遥感导论复习重点
- 格式:pdf
- 大小:658.01 KB
- 文档页数:33
遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。
有广义和狭义之分。
1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。
遥测:对目标的某些运动参数和性质进行远距离册测量的技术。
分接触和非接触测量。
遥控:远距离控制目标的运动状态和过程的技术。
二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。
2.时效性:获取信息速度快,更新周期短,具有动态监测特点。
3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。
4.经济性:用途广,效益高的特点。
5.局限性:利用的电磁波段有限。
§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。
由于环境不同,物体的反射、辐射电磁波是不同的。
数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。
二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。
由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。
3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。
填空1.微波是指波长在1mm-1m之间的电磁波。
2.就遥感而言,被动遥感主要利用可见光、红外等稳定辐射,使太阳活动对遥感的影响减至最小。
3.1999年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原发射成功。
ndsat和SPOT的传感器都是光电成像型,具体是光机扫描仪、CCD阵列。
5.SPOT1、2、3卫星上有HRV高分辨率可见光扫描仪,可以用作两种观测垂直观测、倾斜观测也是SPOT卫星的优势所在。
6.美国高分民用卫星有IKONOS、QUICK BIRD。
7.灰度重采样的方法有:最邻近法、双线性内插法、三次卷积内插法。
8.四种分辨率来衡量传感器的性能:空间分辨率、时间分辨率、光谱分辨率、辐射分辨率9.数字图像增强的主要方法有:对比度变换、空间滤波、彩色变换、图像运算、多光谱变换。
10.常用的彩色变换方法有:单波段彩色变换、多波段彩色变换、HLS变换。
11.遥感系统包括五种:目标物的电磁波特性、信息的获取、信息的传输、信息的处理、信息的运用。
12.遥感传感器的探测波段分为:紫外遥感、可见光波段、红外遥感、微波遥感、多波段遥感。
13.常用的锐化方法有:罗伯特梯度、索伯尔梯度、拉普拉斯算法、定向检测。
14.目标地物识别特征包括:色调、颜色、阴影、形状、大小、纹理、图形、位置、拓扑结构。
15.地物的空间关系主要表现为:方位、包含、相邻、相交、相贯。
16.地质遥感包括:岩性识别、地质构造的识别、构造运动的分析。
17.试举三个陆地卫星:Landsat、SPOT、CBERS。
18.遥感影像变形的原因有:遥感平台位置和运动状态变化的影响、地形起伏的影响、地球曲率的影响、地球自转的影响、大气折射。
19.平滑是为了达到什么目的:去除噪声。
20.热红外影像的阴影是:目标地物与背景之间辐射差异造成的。
21.遥感扫描影像的特征有:综合概括性强、信息量大、动态观测。
22.微波影像的阴影是:与目标地物之间存在障碍物阻挡了雷达波的传播。
遥感导论重点知识梳理【7月7日3:00PM考前必背】第一章绪论1、遥感的基本概念:v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
v 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
也是一门科学。
2、遥感系统的组成部分:1)被测目标的信息特征目标物电磁波特性,既是遥感的信息源,也是遥感探测的依据。
2)信息的获取信息获取主要由遥感平台、遥感器等协同完成。
3)信息的传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。
4)信息的处理首先地面站进行一系列的预处理,如信息的恢复、辐射校正、几何纠正、卫星姿态校正、投影变换等;地面站和用户再根据需要进行精校正处理和专题信息的处理和分类。
5)遥感信息的应用遥感获取信息的目的就是应用。
3、遥感的类型:按遥感平台分地面遥感、航空遥感、航天遥感航宇遥感按传感器的探测波段分紫外遥感:探测波段在0.05~0.38µm之间;可见光遥感:探测波段在0.38~0.76µm之间;红外遥感:探测波段在0.76~1000µm之间;微波遥感:探测波段在1mm~10m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。
按工作方式分(1)主动遥感和被动遥感:主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。
