高中数学 立体几何练习题(1) 新人教A版必修2
- 格式:doc
- 大小:765.50 KB
- 文档页数:12
高中数学必修2立体几何部分测试卷答案班级 姓名 学号一、选择题:(本大题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、垂直于同一条直线的两条直线一定 ( D )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作 ( D ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( C )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为( D )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( A )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( D ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβC .若,//,m m n n αβ⊥⊂,则αβ⊥D .若//,m n ααβ=,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( B ) A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=,如图所示。
若将ABC ∆绕BC旋转一周,则所形成的旋转体的体积是 ( D ) (A )92π (B )72π (C )52π (D )32π(第8题图) 二、填空题(本大题共8小题,每小题4分,共28分)9、如图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单位正方体共有 7块 10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为 112、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。
高一数学必修第二册第八章《立体几何初步》单元练习题卷3(共22题)一、选择题(共10题)1.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF与HG交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上2.关于“斜二测”画图法,下列说法不正确的是( )A.平行直线的斜二测图仍是平行直线B.斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变C.正三角形的直观图一定为等腰三角形D.在画直观图时,由于坐标轴的选取不同,所得的直观图可能不同3.已知直线m,n与平面α,β,m⊥α,n⊥β,若α⊥β,则m,n的位置关系是( )A.平行B.垂直C.相交D.异面4.如图所示,正方体ABCD−A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PQEF的体积( )A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关5.在正方体中ABCD−A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC6.一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3√3πD.6π7.正方体的内切球与其外接球的体积之比为( )A.1:√3B.1:3C.1:3√3D.1:98.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为( )A.√2B.√3C.2D.2√29.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A.3√3B.√3C.2√6D.2√310.若一个圆锥的轴截面(过圆锥顶点和底面直径的截面)是等边三角形,其面积为√3,则这个圆锥的体积为( )A.3πB.√3π3C.√3πD.√3π2二、填空题(共6题)11.已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.12.如图,在正三棱柱ABC−A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P−ABA1的体积为.13.正六棱柱的底面边长为4,高为6,则它的外接球(正六棱柱的顶点都在此球面上)的表面积为.14.正△ABC的斜二测画法的水平放置图形的直观图,若△AʹBʹCʹ的面积为√3,那么△ABC的面积为.15.正方体ABCD−A1B1C1D1中,若过A,C,B1三点的平面与底面A1B1C1D1的交线为l,则l与A1C1的位置关系是.16.如图所示,长方形ABCD−A1B1C1D1的体积为24,E为线段B1C上的一点,则棱锥A−DED1的体积为.三、解答题(共6题)17.如图,在正方体ABCD−A1B1C1D1中,P,Q分别是平面AA1D1D,平面A1B1C1D1的中心,证明:(1) D1Q∥平面C1DB;(2) 平面D1PQ∥平面C1DB.18.