立体图形应用题
- 格式:ppt
- 大小:32.00 KB
- 文档页数:13
五年级下册数学第一单元应用题
一、用小正方体拼搭立体图形的相关应用题
1. 用同样大小的小正方体拼一个大正方体,至少需要多少个小正方体?
题目解析:
要拼成一个大正方体,每条棱上至少需要2个小正方体。
因为正方体的体积= 棱长×棱长×棱长,假设小正方体棱长为1,那么大正方体棱长为2时,体积为2×2×2 = 8,而小正方体体积为1×1×1 = 1,所以至少需要8个小正方体。
2. 一个立体图形,从上面看到的形状是,从左面看到的形状是,搭这样的立体图形最少需要几个小正方体?最多需要几个小正方体?
题目解析:
从上面看到的形状表明底层至少有4个小正方体。
从左面看到的形状说明这个立体图形有两层。
最少的情况:当上层只有1个小正方体且放在左上角(从上面看的视角)时,小正方体数量最少,共4 + 1=5个。
最多的情况:当上层摆满小正方体,即上层有4个小正方体时,总共4+4 = 8个小正方体。
3. 用5个小正方体搭成一个立体图形,从正面看到的形状是,从上面看到的形状是,这个立体图形可能是什么样的?
题目解析:
从正面看到的形状说明这个立体图形有两层,下层至少有3个小正方体,上层至少有1个小正方体。
从上面看到的形状表明这5个小正方体的分布情况。
一种可能的搭法是:下层有3个小正方体并排,上层有1个小正方体放在下层最左边小正方体的上面;另一种可能是上层的小正方体放在下层中间小正方体的上面。
初一数学立体图形试题答案及解析1.下列几何图形中为圆柱体的是()A.B.C.D.【答案】C.【解析】选项A是圆台,B是圆锥,C是圆柱,D是三棱柱.故选C.【考点】认识立体图形.2.在矩形ABCD中,AB=3cm,AD=2cm,则以AB所在直线为轴旋转一周所得的圆柱的表面积为()【答案】B【解析】先根据旋转的性质判断出圆柱的底面半径为AD=2cm,高为AB=3cm,再根据圆柱的表面积公式求解即可.由题意得所得的圆柱的表面积,故选B.【考点】圆柱的表面积公式点评:本题属于基础应用题,只需学生熟练掌握圆柱的表面积公式,即可完成.3.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是()A.圆锥B.长方体C.八棱柱D.正方体【答案】C【解析】根据几何体的截面的特征依次分析各选项即可作出判断.A.圆锥,B.长方体,D.正方体,截面均不可能是七边形,故错误;C.八棱柱的截面可能是七边形,本选项正确.【考点】几何体的截面点评:本题属于基础应用题,只需学生熟练掌握几何体的截面,即可完成.4.用一个平面去截一个正方体,截面不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】根据正方体的特征依次分析各选项即可作出判断.因为正方体一共6个面,故截面不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的特征,即可完成.5.如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y=___________.【答案】-1【解析】根据正方体的表面展开图的特征结合相反数的定义即可得到x、y的值,从而得到结果. 由题意得,,则【考点】正方体的表面展开图,相反数点评:解题的关键是熟记正方体相对面展开后间隔一个正方形;只有符号不同的两个数互为相反数.6.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是()A.圆柱B.圆C.圆锥D.三角形【答案】C【解析】直角三角形绕直角边旋转一周,其中一个锐角顶点不动,即为圆锥顶端,其中一直角边为旋转轴,即为圆锥的高,另一直角边旋转一周,所经过的区域为圆锥的底面,斜边旋转一周,经过的区域为圆锥的侧表面。
初三数学立体图形试题答案及解析1.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是()A.考B.试C.顺D.利【答案】D.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“试”是相对面,“考”与“顺”是相对面.故选D.【考点】正方体的表面展开图.2.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.【答案】泉【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,得“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面。
∴与汉字“香”相对的面上的汉字是泉。
3.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm3【答案】B【解析】该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。
故选B。
4.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.【答案】(1)(3)【解析】由平面图形的折叠及三棱锥的展开图知,只有图(1)、图(3)能够折叠围成一个三棱锥。