(2)成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。
按遥感的应用领域(1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。
(2)从具体应用领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等。
第一章绪论第一节遥感概述一、遥感的概念及特点1、概念2、特点①感测范围大②信息量大③获取信息快④其他特点:用途广、效益高、全天候、全方位、资料性二、遥感的分类1、根据遥感平台的高度和类型分类①地面遥感:1.5~300m,车、船、塔,主要用于究地物光谱特征②航空遥感:9~50km,飞机、气球,较微观地面资源调查③航天遥感:100~36000km,卫星、飞船、火箭、天飞机、空间站2、根据传感器的工作方式分类①主动遥感:雷达②被动遥感:被动接受地物反射、发射的电磁波:摄影机、扫描仪3、根据遥感信息的记录方式分类①成像遥感:以图象方式记录:航空性片、卫星图象②非成像遥感:图形、电子数据:数字磁带、光盘4、根据遥感使用的探测波段分类①紫外遥遥:0.3~0.4μm②可见光遥感:0.4~0.76μm③红外遥感:0.76~14μm④微波遥感:1000μm ~30cm⑤多波段遥感:0.5-0.6,0.6-0.7,0.7-0.8,0.8-0.95、根据遥感的应用领域分类:气象、海洋、地质、军事三、遥感过程及其技术系统1、遥感实验:前期工作,主要获得地物的光谱特性。
2、遥感信息的获取:中心工作。
传感器3、遥感信息的接受和处理:利用各种技术手段4、遥感信息的应用:最终目的。
遥感信息的认识(判读、解译)第二节遥感的发展与应用一、遥感的发展1、国外遥感的发展概况“遥感”:①无记录的地面遥感阶段(1608-1838)望远镜的产生:②有记录的地面遥感阶段(1839-1857)摄影技术的发明:③空中摄影的遥感阶段(1858-1956)系留气球、飞机、彩色摄影技术产生④航天遥感阶段(1957-)人造地球卫星产生、计算机技术的应用、GIS⑤遥感的发展趋势:platform:气球-飞机-卫星-飞船-航天飞机-空间站传感器:分辨率变高、稳定性变好、手段变多遥感信息的接收和处理:自动解译、自动分类遥感的应用:广、深入2、我国遥感的发展概况起步晚、发展快①20世纪60年代末设立遥感学科②20世纪70年代,航空测量应用③20世纪70年代末,引进美国卫星技术和卫星资料、设备仪器,促进我国遥感技术与国际领先水平接近。
第一章绪论一、遥感的概念广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
遥感定义:遥感是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性的综合性技术。
遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用三、遥感分类1、按遥感平台分:地面遥感:传感器设置在地面平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航天器上航宇遥感:传感器设置在星际飞船上2、按传感器的探测波段分:紫外遥感:探测波段在0.05~0.38um可见光遥感:探测波段在0.38~0.76um红外遥感:探测波段在0.76~1000um微波遥感:探测波段在1mm~10m多波段遥感:探测波段在可见光波段和红外波段范围内,分成若干窄波段来探测目标。
3、按工作方式分a、主动遥感:不依靠太阳,由探测器主动发射一定电磁波能量并接受目标的后向散射信号被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量b、成像方式、非成像方式4、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等四、遥感的特点(简答)1、遥感范围大,可实施大面积的同步观测遥感观测为地面探测提供了最佳获取信息的方式,并且不受地物阻隔的影响。
遥感平台的范围越大,视角越大,可以同步观测的地面信息就越多。
2、时效性:获取信息快、更新周期短,具有动态监测的特点对于天气预报、火灾和水灾等灾情检测,以及军事行动等具有重要作用。
3、数据的综合性和可比性,具有手段多、技术先进的特点能够反映许多自然人文信息,能较大程度排除人为干扰。
4、经济性:经济效益高、用途十分广泛5、局限性:遥感技术所利用的电磁波还很有限,仅是其中的几个波段范围;已被利用的电磁波谱段,对许多地物某些特征不能准确反映。
1.遥感的基本概念。
广义:泛指一切无接触的远距离探测,包括对电磁场、重力场、声波、地震波的探测;狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.结合P2图,阐述遥感系统的组成。
被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.3.按遥感平台、探测波段、传感器的工作方式来分,遥感可分成哪几种类型。
