ∵方程(|m |-2)x 2+(m +2)x +(m +1)y =m +5是关于x ,y 的二元一次方程,∴|m |-2=0,m +2≠0,m +1≠0,解得m =2,故当m =2时,方程(|m |-2)x 2+(m +2)x +(m +1)y =m +5是关于x ,y 的二元一次方程.【解析】利用二元一次方程的定义得出其系数的关系进而求出即可.12.【答案】解 (1)因为方程(m -2)x |m|-1+(n +3)yn 2-8 =6是关于x ,y 的二元一次方程, 所以m -2≠0,①n +3≠0,②|m |-1=1,③n 2-8=1,④解得m =-2,n =3,即m =-2,n =3.(2)当m =-2,n =3时,二元一次方程可化为-4x +6y =6,所以当x =12时,有-4×12+6y =6,解得y =43, 即当x =12时,y 的值为43.【解析】二元一次方程是含有两个未知数,并且含有未知数的项的次数都是1的整式方程,当所含未知数的系数有待定字母时,则必须保证两个未知数的系数都不为零,由此入手列不等式组即可求解.8.2消元-解二元一次方程组一.选择题 1.已知方程组,则x ﹣y =( )A .5B .2C .3D .42.方程组的解的个数为( )A .1B .2C .3D .43.已知方程组中的x,y互为相反数,则n的值为()A.2B.﹣2C.0D.44.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组的解(a为任意实数),则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知二元一次方程组,则a的值是()A.3B.5C.7D.96.解二元一次方程组,把②代入①,结果正确的是()A.2x﹣x+3=5B.2x+x+3=5C.2x﹣(x+3)=5D.2x﹣(x﹣3)=57.已知一个二元一次方程组的解是,则这个方程组是()A.B.C.D.8.若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.20219.已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④10.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题11.已知x,y满足方程的值为.12.二元一次方程组的解是,则b﹣a=.13.如果实数x,y满足方程组,那么(x﹣y)2020=.14.若关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,则k的值为.15.如图,有一张边长为x的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH⊥DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD的面积是.三.解答题16.解方程组:.17.已知是方程组的解,求(a+b)2﹣(a﹣b)(a+b)的值.18.解方程组:(1)用代入法解方程组;(2)用加减法解方程组.19.已知关于x,y的两个二元一次方程组和的解相同,求(m+2n)188的值.参考答案与试题解析一.选择题1.【解答】解:,①﹣②得:(2x+3y)﹣(x+4y)=16﹣13,整理得:2x+3y﹣x﹣4y=3,即x﹣y=3,故选:C.2.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,解得x=3,y=2>0,则方程组无解;当x<0,y>0时,方程组变形得:,此时方程组的解为;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选:A.3.【解答】解:由题意得:x+y=0,即y=﹣x,代入x﹣y=2得:x+x=2,解得:x=,即y=﹣,代入得:n=x﹣2y=+=4,故选:D.4.【解答】解:解方程组得:,∵当y=<0时,解得:a>,∴此时x=>0∴当y<0时x>0,∴点P一定不会经过第三象限,方法二:解方程组得,得,y=2﹣5x,当y<0时x>0,∴点P一定不会经过第三象限,故选:C.5.【解答】解:,①+②得:4a=20,解得:a=5,故选:B.6.【解答】解:解二元一次方程组,把②代入①,结果正确的是2x﹣(x+3)=5,故选:C.7.【解答】解:A、方程组不是二元一次方程组,不符合题意;B、把x=1,y=2代入x+y=﹣3,不符合题意;C、把x=1,y=2代入,符合题意,D、把x=1,y=2代入x+y=0,不符合题意.故选:C.8.【解答】解:,①+②得,5x+5y=5k﹣5,即:x+y=k﹣1,∵x+y=2019,∴k﹣1=2019∴k=2020,故选:C.9.【解答】解:于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:D.10.