5.如图是某一立方体的侧面展开图,则该立方体是()A B C D【答案】D【解析】从立方体的侧面展开图来看,两个有圆的面是隔开的,不相邻,所以排除A、B;观察立方体的侧面展开图,立方体中小正方形中含有三角形的两个面是相邻的,且其两面都与含有深色的一个圆的那个面相邻,所以选D【考点】正方体点评:本题考查正方体,解答本题需要掌握正方体的图形结构,本题考查考生的观察能力和空间想象能力6.如图,是空心圆柱的两种视图,正确的是()【答案】B【解析】主视图是从正面看到的图形,俯视图是从上面看到的图形.由图可得空心圆柱的两种视图正确的是第二个,故选B.【考点】几何体的三视图点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.7.一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到 ( )A.厘米B.4厘米C.3厘米D.厘米【答案】B【解析】由题意知,容积底面积是,棱长6的正方体,从而得到水面上升时,则有所以水深是1.5+2.5=4故选B【考点】容积点评:本题属于对正方体以及变换的四边形的基本度的变换以及分析8.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【答案】【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【考点】立体图形点评:本题考查立体图形,要画出立体图形关键是要对立体图形的概念熟悉9.如图给定的是纸盒的外表面,下面能由它折叠而成的是【】A.B.C.D.【答案】B。
初一数学立体图形试题1.如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.【答案】4【解析】解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.2.圆柱的侧面展开图是________;圆锥的侧面展开图是________.【答案】长方形、扇形【解析】圆柱的底面周周长和援助的高构成展开图的长和高,故展开图是长方形;圆锥的侧面展开图是扇形【考点】侧面展开图点评:本题属于对圆柱和圆锥侧面展开图的基本展开情况的考查3.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积: cm3.【答案】(1)多了一个长方形,如图所示;(2)12【解析】(1)根据长方体的展开图的特征结合图形即可判断;(2)根据长方体的体积公式即可求得结果.(1)多了一个长方形,如图所示:(2)由题意得折叠而成的长方体的体积【考点】长方体的展开图,长方体的体积公式点评:本题属于基础应用题,只需学生熟练掌握长方体的展开图,即可完成.4.用一个平面去截一个圆柱,得到的图形不可能是【解析】解:用一个平面去截一个圆柱,得到的图形不可能是三角形,故选D。
5.下列四个图中,是三棱锥的表面展开图的是()【答案】B【解析】解:三棱锥的表面是四个三角形,再通过动手折叠可知答案选B。
6.如图是一个多面体的展开图,每个面都标注了字母,请根据要求回答问题:如果面A在多面体的底部,面B在多面体的前面,请你判断,面C、D、E、F分别表示多面体的哪一方向?【答案】折叠后如图所示,所以C在左,D在上,E在右,F在后【解析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答7.圆锥的侧面展开图是()A.三角形B.矩形C.圆D.扇形【答案】D【解析】解:圆锥的侧面展开图是扇形,故选D。
五年级上册数学《立体图形》练习题大全一、选择题1. 以下哪个图形是立体图形?A. 正方形B. 圆柱C. 平行四边形D. 三角形2. 下面哪个立体图形的底面是圆形?A. 正方体B. 圆柱C. 长方体D. 梯形3. 一个立体图形的六个面都是正方形,这个立体图形是什么?A. 正方体B. 长方体C. 圆柱D. 梯形4. 下面哪个立体图形的高是垂直于底面的?A. 正方体B. 圆柱C. 长方体D. 梯形5. 下面哪个立体图形的底面是平行四边形?A. 正方体B. 圆柱C. 长方体D. 梯形二、填空题1. 一个立体图形有六个面,每个面都是________,这个立体图形是________。
2. 圆柱的底面是________,侧面是________。
3. 长方体的六个面都是________,相对的面面积________。
4. 正方体的六个面都是________,相对的面面积________。
5. 梯形不能作为________的底面。
三、解答题1. 请画出一个正方体和一个圆柱,并标出它们的高和底面。
2. 一个长方体的长是10cm,宽是5cm,高是8cm,请计算它的体积。
3. 一个圆柱的底面半径是7cm,高是12cm,请计算它的体积。
4. 一个正方体的边长是10cm,请计算它的表面积和体积。
5. 请解释为什么三角形不能作为立体图形的底面。
四、应用题1. 小明的书桌是一个长方体,长是120cm,宽是60cm,高是80cm,计算书桌的体积。
2. 小华家的电视是一个长方体,长是100cm,宽是50cm,高是80cm,计算电视的表面积。
3. 一个圆柱形的饮料瓶,底面半径是7cm,高是20cm,计算瓶子的体积。
4. 一个正方体的边长是10cm,计算它的表面积和体积。
5. 小刚有一个正方形的积木,每条边长是10cm,他想把这个积木切成两个一样的正方体,他应该怎么做?。
六年级立体几何组合图形求体积应用题
1、一个圆柱的高是4.2厘米,底面直径是4厘米,它的体积是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?体积是多少?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,
(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)。
一、基础概念题1. 请列举出三种常见的立体图形。