按遥感平台分类:地面遥感、航空遥感、航天遥感、航宇遥感按探测波段分类:紫外遥感:探测波段在0.05-0.38微米;可见光探测:探测波段为0.38-0.76微米;红外遥感:探测波段在0.76-1000微米;微波遥感:探测波段在1mm-1m,收集与记录目标物发射、散射的微波能量。
按工作方式分类:主动和被动遥感:二者主要区别在于传感器是否发射电磁波。
被动式遥感是被动地接受地表反射的电磁波,受天气状况的影响比较大。
主动式遥感多为微波波段,受天气和云层影响较小。
成像和非成像遥感:成像方式:把目标物发射或反射的电磁波能量以图像形式来表示。
非成像方式:将目标物发射或反射的电磁辐射的各种物理参数记录为数据或曲线图形式,包括:光谱辐射计、散射计、高度计等。
4.阐述遥感的特点。
①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。
②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,遥感大大提高了观测的时效性。
这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。
③数据的综合性和可比性:综合性是指,可以根据地物在不同波段的光谱特性,选取相应的波段组合来判断地物的属性。
可比性是指,可以将不同传感器得到的数据或图像进行对比。
④经济性:遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。
⑤局限性:遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。
一、名词解释:◇遥感:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。
(广义)应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
(狭义)◇电磁波:当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播。
◇电磁波谱:按电磁波在真空中传播的波长和频率,递增或递减排列,则构成了电磁波谱。
该波谱以频率从高到低排列,可以划分为γ射线—X射线—紫外线—可见光—红外线—微波—无线电波。
◇绝对黑体:对于一个物体对于任何波长的电磁波辐射都全部吸收。
◇散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开。
瑞粒散射:大气中粒子直径比波长小得多时米氏散射:大气中粒子直径相当于波长时无选择性散射:大气中粒子直径比波长大得多时◇大气窗口:通常把电磁波通过大气层时较少被反射,吸收或散射的,透过率较高的波段称为大气窗口,此波段为遥感成像波段。
◇空间滤波:重点突出图像上的某些特征为目的的,通过像元与其周围相邻像元的关系,采用空间域中的邻域处理方法。
◇空间频率:遥感图像上像元值的空间变化趋势信息,反映像元的亮度在一定距离上的变化速率。
一般来说,光谱复杂的区域具有高的空间频率,如城市区域;而光谱相对均匀的区域则具有低的空间频率,如湖泊。
空间频率具有方向性。
◇遥感图像解译:从遥感图像上获取目标地物信息的过程。
◇目视解译:指专业人员通过直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。
◇计算机自动解译:是通过模式识别理论,利用计算机对遥感图像上的地物进行自动分类、分割、专题信息提取等操作,以获取类似于目视解译的结果。
◇监督分类:包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。
◇非监督分类:主要采用聚类分析方法,聚类是把一组像素按照相似性归成若干类别,即“物以类聚”。
第一章1.遥感的概念:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2.遥感系统的基本构成: 遥感系统包括被测目标的信息特征,、信息的获取,、信息的传输与记录,、信息的处理和信息的应用五大部分遥感的特点: 1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。
2.时效性:获取信息速度快,更新周期短,具有动态监测特点。
3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。
4.经济性:用途广,效益高的特点。
5.局限性:利用的电磁波段有限。
第二章1.电磁波: 当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,就是电磁波2.电磁波谱: 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱3.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体黑体辐射规律:1)绝对黑体的总辐射出射度与黑体温度的四次方成正比2)黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比3)黑体温度越高,其曲线的峰顶就越往波长短的方向移动4.太阳常数:是指不受大气影响在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积、单位时间黑体所接收的太阳辐射能量5.常见的大气散射及其特点1〉瑞利散射:当大气中粒子的直径比波长小的多时发生的散射。