如图,在四棱锥P−ABCD中,底面ABCD是菱形,PB=PD.(1) 求证:平面APC⊥底面BPD;(2) 若PB⊥PD,∠DAB=60∘,AP=AB=2,求二面角A−PD−C的余弦值.19.如图,在△AOB中,∠AOB=90∘,AO=2,OB=1.△AOC可以通过△AOB以直线AO为轴旋转得到,且OB⊥OC,动点D在斜边AB上.(1) 求证:平面COD⊥平面AOB;(2) 当D为AB的中点时,求二面角B−CD−O的余弦值;(3) 求CD与平面AOB所成的角中最大角的正弦值.20.如图,在三棱柱ABC−A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60∘,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点.(1) 若Q为线段AC的中点,H为BQ的中点,延长AH交BC于D,求证:AD∥平面B1PQ;(2) 若二面角B1−PQ−C1的平面角的余弦值为√13,求点P到平面BQB1的距离.1321.如图,AE⊥面ABCD,ABCD是正方形,AE=AB=2,F为BE的中点.求证:DE∥面ACF.22.阅读下面题目及其证明过程,在横线处填写适当的内容.如图,长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,点E,F分别为线段BD1,CC1的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅰ)当DD1=√2时,求证:DE⊥平面BFD1;证明:(Ⅰ)如图,连接AC,BD,设AC∩BD=O,连接OE.因为长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,所以BO=OD,又因为BE=ED1,DD1,所以OE∥DD1,OE=12因为F为线段CC1中点,DD1,所以CF∥DD1,CF=12所以CF∥OE,CF=OE.所以四边形OCFE为平行四边形.所以EF∥OC.又因为EF⊄平面ABCD,OC⊂平面ABCD,所以EF∥平面ABCD.(Ⅰ)因为F为线段CC1中点,所以BF=D1F,所以△D1FB是等腰三角形.因为E为BD1的中点,所以EF⊥BD1.因为BD⊥OC,EF∥OC,所以EF⊥BD.因为BD∩BD1=B,所以①.因为DE⊂平面BDD1,所以②.因为DD1=√2,所以DD1=BD,所以③.因为EF∩D1B=E,所以DE⊥平面BFD1.在上述证明过程中,(Ⅰ)的证明思路是:先证明“④”,再证明“⑤”.答案一、选择题(共10题)1. 【答案】A【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF⊂平面ABC,HG⊂平面ADC,故M∈平面ABC,M∈平面ADC,又平面ABC∩平面ADC=AC,所以M∈AC.故选A.【知识点】平面的概念与基本性质2. 【答案】C【解析】对于A,平行直线的斜二测图仍是平行直线,A正确;对于B,斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变,B正确;对于C,正三角形的直观图不一定为等腰三角形,如图所示,所以C错误;对于D,画直观图时,由于坐标轴的选取不同,所得的直观图可能不同,D正确.【知识点】直观图3. 【答案】B【解析】m,n有可能相交或异面,但必定垂直.故答案选B.【知识点】直线与直线的位置关系4. 【答案】D【解析】设P点到平面A1B1CD的距离为ℎ,因为A1B1∥DC,所以Q到EF的距离为定值2√2,又因为EF=1,所以S△QEF=12×1×2√2=√2,因为V四面体PQEF =V三棱锥P−QEF=13S△QEF⋅ℎ=√23ℎ,即四面体的体积只与点P到平面A1B1CD的距离无关,所以四面体的体积与z有关,与x,y无关.【知识点】棱锥的表面积与体积5. 【答案】C【解析】画出正方体ABCD−A1B1C1D1,如图所示.对于选项A,连D1E,若A1E⊥DC1,又DC1⊥A1D1,所以DC1平面A1ED1,所以可得DC1⊥D1E,显然不成立,所以A不正确.对于选项B,连AE,若A1E⊥BD,又BD⊥AA1,所以DB⊥平面A1AE,故得BD⊥AE,显然不成立,所以B不正确.对于选项C,连AD1,则AD1∥BC1.连A1D,则得AD1⊥A1D,AD1⊥ED,所以AD1⊥平面A1DE,从而得AD1⊥A1E,所以A1E⊥BC1.所以C正确.对于选项D,连AE,若A1E⊥AC,又AC⊥AA1,所以AC⊥平面A1AE,故得AC⊥AE,显然不成立,所以D不正确.【知识点】空间中直线与直线的垂直6. 【答案】A【解析】联想只有正方体中有这么多相等的线段,所以构造一个正方体,则正方体的面对角线即为四面体的棱长,求得正方体的棱长为1,体对角线为√3,从而外接球的直径也为√3,所以此球的表面积为3π.【知识点】组合体、球的表面积与体积7. 【答案】C【解析】设正方体的棱长为a,则其内切球的半径为a2,所以V内=43π(a2)3−πa36,正方体的外接球的半径为√32a,所以V外=43π(√32a)3=3√3πa36,所以V内:V外=1:3√3.【知识点】球的表面积与体积8. 【答案】B【解析】根据题设条件可知三视图还原成的几何体为四棱锥,如图所示,其中PD=1,底面ABCD是边长为1的正方形,易知PB=√3,PA=PC=√2,故最长棱的长度为√3.