2. 立体图形的体积和表面积分别是什么?3. 立体图形的三视图分别是什么?4. 简述长方体、正方体、圆柱体、圆锥体的特征。
二、计算题1. 已知长方体的长、宽、高分别为10cm、6cm、4cm,求其体积和表面积。
2. 一个正方体的边长为8cm,求其体积和表面积。
3. 圆柱体的底面半径为5cm,高为10cm,求其体积和表面积。
4. 圆锥体的底面半径为3cm,高为4cm,求其体积和表面积。
三、应用题1. 一个长方体木块,长、宽、高分别为15cm、10cm、6cm,将其切割成最大的正方体,求正方体的边长。
2. 一个圆柱体水池,底面直径为10m,深为2m,求水池的容积。
3. 一个圆锥形帐篷,底面半径为6m,高为10m,求帐篷的占地面积。
4. 一块长方体铁块,长、宽、高分别为20cm、15cm、10cm,将其熔铸成一个球体,求球体的半径。
四、作图题1. 请画出长方体的三视图。
2. 请画出正方体的三视图。
3. 请画出圆柱体的三视图。
4. 请画出圆锥体的三视图。
五、判断题1. 立体图形的体积和表面积都是固定的。
()2. 长方体和正方体都是特殊的立方体。
()3. 圆柱体的底面一定是圆形。
()4. 圆锥体的侧面展开是一个扇形。
()六、选择题1. 下列哪个立体图形的体积公式是V = πr²h?A. 长方体B. 正方体C. 圆柱体D. 圆锥体2. 下列哪个立体图形的表面积公式是S = 2πrh + 2πr²?A. 长方体B. 正方体C. 圆柱体D. 圆锥体3. 一个正方体的边长为2cm,其体积为多少?A. 4cm³B. 8cm³C. 12cm³D. 16cm³4. 一个圆锥体的底面半径为3cm,高为4cm,其体积为多少?A. 12πcm³B. 36πcm³C. 48πcm³D. 144πcm³七、填空题1. 一个立方体的边长为5cm,其体积是______cm³,表面积是______cm²。
专题十二 立体图形考点解析立体图形应用题是小升初考试中的重点和难点,每年小升初考试,立体图形应用题都是必考点。
立体图形应用题主要考查常见立体图形(长方体、立方体、圆柱、圆锥)的表面积和体积,其中以求圆柱的体积的题型最为常见;另外,还考查等体积变形、三视图等衍生考点。
在复习时,熟练掌握常规立体图形表面积和体积的求法便能轻松应考。
学习难度:★★★★ 考点频率:★★★★★精讲精练1 立体图形的表面积和体积●正方体表面积公式:S 表 = 6a 2 体积公式:V = a 3 ●长方体表面积公式:S 表 = 2(ab +aℎ+bℎ) 体积公式:V = abℎ●圆柱表面积公式S 侧 = Cℎ=2πrℎS 表 = Cℎ=2πr 2体积公式:V = πr 2ℎ ●圆锥体积公式:V = 13 S 底h = 13πr 2ℎ例1(华罗庚金杯)已知一个长方体的长、宽、高的比为4:3:2,用平面切割,切割面为六边形(如图所示)。
已知所有这样的六边形的周长最小为36,求这个长方体的表面积。
例❷(昆明市五华区小学毕业卷)一个圆柱形的容器内,放着一个长方体铁块,现在打开一个水龙头往容器里注水,3分钟后,水恰好没过长方体铁块的顶面,又过了18分钟,水灌满容器。
已知容器的高度是50厘米,长方体的高度为20厘米,求长方体铁块底面积与容器底面积的比。
例③(重庆市南开中学招生卷)一个圆柱和一个圆锥(如图所示),它们的高和底面直径都标在图上,单位是厘米,问:圆锥体积与圆柱体积的比是多少?2 等积变形●特点等积变形问题是指形状改变,而体积(或面积)没有变。
例④(深圳市罗湖区小学毕业卷)一个长方体容器,底面是一个边长50厘米的正方形,容器中直立着一个高1米、底面是边长10(米的正方形的长方体铁块,这时容器中的水深40厘米。
如果把铁块轻轻上提24厘米,那么,露出水面的铁块上被水浸湿的部分长多少厘米?3 三视图与展开图●正方体的展开图●长方体的展开图●圆柱的展开图圆锥的展开图●圆锥的展开图例⑤(创新杯)一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13。
初一数学立体图形试题答案及解析1.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是()A.5B.6C.7D.8【答案】C【解析】如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴ 12-5=7(条),∴至少所需剪的棱为7条.2.如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.【答案】4【解析】解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.3.下列图形能围成一个无盖正方体的是(填序号)【答案】①②④⑤.【解析】通过叠纸或空间想象能力可知,①②④⑤可以围成一个无盖正方体.另可根据正方体的11种展开图,因为本题是无盖的,要少一个正方形,也可以得到①②④⑤可以围成一个无盖正方体.【考点】 1、立体图形;2、正方体的展开图.4.下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()【答案】C【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据展开图中各种符号的特征和位置,可得能变成的是C.故选C.【考点】几何体的折叠点评:易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.5.在正方体的表面画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是【答案】A【解析】根据正方体的表面展开图的特征结合动手操作即可作出判断.