【解答】解:①(1)×3+(2)得:4x+8y=12∴x+2y=3 (3)将x=5,y=﹣1代入(3),左边=5+2×(﹣1)=3=右边故①正确;②将a=﹣2代入方程组得:解得:x,y的值互为相反数,故②正确;③将a=1代入方程组得:解得:当a=1时,方程x+y=4﹣a化为:x+y=3∴x=3,y=0是方程x+y=3的解,故③正确.故选:D.二.填空题(共5小题)11.【解答】解:①×5﹣②×4,可得7x=9,解得x=,把x=代入①,解得y=,∴原方程组的解是.故答案为:.12.【解答】解:∵二元一次方程组的解是,∴,①+②,可得:2b﹣2a=4,∴b﹣a=4÷2=2.故答案为:2.13.【解答】解:由方程组解得,那么(x﹣y)2020=0,故答案为0.14.【解答】解:∵关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,∴①+②得x+y=2k∴2k=4∴k=2故答案为2.15.【解答】解:如图所示,=32,由已知得:BN=8,S长方形BNME∴BE=32÷8=4,则,解得:2x=12,x=6,∴正方形ABCD的面积是36,故答案为:36.三.解答题(共4小题)16.【解答】解:,①+②得,5x=10,∴x=2,把x=2代入①得:4+y=﹣2,∴y=﹣6,∴方程组的解为.17.【解答】解:把代入方程组,得,整理得,∴(a+b)2﹣(a﹣b)(a+b)=12﹣(﹣1)×1=2.18.【解答】解:(1),①可变形为:x=y+3③,把③代入②中,得3(y+3)﹣8y=14,解得:y=﹣1,把y=﹣1代入③,得x=2,∴;(2)原方程组化为,①×2+②,得11x=22,解得:x=2,把x=2代入②,得5×2﹣8y=6,解得:y=,∴.19.【解答】解:由两个方程组的解相同,得,解得,所以有:,解得,所以(m+2n)188=(1﹣2)188=1.8.3实际问题与二元一次方程组一.选择题1.“今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A.3种B.4种C.5种D.6种2.已知两数x,y之和是10,且x比y的2倍大3,则下列所列方程组正确的值是()A.B.C.D.3.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.104.根据“x与y的差的2倍等于9”的数量关系可列方程为()A.2(x﹣y)=9B.x﹣2y=9C.2x﹣y=9D.x﹣y=9×25.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A.B.C.D.6.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练工少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造x个零件,一个熟练工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.7.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组()A.B.C.D.8.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①;②;③3x+(100﹣x)=100;④(100﹣y)+3y=100正确的是()A.①③B.①④C.②③D.②④9.《九章算术》有题曰:“今有五雀,六燕,集称之衡,雀俱轻,一雀一燕交而处,衡适平,并燕雀重一斤.问燕雀一枚各重几何?”,其大意是:“现在有5只雀,6只燕,分别集中在天平上称重,聚在一起的雀重燕轻,将一只雀一只燕交换位置,质量相等.5只雀和6只燕共重一斤,问燕、雀各重多少?”古代记八两为半斤,则设1只雀x两,一只燕y两,可列方程()A.B.C.D.10.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A、B两种长方体形状的无盖纸盒.现有正方形纸板120张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?”则下列结论正确的个数是()①甲同学:设A型盒子个数为x个,根据题意可得:4x+3=360②乙同学:设B型盒中正方形纸板的个数为m个,根据题意可得:3+4(120﹣m)=360③A型盒72个④B型盒中正方形纸板48个.A.1B.2C.3D.4二.填空题11.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为.12.《孙子算经》中记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余 4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.13.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.14.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.三.解答题16.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.17.