数字图像处理第二讲笔记
- 格式:docx
- 大小:34.85 KB
- 文档页数:5
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理笔记首先一幅图像本身就是一个二维的函数),(yxf其中x,y是坐标,而f的值是该点的强度或者灰度。
图像处理和图像分析。
MRI:磁共振成像。
分形:通过某些数学定理对一个基本模式的迭代复制。
‚瓦片(tiling)‛是产生分形的一个重要方法之一。
图像增强:显示某些细节。
是主观的,以人的主观偏好为基础。
图像复原:改进图像外貌。
是客观的。
复原技术倾向于以退化的数学或概率模型为基础。
分割过程将一幅图像划分为组成部分和目标部分,通常自主分割是最困难的任务之一,复杂的分割过程最终可以成功解决问题,但是需要大量处理工作。
另外不健壮的算法必将导致失败。
通常分割越准确,识别越成功。
彩色图像处理小波变化和多分辨率处理图像压缩形态学图像处理图像复原图像增强图像获取图像分割表示与描述对象识别知识库图像处理应用的存储分为三个主要的类别: 1 用于处理时的短期存储, 2关系到快速调用时的在线存储, 3频繁访问的档案存储,人眼的主观亮度是进入眼睛的光强的对数函数 灰度级:),(00y x f l ; 灰度级通常是2的整数次幂;广泛使用分辨率的意义是每单位距离可分辨的最小线对数目。
伪轮廓:数字图像平滑区灰度级数量不足引起的。
通常在均匀的平面上以16级或更少灰度显示的图像中十分明显。
图像的取样率是单位距离的取样数目(在两个空间方向上)。
放大可以看做过采样,缩小可以看做欠采样。
放大要求执行两部操作:1 创立新的像素和对这些新位臵赋灰度值。
最近临域插值,双线性内插。
像素之间的距离度量:1 欧氏距离:D=sqrt((x-s)^2+(y-t)^2) 2城市街区距离:D=|x-s|+|y-t|; 3 棋盘距离:D=max (|x-s|,|y-t|)感性压缩技术二维图像三维化数字b是存储数字图像需要的比特数:。
其中L为图像B=M kN⨯⨯其中M,N为数字图像的长宽。
K=Llog2的离散灰度级数。
当一幅图像有256个灰度级时则称该图像为8比特图像。
第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
一、绪论1、数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
2、通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
3、图像和语音是人类传递信息的主要媒介,视觉信息占60%4、模拟图像:直接通过感光设备记录成像目标所反射的光强,通常以胶片形式保存优点:速度快,一般为实时处理,理论上讲可达到光的速度,并可同时并行处理。
缺点:精度较差,灵活性差,很难有判断能力和非线性处理能力。
数字图像:用一个m×n的像素矩阵来表达一幅图像,m与n称为图像的分辨率,把图像按行与列分割成m×n个网格,每个网格的图像用该网格内颜色的平均值表示(空间量化),灰度(颜色)值量化(8位256)彩色(24bit)优点:处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。
缺点:速度慢,特别是进行复杂的处理更是如此;分辨率和精度有限制5、特点:图像信息量大、数据量也大;图像处理技术综合性强;图像信息理论与通信理论密切相关。
6、主要方法:空域法:邻域处理法:梯度运算、拉普拉斯算子运算、平滑算子运算卷积运点处理法:灰度处理面积、周长、体积、重心运算变换域法:通过正交变换将图像变换到另一个域,对变换域的系数阵列进行各种处理,然后再通过反变换,得到空间域处理结果。
DCT,DFT,DWT,KLT……7、主要内容:A、图像信息的获取;B、存贮(存储);C、传送(传输);内部传送:DMA 远距离传送:带宽、高效压缩算法、专网、互联网D、处理;几何处理、算术处理、图像增强:直方图增强、滤波、伪彩色增强法(pseudo color) 等技术、图像复原:去掉干扰和模糊,恢复图像的本来面目。
典型的例子如去噪就属于复原处理。
图像噪声包括随机噪声和相干噪声,随机噪声干扰表现为麻点干扰,相干噪声表现为网纹干扰。
去模糊也是复原处理的任务。
第二章基本概念贾永红武汉大学第二章讲解内容1. 图像数字化概念、数字化参数对图像质量的影响、数字化器性能评价2. 图像灰度直方图的基本概念、计算、性质及其应用3.数字图像处理算法形式与数据结构4.图像图像文件格式与特征重点:图像数字化、图像灰度直方图和图像文件BMP格式难点:图像数字化、直方图应用、图像分层结构数据教学法:灵活应用示例法、启发式、提问法等目的:1. 熟悉本章基本概念和图像处理算法形式,了解图像的特征;2.重点掌握图像数字化图像灰度直方图的基本概念及应用、2.2 成象模型3-D客观场景到2-D成像平面的中心投影。
物方点空间坐标与对应的像方点坐标满足几何透视变换关系(共线条件)。
f(x,y)---理想成像面坐标点(x,y)的亮度i(x,y)---照度分量r(x,y)---反射分量,则f(x,y)=i(x,y)×r(x,y)其中:0< i(x,y)< ∞ ,0 <r(x ,y)<12.3图像数字化图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
模拟图像数字图像正方形点阵具体来说,就是把一幅图画分割成如图2.3.1所示的一个个小区域(像元或像素),并将各小区域灰度用整数来表示,形成一幅点阵式的数字图像。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
2.3.1采样将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。
关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。