特点是散射强度与波长的四次方成反比,对可见光的影响很大2〉米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。
特点是散射强度与波长的二次方成反比,散射在光线向前方向比向后方向更强,方向性比较明显,潮湿天气对米氏散射影响较大3〉无选择性散射:当大气中粒子的直径比波长大得多时发生的散射。
特点是散射强度与波长无关6.大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口7.反射率(ρ):地物的反射能量与入射总能量的比,即ρ=(Pρ/ P 0)×100%物体的反射状况分为三种:镜面反射、漫反射、实际物体反射第三章1.主要遥感平台有哪些:航天平台、航空平台和地面平台2.垂直投影:摄影机主光轴垂直于地面或偏离垂线在3度以内倾斜摄影:摄影机主光偏离垂线大于3度3.中心投影和垂直投影的区别:①.投影距离影响:垂直投影图像的缩小与放大与投影距离无关,并有统一的比例尺;中心投影焦距固定高度改变,其比例尺也随之改变②.投影面倾斜的影响:垂直投影影像仅表现为比例尺有所放大,相对位置仍保持不变;中心投影图像比例尺有明显变化,相对位置和各点形状改变③.地形起伏的影像:垂直投影随地面起伏变化投影点之间的距离与地面实际水平距离比例缩小,相对位置仍保持不变;中心投影地面起伏越大,水平位移就越大,产生投影误差4、中心位移的透视规律:1〉地面物体是一个点,在中心投影上仍然是一个点。
一.遥感的基本概念是什么?狭义理解:遥感是指从不同高度的平台(Platform)上,使用各种传感器(Sensor),接收来自地球表层的各种电磁波信息,并对这些信息进行加工处理,从而对不同的地物及其特性进行远距离探测和识别的综合技术。
广义理解:遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
只有电磁波探测属于遥感的范畴。
遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。
二.遥感探测系统包括哪几个部分?包括五个部分:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。
三.作为对地观测系统,遥感与常规手段相比有什么特点?1.大面积同步观测覆盖范围大、信息丰富。
2时效性重复探测,有利于进行动态分析。
3.多波段性波段的延长使对地球的观测走向了全天候。
4.数据的综合性和可比性综合反映地质、地貌、土壤、植被、水文等自然信息和人文信息。
不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性。
5.经济性从投入的费用与所获取的效益看,遥感与传统的方法相比,可以大大地节省人力、物力、财力和时间,具有很高的经济效益和社会效益。
6.局限性:信息的提取方法不能满足遥感快速发展的要求。
数据的挖掘技术不完善,使得大量的遥感数据无法有效利用。
7.大气窗口:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。
我们就把受到大气衰减作用较轻、透射率较高的波段称作大气窗口。
8.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
※遥感的涵义:在一定距离的空间,不与目标物接触,通过信息系统去获取有关目标物的信息,经过对信息的分析研究,确定目标物的属性及目标物之间的相互关系。
简言之,泛指一切无接触的远距离探测。
※广义遥感是指以现代工具为技术手段,对目标进行遥远感知的整个过程。
※狭义遥感技术是指从远距离高空以至外层空间的平台上,利用紫外线、可见光、红外、微波等探测仪器,通过摄影或扫描方式,对目标电磁波辐射能量的感应、接收、传输、处理和分析,从而识别目标物性质和运动状态的现代化技术系统。
※传感器或者遥感器:接受、记录目标物电磁波特征的仪器。
※遥感系统:被测目标的信息特征、信息的获取、信息的传输与记录信息的处理和信息的应用。
探遥感的分类1按遥感平台分航宇遥感航天遥感航空遥感地面遥感2按传感器的探测波段分紫外遥感(0.05— 0.38卩可见光遥感(0.38—0.76卩m 红外遥感(0.76—1000卩m微波遥感(1mm —10m多波段遥感(探测波段在可见光和红外波段范围内,再分成若干个窄波段来探测目标。
3按工作方式分主动遥感和被动遥感:前者是由探测器主动向目标发射一定能量的电磁波,并接收目标的反射或散射信号。
后者是被动接收目标物的自身发射和自然辐射源的反射能量。
探成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟图像;后者传感器接收的目标电磁辐射信号不能形成图像。