新冠肺炎疫情发生后,为支援疫情防控,某企业研发14条口罩生产线,生产普通防护口罩和普通N95口罩,现日总产量达170万只,已知每条生产线可日产普通防护口罩15万只或普通N95口罩5万只.(1)将170万用科学记数法表示为;(2)这14条生产线中,生产普通防护口罩和普通N95口罩的生产线分别有多少条?18.《九章算术》是我国古代数学的经典著作,书中有一个问题:今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金银一枚各重几何?意思是:今有黄金9枚(每枚黄金重量相同),白银11枚(每枚白银重量相同).黄金与白银的重量恰好相等,互相交换1枚后,黄金部分减轻了13两,问每枚黄金、白银各重多少两?19.某水果批发市场,香蕉和苹果某天的批发价与市场零售价如下表所示:香蕉苹果批发价(元/千克)34零售价(元/千克)57水果经营户老王从水果批发市场批发香蕉与苹果用了470元,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?参考答案与试题解析一.选择题1.【解答】解:设大圈舍的间数是x间,小圈舍的间数是y间,由题意,得6x+4y=50.整理,得y=.因为 25﹣3x>0,且x、y都是非负整数,所以 0≤x<.故x可以取0,1,2,3,4,5,6,7,8,当x=0时,y=12.5(舍去)当x=1时,y=11.当x=2时,y=9.5(舍去)当x=3时,y=8.当x=4时,y=6.5(舍去)当x=5时,y=5当x=6时,y=3.5(舍去)当x=7时,y=2当x=8时,y=0.5(舍去)综上所述,只有4种情况符合题意.故选:B.2.【解答】解:由题意得:,故选:C.3.【解答】解:设索长x尺,竿子长y尺,依题意,得:,解得:.故选:B.4.【解答】解:由文字表述列方程得,2(x﹣y)=9.故选:A.5.【解答】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.6.【解答】解:根据题意可列方程组为,故选:A.7.【解答】解:设甲持钱为x,乙持钱为y,则可列方程组:.故选:B.8.【解答】解:设大和尚有x人,小和尚有y人,依题意,得:,∴y=100﹣x,∴3x+(100﹣x)=100.∴②③正确.故选:C.9.【解答】解:设1只雀x两,一只燕y两,依题意,得:.故选:C.10.【解答】解:设A型盒子个数为x个,则A型纸盒需要长方形纸板4x张,正方形纸板x张,∵制作一个B型纸盒需要两张正方形纸板,∴可制作B型纸盒的数量为个,需要长方形纸板3×张,∴4x+3=360,故①正确;设B型盒中正方形纸板的个数为m个,则B型纸盒有个,需要长方形纸板3×个,A型纸盒有(120﹣m)个,需长方形纸板4(120﹣m)个,∴3×+4(120﹣m)=120,故②正确;设制作A型盒子a个,B型盒子b个,依题意,得:,解得:,∴A型纸盒有72个,B型纸盒有24个,∴B型盒中正方形纸板48个.故③④正确.故选:D.二.填空题(共5小题)11.【解答】解:设小马有x匹,大马有y匹,依题意,可列方程组为.故答案是:.12.【解答】解:由题意:,故答案为:.13.【解答】解:根据图示可得,故答案是:.14.【解答】解:设大马有x匹,小马有y匹,由题意得:,故答案为:.15.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.三.解答题(共4小题)16.【解答】解:设大盒每盒装x瓶,小盒每盒装y瓶,根据题意得:,解得:,答:大盒每盒装20瓶,小盒每盒装12瓶.17.【解答】解:(1)将170 0000用科学记数法表示为:1.7×106.故答案为:1.7×106.(2)设这14条生产线中有普通防护口罩生产线x条,普通N95口罩的生产线y条,根据题意得:,解得:,答:这14条生产线中有普通防护口罩生产线10条,普通N95口罩的生产线4条.18.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,解得:.即每枚黄金重71.5两,每枚白银重58.5两.19.【解答】解:设这天他批发的香蕉和苹果分别是x 千克,y 千克,根据题意,得,解得,答:这天他批发的香蕉和苹果分别是50千克,80千克.*8.4 三元一次方程组的解法一、选择题(共10小题;共30分)1. 下列方程组中是三元一次方程组的是 ( ) A. {x 2=4,x =z −1,x +y =0.B. {2x +y =1,x +z =2,y +z =0.C. {z =x +3,5x +y3=12,x +2y =3.D. {3x +4y =1,x 3−y2=2,x −y =5.2. 若 x +2y +3z =10,4x +3y +2z =15,则 x +y +z 的值为 ( ) A. 2B. 3C. 4D. 53. 下列方程是三元一次方程的是 ( ) A. x +2yz =3B. x +3y =4−zC. 2x −3y =5D. 2x +y −z =14. 