由题意得画法正确的是第一个图形,故选A.【考点】正方体的表面展开图点评:解答此类正方体的表面展开图的问题不仅要熟练掌握正方体的表面展开图的特征,还要由动手操作的意识.6.一个正方体的表面展开如图所示,则正方体中的A所在面的对面所标的字是()A.深B.圳C.大D.会【答案】B【解析】正方体的平面展开图的特征:相对面展开后间隔一个正方形.由图可得正方体中的A所在面的对面所标的字是圳,故选B.【考点】正方体的平面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.7.用一个平面去截一个正方体,截面不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】根据正方体的特征依次分析各选项即可作出判断.因为正方体一共6个面,故截面不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的特征,即可完成.8.在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要根游戏棒;在空间搭4个大小一样的等边三角形,至少要根游戏棒.【答案】9,6【解析】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【考点】规律的探索,数字的变化点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律。
初三数学立体图形试题1.下列图形中,是正方体的平面展开图的是【答案】B.【解析】A、折叠后缺少两个底面,故此选项错误;B、可以是一个正方体的平面展开图,故此选项正确;C、缺少一个侧面,故此选项错误;D、折叠后缺少一个底面,上面重合,故此选项错误;故选B.【考点】几何体的展开图.2.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中【答案】B.【解析】根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选B.【考点】展开图折叠成几何体.3.如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.【答案】A【解析】长方体的四个侧面中,有两个相对面的小长方形,另两个是相对面的大长方形,B、C 中两个小的与两个大的相邻,错误,D中底面不符合,只有A符合。
故选A。
4.(2013年四川绵阳3分)把如图中的三棱柱展开,所得到的展开图是【】A.B.C.D.【答案】B。
【解析】根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱。
把图中的三棱柱展开,所得到的展开图是B。
故选B。
【考点】几何体的展开图。
5.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.【答案】(1)(3)【解析】由平面图形的折叠及三棱锥的展开图知,只有图(1)、图(3)能够折叠围成一个三棱锥。
6.如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是A.1B.4C.5D.6【答案】B。
【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
故选B。
7.右图中是左面正方体的展开图的是【答案】D【解析】正方体的平面展开图的特征:相对面展开后间隔一个正方形.右图中是左面正方体的展开图的是第四个图,故选D.【考点】正方体的平面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.8.有六个面,且主视图、俯视图和左视图都相同的几何体是.【答案】正方体(立方体)【解析】主视图是从正面看到的图形,俯视图是从上面看到的图形,左视图是从左面看到的图形. 有六个面,且主视图、俯视图和左视图都相同的几何体是正方体(立方体).【考点】几何体的三视图点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.9.将一直径为17cm的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm3.【答案】【解析】根据勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,连接AC,则AC是直径,AC=17,在Rt△ABC中,由勾股定理得:AC2=AB2+BC2,172=x2+(4x)2,x=,因此正方体的体积就是××=17cm310.下列空间图形中是圆柱的为()【答案】A【解析】圆柱的侧面是光滑的曲面,且上下底面是全等的两个圆.结合图形的特点,A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.11.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;【答案】(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.【解析】(1)等量关系为:(原来长方形的长-2正方形的边长)×(原来长方形的宽-2正方形的边长)=48,把相关数值代入即可求解;(2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值范围来得出侧面积的最大值.12.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.【答案】24。