※遥感的特点:大面积的同步观测-视域广;时效性-定时、定位观测;数据的综合性和可比性-信息丰富,综合反映了地球上许多自然、人文信息。
包括紫外线、可见光、红外、微波、多波段遥感,能提供超出人的视觉以外的地面信息;经济性-效率高、速度快,精度高、成本低;局限性-波段有限,技术有限。
※电磁波及其特性由振源发出的电磁振荡在空间的传播叫做电磁波探电磁波谱:按电磁波在真空中的传播的波长或者频率,递增或者递减排列,构成了电磁波谱。
频率高到低:Y射线,X射线,紫外线,可见光,红外线,无线电波。
第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(Remote Sensing)是20世纪60年代发展起来对地观测综合性技术。
有广义和狭义之分。
1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。
遥测:对目标的某些运动参数和性质进行远距离册测量的技术。
分接触和非接触测量。
遥控:远距离控制目标的运动状态和过程的技术。
二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。
2.时效性:获取信息速度快,更新周期短,具有动态监测特点。
3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。
4.经济性:用途广,效益高的特点。
5.局限性:利用的电磁波段有限。
§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。
由于环境不同,物体的反射、辐射电磁波是不同的。
数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。
二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。
由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。
3.信息的处理4.信息的应用§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按应用领域分:外层空气遥感,大气层摇感,陆地遥感,海洋遥感等§1-4遥感的特点:宏观方面的::空间性:,光谱性(特有的),时相性(动态性和光谱监测)一:时效性(讲究效率):动态监测(与时相性的共同点)二:大面积的同步观测三:数据的综合性和可比性四:经济性,局限性(表现在数据挖取,数据提取)§1-5遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。
2.了解遥感发展史及我国遥感事业成就表现在哪些方面,有何特点?3.遥感概念、类型及特点。
第二章遥感的物理基础——电磁辐射理论主要内容:电磁波的概念:黑体辐射及黑体辐射的特点;实际物体的辐射;太阳及地球的辐射;地物的波谱特性;地物波谱特性的测量等方面的知识。
§2-1电磁波谱与电磁辐射一、电磁波及电磁波谱电磁波是电磁振荡在空间的传播。
1.电磁波的性质:电磁波的波动性:①是横波②在真空以光速传播③满足C=λ*ƒ电磁波的粒子性:光电效应电磁波的波粒二象性:E=h*ƒP=h/λ波粒二象性的程度与电磁波的波长有关:波长愈短,辐射的粒子性愈明显;波长愈长,辐射的波动特性愈明显。
2.电磁波谱:按电磁波在真空中传播的波长(或频率)以递增或递减的顺序排列,制成的图表称电磁波谱。
二、电磁辐射的度量1.辐射源:任何地物都有向周围空间辐射红外线和微波的能力。
2.辐射测量:辐射能量(W):辐射通量(Φ):辐射通量密度(E):辐照度(I):辐射出射度(M):辐射亮度(L):§2-2黑体辐射及其规律一、黑体辐射及规律1.黑体辐射——完全的辐射体绝对黑体:对于任何波长的电磁波都全部吸收的物体称为绝对黑体。
黑体能够在热力学定律所允许的范围内最大限度地把热能转变成辐射能,所以说黑体是一个完全的吸收体和完全的发射体。
太阳,恒星,无色的烟煤的辐射都可近似看作是黑体辐射源。
研究黑体辐射的原因2.黑体辐射规律⑴普郎克辐射定律:⑵斯忒藩——波尔兹曼定律(Stefan-Boltzmann):M=σT4其中σ=5.67×10-8W·m-2·K-4⑶维恩位移定律(Wien’s displacement law):二、实际物体的辐射⑴基尔霍夫定律:Mλ/αλ=f(λ、T)如果一物体的吸收本领大,那么它的发射本领也大。
发射本领用(M/M0)表示。
实际物体的辐射出射度与同温度同波长的绝对黑体辐射出射度之比,是比辐射率,也称发射率ε。
所以吸收率常常被称做比辐射率或发射率。
基尔霍夫定律:根据M、I定义,对于绝对黑体:M0=I0引入实际物体M,得:MM0=MI0变换得:M=(M/M0)I0(M/M0)是实际物体的辐射出射度与同温度同波长的绝对黑体辐射出射度之比,是吸收系数α。
则上式变为:M=αI0即M/α=I0对于不同物体:M1/α1=M2/α2=M3/α3=M i/αi=I0这就是基尔霍夫定律⑵实际物体的辐射ε=M/M0M=εM0对于250K的石英,做出其在不同波长的辐射出射度Mλ和250K的黑体辐射出射度变化曲线M0,如p22图2.9所示。