解方程组 {x =3,2x −3y =0,x +y +z =4, 若要使运算简便,消元的方法应选取 ( )A. 先消去 xB. 先消去 yC. 先消去 zD. 以上都不是5. 已知满足 x −2y =m −4 和 3x +2y =3m 的 x ,y 也满足 x +4y =2m +3,那么 m = ( ) A. 1B. 2C. −1D. −26. 下列语句中,正确的是 ( )A. 方程组 {x =3,x +y =3,x −z =5 不是三元一次方程组B. 任何一个三元一次方程都有无数个解C. 解三元一次方程组 {2x −y −z =3, ⋯⋯①−2x −2y +3z =4, ⋯⋯②x −3y +z =5, ⋯⋯③把 ①+②,①+③ 后即可转化为解二元一次方程组 D. 三元一次方程 x +y +z =1 的自然数解只有一组7. 已知 ∣x −8y ∣+2(4y −1)2+3∣8z −3x ∣=0,则 x +y +z = ( )A. 1B. 2C. 3D. 48. 下列各方程组中,三元一次方程组有 ( )① {x +y =3,y +z =4,z +x =2; ② {x +y −z =5,1x −y +z =−3,2x −y +2z =1; ③ {x +3y −z =1,2x −y +z =3,3x +y −2z =5; ④ {x +y −z =7,xyz =1,x −3y =4.A. 1 个B. 2 个C. 3 个D. 4 个9. 已知方程组 {x +y =3,y +z =6,z +x =5,则 x +y +z 的值为 ( )A. 14B. 12C. 7D. 610. 下列方程组中,是三元一次方程组的是 ( )A. {x +y =0,y +z =1,z +w =5.B. {x +y +z =0,x −3yz =−13,x −2z =11.C. {3x +4z =7,2x +3y =9−z,5x −9y +7z =8.D. {x 2−2y =0,y +z =3,x +y +z =1.二、填空题(共6小题;共18分) 11. 若 (m +2)x +y ∣m+1∣+z =4 是关于 x ,y ,z 的三元一次方程,则 m = .12. 若 {x +y =1, ⋯⋯①y +z =2, ⋯⋯②x +z =3, ⋯⋯③,则 ①+②+③ 得 ,∴x = ,y = ,z = .13. (m +1)x +y ∣m∣+z =4 是三元一次方程,则 m = .14. 解方程组 {5x +3y =25, ⋯⋯①2x +7y −3z =19, ⋯⋯②3x +2y −z =18, ⋯⋯③ 时,通过观察发现,应先消去未知数 .15. 已知 x:y:z =2:3:4,且 x +y −z =2,那么 x = ,y = ,z = .16. 解方程组 {4x −9z =17,3x +y +15z =18,x +2y +3z =2, 先消去 比较简便,得到二元一次方程组 .三、解答题(共6小题;共52分) 17. 已知单项式 −8a 3x+y−z b 12c x+y+z 与 2a 4b 2x−y+3z c 6 是同类项,求 x ,y ,z 的值.18. 解方程组 {x −y +z =0, ⋯⋯①4x +y +z =5, ⋯⋯②9x +3y +z =16. ⋯⋯③19. 解方程组:{x +y +z =12, ⋯⋯①x +2y +5z =22, ⋯⋯②x =4y. ⋯⋯③20. 解方程组:{3a−b+c=7, 2a+3b=−2, a+b+c=−1.21. 代数式ax2+bx+c中,当x=1时代数式的值为0,当x=2时代数式的值是3,当x=3时代数式的值是28,试求这个代数式.22. 已知代数式ax2+bx+c,当x=−1时,其值为6;当x=2时,其值为9;当x=0时,其值为3.当x=3时其值为多少?答案第一部分1. B2. D3. B4. A5. B6. B7. C8. B9. C 10. C第二部分11. 012. x +y +z =3,1,0,213. 114. z15. 4,6,816. y ,{4x −9z =17,5x +27z =34.第三部分17. x =2,y =1,z =318. ②−① 得:3x +2y =5. ⋯⋯④ ③−② 得:5x +2y =11. ⋯⋯⑤ ⑤−④得:2x =6,∴x =3. 将 x =3 代入 ④ 得:y =−2. 将 x =3,y =−2 代入 ① 得:z =−5.∴该方程组的解为{x =3,y =−2,z =−5.19. ②−①,得y +4z =10. ⋯⋯④ 将 ③ 代人 ①,得5y +z =12. ⋯⋯⑤ 由④、⑤,得{y +4z =10, ⋯⋯④5y +z =12. ⋯⋯⑤ 解得{y =2,z =2. 把 y =2 代入 ③,得 x =8. 原方程组的解是{x =8,y =2,z =2.20.{3a −b +c =7, ⋯⋯①2a +3b =−2, ⋯⋯②a +b +c =−1, ⋯⋯③①−③ 得: 2a −2b =8, ⋯⋯④④−②得:−5b=10.所以b=−2.将b=−2代入②得:a=2.将a=2,b=−2代入③得:c=−1.所以该方程组的解为{a=2, b=−2, c=−1.21. 11x2−30x+1922. 18。