人教版五年级下册数学第三单元长方体与正方体应用题专题训练1.游泳馆有一个长40 m,宽20m,深3 m的游泳池,需要在池底和墙壁上贴上瓷砖,一共需要多少平方米的瓷砖?2.一个长方体木块被切成3 个完全相同的正方体,如果3 个正方体的棱长总和比原来长方体的棱长总和增加160 cm,那么原来长方体的棱长总和是多少?3.一个长方体的表面积是108dm2,其中一个面的长是4dm,宽是3dm,这个长方体的体积是多少立方分米?4.小老鼠杰瑞做了一些奶酪,汤姆想:“一定很好吃,我要吃大的。
”汤姆选择哪一种才能吃到更多的奶酪呢?(尺寸如图,单位:cm)5.如图所示,一个封闭的长方体容器,里面装着水它的长宽高分别是20cm、20 cm、30cm红红不小心把容器碰倒了。
现在水的高度是多少厘米?6.如图①,将一个棱长为10的正方体从顶点A切掉一个棱长为4的正方体,得到如图②所示的立体图形。
这个立体图形的表面积是多少?如果再从顶点B切掉一个棱长为6的正方体,那么剩下的立体图形的表面积又是多少?7.华华想把一本长20厘米、宽10厘米、高2厘米的书包上彩纸,现有长30厘米、宽25厘米的彩纸和长40厘米、宽13厘米的彩纸。
华华选择哪种彩纸更合适呢?8.张叔叔用混凝土打了20块地砖,每块地砖的规格如图所示。
打这些地砖一共需要多少立方米混凝土?9.一根长方体木料长4米,如果把这根木料沿着横截面截成两段一样长的木料,则表面积增加2.4平方分米,你知道这根木料原米的体积是多少立方分米吗?10.一根铁丝刚好可以焊接成一个长、宽、高分别是6dm、5dm、4dm的长方体框架,如果用这根铁丝焊接成一个最大的正方体框架且没有剩余,这个正方体框架的棱长是多少分米?11.用5块玻璃做成一个无盖鱼缸(玻璃的尺寸如图)。
鱼缸的容积是多少?12.如图,这时一个长方体纸盒的展开图,请计算它的表面积。
13.一根长方体石料,长2.8米,横截面是边长为4分米的正方形。
长方体与正方体的应用题长方体和正方体是几何学中常见的立体图形,它们在日常生活和工程领域中都有广泛的应用。
本文将通过几个应用题来展示长方体和正方体的实际运用。
问题一:储物柜的设计某学校想要设计一种储物柜,以便学生能够放置书籍和文具。
储物柜的要求是每个学生至少能够放下一本书和一支笔。
已知每本书的尺寸为20厘米×15厘米×2厘米,每支笔的尺寸为15厘米×1厘米×1厘米。
请计算出设计这种储物柜时,最小的长方体或正方体尺寸是多少?解决方案:首先我们需要计算书籍和文具的总体积。
书籍的体积为20厘米×15厘米×2厘米=600立方厘米。
笔的体积为15厘米×1厘米×1厘米=15立方厘米。
所以,每个学生所需的总体积为600立方厘米+15立方厘米=615立方厘米。
假设储物柜的形状为正方体,每个学生的储物柜的边长为n厘米,则储物柜的总体积为n^3立方厘米。
为了能够容纳每个学生所需的总体积,我们需要满足以下条件:n^3 >= 615通过计算,我们可以得到n≈8.571。
因此,最小的边长取整后为9厘米。
所以,设计这种储物柜时,最小的长方体或正方体尺寸为9厘米×9厘米×9厘米。
问题二:纸箱的选择一家电子产品公司要将一批电子设备发运到各地。
这些设备被放置在纸箱中进行运输。
有两种纸箱可供选择,一种是长方体形状,尺寸为30厘米×20厘米×15厘米,另一种是正方体形状,尺寸为25厘米×25厘米×25厘米。
已知这批电子设备的总体积为200,000立方厘米。
问采用哪种纸箱能够最有效地运输这批设备?解决方案:首先,我们需要计算两种纸箱的总体积,分别为:长方体纸箱的总体积:30厘米×20厘米×15厘米=9,000立方厘米;正方体纸箱的总体积:25厘米×25厘米×25厘米=15,625立方厘米。
长方体和正方体应用题练习11. 一个长、宽、高分别为40 cm、30 cm、20 cm的 6. 亮亮家要给一个长m 、宽 m 、高 m 的简易衣柜小纸箱,在所有的棱上粘上一圈胶带,至少需要换布罩(如下图,没有底面)。
至少需要用布多多长的胶带?少平方米?2.将一个长 50 cm、宽 40 cm、高 35 cm的工具箱表面涂上油漆,需要涂漆的面积是多少?7. 把一个棱长是 6 dm的正方体钢锭铸造成一个长9 dm、宽 6 dm的长方体,它的高是多少分米?如果每立方分米钢材重k ,这块钢锭重多少千克?3.妈妈要送给奶奶的长方体形状的生日蛋糕长2 dm,宽 2 dm,高dm。
奶奶把它平均分成48. 一个长方体容器,底面长2dm,宽dm,里面装块长方体形状的小蛋糕。
每个人分到多大的一块有 dm 深的水,放入两个土豆后水面上升到dm ,蛋糕?平均每个土豆的体积是多少?4. 为迎接“五一”国际劳动节,工人叔叔要在工人9. 在一个棱长 5 厘米的正方体的边角上截下一个棱俱乐部的四周装上彩灯(地面的四边不装)。
已长2厘米的小正方体,剩下的立体图形的表面积知工人俱乐部长90 m,宽 55 m,高 22 m,工和体积各是多少?人叔叔至少需要多少的彩灯线?10. 在一个长30 厘米、宽14 厘米、高 12 厘米的容5. 学校要粉刷新教室。
已知教室的长是8 m,宽是器里装有8 厘米高的水,如果将容器侧翻过去,6 m,高是 3 m,门窗的面积是m 。
如果每平方以原来的左面作底,这时水深是多少厘米?米需要花 4 元涂料费,粉刷这个教室需要花费多12少钱?30141. 小卖部要做一个长m 、宽40 cm、高长方体和正方体应用题练习280 cm的玻 6. 一个长方体的饼干盒,长10 cm,宽 6 cm,高璃柜台。
现在要在柜台各边都安上角铁,至少需要多少米的角铁?12 cm。
如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?2. 一个正方体礼品盒,棱长dm 。