比辐射率ε实际物体的辐射M=εM0比辐射率ε影响因素比辐射率ε是物体发射本领的表征,它不仅依赖于地表物体的组成成分,而且与物体的表面状态(粗糙度)及物理性质(介电常数,含水量,等)有关,并随着测定辐射能的波长λ、温度T及观测角度θ等条件的变化而变化。
把物体的辐射分三类:1.接近黑体的物体,发射率接近1,如水在6~14um,ε=0.98~0.992.灰体,发射率与波长无关,自然界大多数物体都是接近黑体的灰体。
3.选择性辐射体,发射率随波长变化,如氙灯,水银灯。
§2-3太阳辐射和地球辐射辐射源分两类:人工辐射源和天然辐射源在自然界最大的天然辐射源是太阳和地球,它们是遥感信息的主要提供者。
一、太阳辐射(太阳光)1.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间内黑体所吸收的太阳辐射能量。
I⊙=1.360×10^5瓦/平方米小练习:依据太阳常数和日地距离计算太阳总辐射通量2.太阳光谱特征①太阳的光谱是连续光谱,且辐射特性与绝对黑体辐射特性基本一致。
②太阳的辐射能量分布范围广,各个波段所占比例不同。
遥感探测时,主要利用可见光、红外等稳定的辐射;利用微波的时候主要采用主动微波遥感。
③大气对太阳辐射产生了衰减作用(通过大气层上下太阳辐照度曲线比较知)二、地球辐射地球是被动遥感的另一辐射源,地球又是地学遥感探测的对象,因此探测地球作为辐射源的辐射特性和作为太阳辐射接收的反射特性,以及不同地物反射率与波长关系,在地学遥感中有十分重要意义。
从卫星上测出的地球的辐射接近300K的黑体辐射。
由维恩位移定律知,峰值λmax=9.66μm。
研究证明了地球辐射的分段特性:二、地球自身的热辐射地球表面的热辐射特征1.温度为300K的黑体,其电磁辐射的波长范围是:2.5~50μm。
2.地球表面的发射辐射能量集中于近红外波段和热红外波段;在热红外波段,地球的发射辐射能量远远大于太阳的电磁辐射能量,通常称地球的发射辐射为热辐射。
3.地球表面的热辐射(能量)与自身的发射率、波长、温度有关:M(λ,T)=ε(λ,T)×M0(λ,T)问:由于地表温度的日变化,热红外遥感应在一天中的何时进行?答:午夜。
热红外遥感主要探测16微米以上区段,是探测地球自身的辐射性质,应避免对太阳辐射的吸收。
比辐射率波谱特性曲线的形态特征可以反映地面物体本身的特性,包括物体本身的组成、温度、表面粗糙度等物理特性。
当曲线形态特征特殊时可以用发射率曲线来识别地面物体。
发射波谱曲线:某种地物的比辐射率(发射率)随波长的变化曲线,称该物体的发射波谱曲线。
观察P36图2.22可以发现:随着二氧化硅含量的减少(酸性---基性)岩石发射率的最小值向长波方向偏移。
§2-4地球大气及其对太阳辐射的影响太阳光—大气—地物—大气—传感器,二次经过大气产生了较大变化。
一、大气组成1.大气分层:略。
2.大气组成大气的传输特性:大气对电磁波的吸收、散射和透射的特性。
这种特性与波长和大气的成分有关。
大气的成分:多种气体、固态和液态悬浮的微粒混合组成的。
大气物质与太阳辐射相互作用,是太阳辐射衰减的重要原因。
二、大气折射:使电磁波方向改变,但不影响辐射强度。
三、大气反射:主要发生在云层顶部,强度取决于云量。
削弱了电磁波到达地面的强度。
四、大气吸收氧气:小于0.2μm;0.155为峰值。
高空遥感很少使用紫外波段的原因。
臭氧:数量极少,但吸收很强。
两个吸收带;对航空遥感影响不大。
水:吸收太阳辐射能量最强的介质。
到处都是吸收带。
主要的吸收带处在红外和可见光的红光部分。
因此,水对红外遥感有极大的影响。
二氧化碳:量少;吸收作用主要在红外区内。
可以忽略不计。
五、大气散射散射:辐射在传播过程中遇到小微粒而改变传播方向,并向各个方向散开的现象。
实质是电磁波在传播过程中遇微粒而产生的衍射现象。
散射种类:1.瑞利散射(Rayleigh)条件:当大气中粒子的直径比波长小得多时发生的散射,主要由大气中的原子和分子引起,如N,CO2,O3,O2等特点:1、散射强度与波长的四次方成反比;2、波长越短散射越强,而且前向散射与后向散射相同;3、对可见光影响大⏹思考:无云的晴天天空为什么是蓝的,而日出日落时天空是橙红色?2.米氏散射(Mie)条件:当大气中粒子的直径与波长相当时发生的散射;主要由大气中的微粒、烟、尘埃、小水滴和气溶胶等引起。
特点:1、散射强度与波长的二次方成反比;2、米氏散射在光线前进方向比向后方的散射更强;3、云雾对红外线(0.76——15μm)散射影响较大。
3.非选择性散射:条件:当大气中粒子的直径比波长大得多时发生的散射;特点:散射强度与波长无关。
⏹瑞利散射主要发生在可见光和近红外波段;⏹米氏散射发生在近紫外~红外波段,但在红外波段米氏散射的影响超过瑞利散射;⏹大气云层中小雨滴的直径相对其他微粒较大,对可见光只有无选择性散射,对各波段的散射强度相同,因而云层呈现白色;⏹在微波波段,由于微波波长远大于云层中水滴的直径,因而属于瑞利散射类型,此时,散射强度与波长的四次方成反比,散射强度相对很弱,透射能力很强,故微波具有最小散射、最大透射,具有穿云透雾的能力。