七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y的值分别为-4,1,6,11.2、在x+3y=3中,用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。
3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=2或k=-2时,方程为一元一次方程;当k不等于2或-2时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=16;当y=0时,则x=20/3.5、方程2x+y=5的正整数解是(1,3)。
6、若(4x-3)^2+|2y+1|=0,则x+2=-1/2.7、方程组x+y=ax=2的一个解为(2,a-2),那么这个方程组的另一个解是(0,a)。
8、若x=1/2时,关于x、y的二元一次方程组ax-2y=1x-by=2的解互为倒数,则a-2b=-1/2.二、选择题1、方程2x-3y=5,xy=3,二元一次方程的有(B)个。
2、方程2x+y=9在正整数范围内的解有(C)个。
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(C)20x-4y=3.4、若是5x^2 ym与4xn+m+1y^2n-2同类项,则m-2n的值为(B)-1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(B)-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是(A)x-3y=5y=x-32x-y=5x=2y7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(A)y=5x-3.8、已知x=3-k,y=k+2,则y与x的关系是(A)x+y=5.9、下列说法正确的是(B)二元一次方程组有无数个解。
8.1 二元一次方程组一、填空题1.已知二元一次方程 4x-3y=12,当 x=0、1、2、3 时,分别解得 y=-4、1、6、11.2.对方程 x+3y=3,用 x 表示 y,则 y=(3-x)/3;用 y 表示 x,则 x=3-3y。
8.1二元一次方程组同步练习
一、选择题
1.若5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则()
A.m=1,n=2 B.m=2,n=1 C.m=﹣1,n=2 D.m=3,n=4 2.下列是二元一次方程的是()
A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy 3.下列方程属于二元一次方程的是()
A.4x﹣8=y B.x2+y=0 C.x+=1 D.4x+y≠2
4.下列方程中,是二元一次方程的是()
A.2x﹣3=6 B.2x﹣3=y C.x+y+z=1 D.xy=4
5.方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有()A.1个B.2个C.3个D.4个
6.下列是二元一次方程的是()
A.3x=2y B.3x﹣6=x C.x﹣=0 D.2x﹣3y﹣xy 7.下列是二元一次方程的是()
A.3x﹣2=10 B.4x=3a C.3x﹣y2=0 D.3x﹣y=4xy 8.下列四个方程:①x2+y=0:②x=+1;③=2y;④x2+x﹣2=0,其中为二元一次方程的是()
A.①B.②C.③D.④
9.已知是方程2x﹣ay=3b的一个解,那么a﹣3b的值是()
A.2 B.0 C.﹣2 D.1
10.如果关于x,y的二元一次方程kx﹣3y=1有一组解是,则k的值是()
A.﹣2 B.2 C.﹣1 D.1
11.已知是方程3x﹣y=5的一个解,则a的值是()
A.5 B.1 C.﹣5 D.﹣1
二、填空题
12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.
13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.14.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=.15.写出解为的一个二元一次方程:.
16.若是方程x﹣2y=0的解,则3a﹣6b﹣3=.
17.在自然数范围内,方程3x+y=0的解是.
三、解答题
18.已知方程(m﹣3)x n﹣1+=0是关于x、y的二元一次方程,求m、n的值.19.已知是二元一次方程2x+y=a的一个解.
(1)则a=;
(2)试直接写出二元一次方程2x+y=a的所有正整数解.
20.已知是方程2x﹣6my+8=0的一组解,求m的值.
21.如果关于x、y的方程2x﹣y+2m﹣1=0有一个解是,请你再写出该方程的一个整数解,使得这个解中的x、y异号.
22.已知二元一次方程x+3y=10
(1)直接写出它所有的正整数解;
(2)请你写出一个二元一次方程,使它与已知方程组成的方程组的解为。