小学立体图形练习题一、选择题1. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,它的体积是多少立方厘米?A. 480B. 560C. 640D. 7202. 下列哪个图形不是立体图形?A. 正方体B. 圆柱C. 圆锥D. 平行四边形3. 一个正方体的棱长是5厘米,它的表面积是多少平方厘米?A. 150B. 125C. 75D. 1004. 圆柱的底面半径是2厘米,高是4厘米,它的体积是多少立方厘米?A. 50B. 100C. 200D. 3005. 一个长方体的底面积是40平方厘米,高是5厘米,它的体积是多少立方厘米?A. 200B. 150C. 100D. 50二、填空题6. 一个长方体的长是12厘米,宽是9厘米,高是7厘米,它的体积是________立方厘米。
7. 如果一个圆柱的底面直径是6厘米,高是10厘米,那么它的体积是________立方厘米。
8. 一个圆锥的底面半径是3厘米,高是9厘米,它的体积是________立方厘米。
9. 若一个正方体的表面积是216平方厘米,那么它的体积是________立方厘米。
10. 一个长方体的体积是300立方厘米,底面积是50平方厘米,它的高是________厘米。
三、判断题11. 长方体的体积等于底面积乘以高。
()12. 正方体的每个面都是正方形。
()13. 圆柱的体积等于底面积乘以高。
()14. 圆锥的体积是与它等底等高的圆柱体积的三分之一。
()15. 所有立体图形都有体积和表面积。
()四、简答题16. 描述如何测量一个圆柱的高度。
17. 解释为什么正方体的表面积和体积的计算公式不同。
18. 如果你有一个长方体的盒子,底面积是30平方厘米,高是6厘米,你如何计算它的体积?19. 为什么圆锥的体积公式是底面积乘以高再除以3?20. 描述如何用一个正方体的棱长来计算它的表面积和体积。
五、计算题21. 一个长方体的长是15厘米,宽是10厘米,高是5厘米,请计算它的表面积和体积。
长方体正方体体积应用题100题(带答案)一、图形计算1.计算如图立体图形的表面积和体积。
2.求如图各图形的表面积和体积。
3.求下面左图的体积和右图的表面积(单位:cm)。
4.求出下面图形的表面积和体积。
(单位:cm)5.正方体的体积。
(单位:分米)6.按要求计算下面图形的表面积和体积。
(1)如图1,在一个棱长是9厘米的大正方体右上角挖掉了一个棱长2厘米的小正方体,请计算这个图形的表面积。
(2)如图2,是由若干棱长1厘米的小正方体堆成的,请计算这个图形的体积。
7.计算下面长方体的表面积和体积。
8.长方体的两个面如下。
(单位:cm)体积:表面积:9.计算下图的体积和表面积。
(单位:cm)10.求下面图形的表面积和体积。
(单位:dm)11.计算下面几何体的体积。
12.求出图形的表面积和体积。
13.计算正方体的体积。
14.求体积。
(单位:厘米)15.求图形的表面积和体积。
16.求下列图形的表面积和体积。
17.求下面各立方体的表面积和体积。
(单位:厘米)18.计算下面长方体的表面积和体积。
19.计算下面立体图形的表面积和体积。
(单位:dm)20.求长方体的体积。
21.求长方体的表面积和棱长之和;正方体的表面积和体积。
22.计算下面图形的表面积和体积。
23.计算下面图形的体积。
24.求体积。
(单位:cm)25.计算下面几何体的表面积和体积。
(单位:cm)(1)(2)26.求下面正方体和长方体的表面积和体积。
(单位:厘米)27.计算下图形的表面积和体积。
(单位:cm)28.计算下面图形的表面积和体积。
29.求下列图形的表面积和体积。
(单位:cm)表面积:体积:30.计算下列图形的表面积和体积。
(单位:厘米)31.计算下面图形的体积。
32.求正方体的表面积和体积。
(单位:cm)33.下图是长方体和正方体的展开图,根据图上数据,求出表面积和体积。
34.分别求出下面正方体的表面积和长方体的体积。
(单位:dm)35.计算下面长方体和正方体的表面积和体积。
初三数学立体图形试题答案及解析1.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝【答案】B.【解析】这是一个正方体的平面展开图,共有六个面,相对两个面之间隔一个正方形.因此,其中面“成”与面“功”相对,“中”与面“考”相对,面“预”与面“祝”相对.故选B.【考点】正方体及其表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。
如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是A.五棱柱B.六棱柱C.七棱柱D.八棱柱【答案】B【解析】九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B.【考点】棱柱与棱锥3.如图所示的是某几何体的三视图,则该几何体的形状是()A.三棱锥B.正方体C.三棱柱D.长方体【答案】C.【解析】根据三视图可以想象出该物体由三条棱组成,底面是三角形,此只有三棱柱的三视图与题目中的图形相符.故选C.【考点】由三视图判断几何体.4.下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.【答案】(1)作图见解析(2)作图见解析(3)作图见解析【解析】思路分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;(2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.5.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm3【答案】B【解析】该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。