不同形状的采样孔径2.3.2量化经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。
将像素灰度转换成离散的整数值的过程叫量化。
表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
★图像:图像是对客观存在的物体的一种相似性的、生动的写真或描述。
★数字图像:空间坐标和亮度(或)色彩都不是连续的、用离散数字(一般用整数)表示的图像,可用矩阵或数组描述★模拟图像:空间坐标和亮度(或)色彩都是连续变化的图像,可用连续函数表示·图像处理:对图像进行一系列的操作,以达到预期目的的技术★数字图像处理:利用计算机对数字图像进行系列操作,从而获得某种预期结果的技术。
它是研究图像的获取、传输、存储,变换、显示、理解与综合利用的一门崭新学科★消色物体:指黑、白、灰色物体,它对照明光线具有非选择吸收的特性,即光线照射到消色物体上时,被吸收的各种波长的入射光是等量的·两种以上有色光同时照在消色物体上时,物体颜色呈加色法效应★有色物体:对照明光线具有选择吸收的特性,即光线照射到消色物体上时,各种波长的入射光不等量的被吸收·当有色光照射到有色物体上时,物体的颜色呈减色法效应★图像对比度:通俗地讲,就是亮暗的对比程度。
对比度通常表现了图像画质的清晰程度。
对比度= 最大亮度/ 最小亮度相对对比度= (最大亮度–最小亮度)/ 最小亮度·图像噪声:妨碍人的视觉器官或系统传感器对所接收的图像信息进行理解或分析的各种因素。
一般是不可预测的随机信号·特征空间:把从图像提取的m个特征量y1,y 2,…,y m,用m维的向量Y=[y1 y2…y m]t表示称为特征向量。
另外,对应于各特征量的m维空间叫做特征空间。
★图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
★采样:将空间上连续的图形变成离散点的操作称作采样,采样间隔和采样孔径的大小是两个很重要的参数·采样孔径:圆形、正方形、长方形、椭圆·采样间隔:有缝、无缝、重叠★量化:将想素灰度转化成离散的整数值的过程叫量化·灰度级:表示像素明暗程度的整数称为像素的灰度级·灰度级数G:一幅数字图像中不同灰度级的个数;·数字图像根据灰度级数的差异可分为:黑白图像(像素值为0或1)、灰度图像(灰度级数大于2)和彩色图像(RGB图像)。
数字图像处理第⼆章课后习题及中⽂版解答数字图像处理(冈萨雷斯版,第⼆版)课后习题及解答(部分)Ch 22.1使⽤2.1节提供的背景信息,并采⽤纯⼏何⽅法,如果纸上的打印点离眼睛0.2m 远,估计眼睛能辨别的最⼩打印点的直径。
为了简明起见,假定当在黄斑处的像点变得远⽐视⽹膜区域的接收器(锥状体)直径⼩的时候,视觉系统已经不能检测到该点。
进⼀步假定黄斑可⽤1.5mm × 1.5mm 的⽅阵模型化,并且杆状体和锥状体间的空间在该阵列上的均匀分布。
解:对应点的视⽹膜图像的直径x 可通过如下图题2.1所⽰的相似三⾓形⼏何关系得到,即()()220.20.014d x = 解得x =0.07d 。
根据2.1节内容,我们知道:如果把黄斑想象为⼀个有337000个成像单元的正⽅形传感器阵列,它转换成⼀个⼤⼩580×580成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm 的⼀条线上有580个成像单元和579个成像单元间隔。
则每个成像单元和成像单元间隔的⼤⼩为s =[(1.5 mm)/1159]=1.3×10-6 m 。
如果在黄斑上的成像点的⼤⼩是⼩于⼀个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说,眼睛不能检测到以下直径的点:x =0.07d<1.3×10-6m ,即d <18.6×10-6 m 。
下图附带解释:因为眼睛对近处的物体聚焦时,肌⾁会使晶状体变得较厚,折射能⼒也相对提⾼,此时物体离眼睛距离0.2 m ,相对较近。
⽽当晶状体的折射能⼒由最⼩变到最⼤时,晶状体的聚焦中⼼与视⽹膜的距离由17 mm 缩⼩到14 mm ,所以此图中选取14mm(原书图2.3选取的是17 mm)。
图题2.12.2 当在⽩天进⼊⼀个⿊暗的剧场时,在能看清并找到空座位时要⽤⼀段时间适应,2.1节(视觉感知要素)描述的视觉过程在这种情况下起什么作⽤?解:根据⼈眼的亮度适应性,1)由于户外与剧场亮度差异很⼤,因此当⼈进⼊⼀个⿊暗的剧场时,⽆法适应如此⼤的亮度差异,在剧场中什么也看不见;2)⼈眼不断调节亮度适应范围,逐渐的将视觉亮度中⼼调整到剧场的亮度范围,因此⼜可以看见、分清场景中的物体了。
数字图像处理读书笔记本学期的数字图像处理课程已经进行了3周了,通过这3周的学习让我对数字图像处理有了一定的认知和理解。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
这门课程的前三章主要讲解了数字图像的目的、特点、应用和发展,图像的数字化显示与图像变换。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
一般来讲,对图像进行处理(或加工、分析)的主要目的有三个方面:(1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。
(2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。
提取特征或信息的过程是模式识别或计算机视觉的预处理。
提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。
(3)图像数据的变换、编码和压缩,以便于图像的存储和传输。
不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。
数字图像处理有以下几点基本特点:(1)目前,数字图像处理的信息大多是二维信息,处理信息量很大。