(典型)小学数学应用题《奥数立体几何》试题附答案解析1、一个正方体木块的表面积是8平方厘米,若将木块截成体积相等的8个小正方体.问每个小正方体的表面积是多少平方厘米?8÷6÷4×6=2平方厘米2、一个正方体木块的表面积是96平方厘米,如果把它锯成8个体积相等的小正方体要块(如图),每个小正方体的表面积是______平方厘米一个面96÷6=16(平方厘米)小正方体面积16÷4=4(平方厘米)4×6=24平方厘米3、一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米.求这个大长方体的体积.4、设长方体侧面积为1平方分米,它表面积为1×2+1×2×4=10平方分米切成12个小长方体后新增表面积(1×3+1×2×2)×2=14平方分米600÷(10+14)=25平方分米25=52大长方体的体积.25×(5×2)=250(立方分米)5、从一个长方体上截下一个体积是32立方厘米的小长方体,剩下部分正好是一个棱长为4厘米的正方体。
问:原来这个长方体的表面积是多少?截面积:4×4=16(平方厘米);截下来的长度:32÷16=2(厘米);4+2=6(厘米);原长宽高分别是4厘米,4厘米和6厘米;表面积为:2(4×4+4×6×2)=128(平方厘米)答:原长方体的表面积是128平方厘米.6、一个长方体形状的木块,长8分米,宽4分米,高2分米,把它锯成若干个小正方体,然后再拼成一个大正方体,求这个大正方体的表面积=______(单位是平方分米).题意,可以拼出边长为4分米的大正方体,其表面积为:4×4×6=96(平方分米),答:这个大正方体的表面积为96平方分米7、一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米.请问:原正方体的体积是多少?一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,共增加12个大正方体的面,一个面的面积:162÷(12+6)=9(平方厘米),因为3×3=9,所以可知大正方体的棱长是3厘米,大正方体的体积:3×3×3=27(立方厘米),答:原正方体的体积是27立方厘米.8、一个边长为60厘米的正方形伯片,剪去四个角后,剩下部分可以拼成一个无盖长方体,问所得长方体容积最大多少当长=宽=高时;容积最大;此时;长=宽=高=60÷3=20;此时体积=20×20×20=8000立方厘米9、一块长方形铁皮长60厘米,宽40厘米,如图,从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的容积是多少升?盒子的长是: 60-10×2=40(厘米),盒子的宽是: 40-10×2=20(厘米),盒子的高是: 10厘米,盒子的容积: 40×20×10=8000(立方厘米),8000立方厘米=8立方分米=8升;答:这个盒子的容积是8升.10、右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?三面红色的小立方体位于长方体的8个顶点,共8个;二面红色的立方体位于长方体的12条边,每边的个数是原边长-2,(因为要去掉2个顶点),一共有4×((6-2)+(5-2)+(4-2))=36个;一面被涂色的立方体是长方体表面剩余的立方体,每个表面的数量是原边长-2的矩形面积,一共有2×[(2×3)+(3×4)+(4×2)]=52个11、如图所示是一个由小立方体构成的塔,请你数一数共有______块.由图可得:(1)第二层小立方体有:1+3=4(块);第三层小立方体有:4+5=9(块);第四层小立方体有:9+7=16(块);(2)把各层小立方体的个数加起来求和得: 1+4+9+16=30(块)答:图中共有小立方体30块.12、在一个表面涂满了红色的正方体,在他的每个面上都等距离的切三刀.三个面图有红色的小正方体有几个?两个面涂有红色的小正方体有几个?一个面涂有红色的小正方体有几个?没有涂到红色的小正方体有几个?三个面红的,就是8个顶点,所以是8个两个面红的,就是12条棱上了,每条有2个,一共12×2=24个一个面红的,就是6个面上的,每个面有4个,一共6×4=24个没涂到红色的就是心里的,2×2×2=8个13、有 6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某画面染上红色,使得有的长方体只有1个面是红色,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体,最多有多少个?解答:一面涂红色有:4×5=20个两面涂红色有:20×2=40个(选择对面)三面涂红色有:40-4=36个(选择4×5两面和3×4一面)四面涂红色有:36-4=32个(选择4×5两面和3×4两面)五面涂红色有:32-5=27个六面涂红色有:27-5=22个一共有:20+40+36+32+27+22=177个13、用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?上下面:9×2=18cm²左右面:7×2=14cm²前后面:7×2=14cm²14、如图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?水平切两刀,增加4个面,竖直切三刀,增加6个面,另外一个维度方向切四刀,增加8个面。
长方体和正方体的表面积应用题(一)表面积应用题之-----面不同1、用硬纸做两个盒子,长方体形状的,它的长10厘米,宽8厘米,高6厘米。
另一个是正方体的,它棱长是一个8厘米,计算一下,哪个盒子的用料多?多多少平方厘米?2、做一对不带盖的长方体形状的白铁皮水桶,每个铁桶的长3分米,宽3分米,高分米,一共至少用多少平方分米的铁皮?3、一个养鱼池长 15米,宽10米,深在鱼池的各个面上抹水泥防止渗水,如果平均每平方米用水泥12千克。
共需要水泥多少千克?4、一间教室长8米,宽6米,刷教室的顶棚和四壁,除去门和黑板的面积是22平方米,需要粉刷教室的面积是多少?5、每张办公桌有4个抽屉,每个长48厘米,宽22厘米,高10厘米,做10张办公桌的抽屉至少要用木板多少平方米?6、给大厅里的4根立柱刷油漆,柱子的截面是边长米的正方形,柱子长5米,每平方米用油漆款元,买油漆需要多少元?7、一种火柴盒的外套长5厘米,宽厘米,高厘米,做这样一个外套至少用多少平方厘米的材料?8、一节烟囱长1米,口径是一个正方形,边长2分米,做4节这样的烟囱需要铁皮多少平方分米?(二)表面积应用题之-----侧面展开9.一个纸盒,它的底面是正方形,如果将纸盒的四个侧面展开,每个侧面恰好是边长36厘米的正方形,那么这个纸盒是什么形状?表面积是多少厘米?10.一个长方形纸盒,它的底面是正方形,如果将纸盒的四个侧面展开恰好是一个边长36米厘米的正方形,求纸盒的表面积。
11.有一个底面是正方形的长方体,高16厘米,侧面展开后是一个正方形,求这个长方体的表面积?12.一个长方体,底面是正方形,侧面展开后是一个周长40厘米的正方形,求这个长方体的表面积?(三)表面积应用题之-----拼13.将3个一样长5厘米,宽4厘米,高3厘米的长方体,拼成一个表面积,最小的长方体,这个长发方的表面积是多少?如果拼成一个表面积,最大的长方体,这个长方体的表面积是多少?14.三个棱长是3厘米的正方体,拼成一个长方体,这个长方体的表面积是多少平方厘米?15.将20块棱长3厘米的正方体拼成一个表面积最小的长方体,这个长方体的表面积是多少平方厘米?16.一个正方体的表面积是24平方厘米,5个这样的正方体拼成的长方体面积是多少平厘米?17.有36块体积为1立方厘米的正方体小木块,可以拼成几种不同的长方体?求出表面积最小的长方体的表面积?18.用24块棱长为2厘米的正方体小木块可以拼成几种不同的长体?并求出表面积最大的长方体的表面积?19.有一个长方体和一个正方体,拼成一个长方体,新长方体的表面积比原长方体的表面积,增加60平方厘米,求长方体的表面积?(四)表面积应用题之-----切20.一根长方体木料,长 2米,宽和厚都是2分米,把它锯成4段,表面积至少增加多少平方分米?21.把一个6厘米、宽4厘米,高3厘米的长方体,分割成三个小长方体,那么分割的三个小长方体的表面积的和最大是多少平方厘米?22.有一的正方体,棱长是6厘米,如果把这个正方体切成棱长是2厘米的小正方体,表面积增加多少平方厘米?23.一个正方体的表面积是24平方厘米,把它平均分成两个长方体后,每个长方体的表面积是多少厘米?24.把一表面积是54平方分米的正方体木块锯成两个长方体,这两个长方的表面积的和是多少平方分米?25.一个长方形上下两面是正方形,它的表面积是126平方厘米,能切成三个体积相等的正方形,这三个正方体的表面积的和是多少?26.将一个长16分米,宽12分米,高10分米的长方体木料,截成两个长方体。
初一数学立体图形试题答案及解析1.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的()【答案】A【解析】A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.2.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色【答案】B【解析】分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.3.如图是正方体的展开图,将它折叠成正方体后“创”字的对面是()A.文B.明C.城D.市【答案】B【解析】正方体的平面展开图的特征:相对面展开后间隔一个长方形.由图可得将它折叠成正方体后“创”字的对面是“明”,故选B.【考点】正方体的平面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.4.如图,是一个正方体的表面展开图,原正方体中“蛇”面的对面上的字是.【答案】乐【解析】正方体的表面展开图的特征:相对面展开后间隔一个正方形.由图可得原正方体中“蛇”面的对面上的字是“乐”.【考点】正方体的表面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的表面展开图的特征,即可完成.5.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着,,,,,六个数字,那么图中所有看不见的面上的数字和是.【答案】-13【解析】一个正方体的数字之和是-1,六个正方体的数字之和是-1×6=-6,然后六个正方体的数字之和减去可以看见的数字就是隐藏的数字之和了。
六个小正方体的数字总和为(-1+2+3-4+5-6)×6=-6,图中看得见的数字为-1+2+5-6+3+5+2-6+3-4-1+2+3=7,所以图中所有看不见的面上的数字和=-6-7=-13.【考点】由三视图判断几何体点评:本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路。