【知识点】三视图、棱锥的结构特征9. 【答案】D【知识点】棱柱的表面积与体积10. 【答案】B【解析】设圆锥底面圆的半径为r,圆锥的高为ℎ,体积为V,则ℎ=√3r.因为12×2r×√3r=√3r2=√3,所以r=1,所以V=13πr2h=√33πr3=√3π3.【知识点】圆锥的表面积与体积二、填空题(共6题)11. 【答案】112【解析】连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EH∥AC,EH=12AC,因为 F ,G 分别为 B 1A ,B 1C 的中点, 所以 FG ∥AC ,FG =12AC ,所以 EH ∥FG ,EH =FG , 所以四边形 EHGF 为平行四边形, 又 EG =HF ,EH =HG , 所以四边形 EHGF 为正方形, 又点 M 到平面 EHGF 的距离为 12, 所以四棱锥 M −EFGH 的体积为 13×(√22)2×12=112.【知识点】棱锥的表面积与体积12. 【答案】9√34【解析】因为在正三棱柱 ABC −A 1B 1C 1 中,AB =AA 1=3,点 P 在棱 CC 1 上, 所以点 P 到平面 ABA 1 的距离即为 △ABC 的高, 即为 ℎ=√32−(32)2=3√32,S △ABA 1=12×3×3=92,三棱锥 P −ABA 1 的体积为:V =13×S △ABA 1×ℎ=13×92×3√32=9√34.【知识点】棱锥的表面积与体积13. 【答案】 100π【解析】依题意,该正六棱柱的外接球的球心应是上、下底面中心连线的中点, 所以其半径等于 √42+(62)2=5,其表面积等于 4π×25=100π.【知识点】球的表面积与体积14. 【答案】 2√6【知识点】直观图15. 【答案】 A 1C 1∥l【解析】因为 平面ABCD ∥平面A 1B 1C 1D 1,AC ⊂平面ABCD , 所以 AC ∥平面A 1B 1C 1D 1,又平面 ACB 1 经过直线 AC 与平面 A 1B 1C 1D 1 相交于直线 l , 所以 AC ∥l , 又因为 A 1C 1∥AC , 所以 A 1C 1∥l .【知识点】直线与平面平行关系的性质、直线与平面平行关系的判定16. 【答案】4【解析】设AB=a,AD=b,AA1=c,则长方体的体积V ABCD−A1B1C1D1=abc=24,三棱锥A−DED1的体积V A−DED1=V E−ADD1=13S△ADD1⋅AB=13×12×AD×DD1×AB=16×bc⋅a=16×24=4.【知识点】棱锥的表面积与体积三、解答题(共6题)17. 【答案】(1) 由题可知D1Q∥DB.因为D1Q⊄平面C1DB,DB⊂平面C1DB,所以D1Q∥平面C1DB.(2) 由题可知D1P∥C1B.因为D1P⊄平面C1DB,C1B⊂平面C1DB,所以D1P∥平面C1DB.由(1)知,D1Q∥平面C1DB,又D1Q∩D1P=D1,所以平面D1PQ∥平面C1DB.【知识点】平面与平面平行关系的判定、直线与平面平行关系的判定18. 【答案】(1) 记AC∩BD=O,连接PO,因为底面 ABCD 是菱形,所以 BD ⊥AC ,O 是 BD ,AC 的中点, 因为 PB =PD , 所以 PO ⊥BD , 因为 AC ∩PO =O , 所以 BD ⊥平面APC , 又因为 BD ⊂平面BPD ,所以 平面APC ⊥平面BPD .(2) 如图,以 O 为原点,OA ,OB ,OP 所在直线分别为 x ,y ,z 轴建立如图所示的空间坐标系, 则 A(√3,0,0),D (0,−1,0),P (0,0,1),C(−√3,0,0,),所以 DA ⃗⃗⃗⃗⃗ =(√3,1,0),DP ⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(−√3,1,0), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 是平面 APD 的法向量,则 {DA ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0,DP ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0⇒{√3x 1+y 1=0,y 1+z 1=0, 令 y 1=−√3,得 n 1⃗⃗⃗⃗ =(1,−√3,√3),同理可得平面 PCD 的法向量 n 2⃗⃗⃗⃗ =(1,√3,−√3),所以 cos ⟨n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ ⟩=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n2⃗⃗⃗⃗⃗ ∣∣=√3)×√3+(−√3)×√3√7×√7=−57,由图形可知二面角 A −PD −C 为钝二面角, 所以二面角 A −PD −C 的余弦值为 −57.【知识点】利用向量的坐标运算解决立体几何问题、平面与平面垂直关系的判定、二面角19. 【答案】(1) 在 △AOC 中,AO ⊥OC , 因为 OB ⊥OC ,且 AO ∩OB =O , 所以 OC ⊥平面AOB , 又 OC ⊂平面COD ,所以 平面COD ⊥平面AOB .(2) 如图建立空间直角坐标系 O −xyz , 因为 D 为 AB 的中点,所以 O (0,0,0),A (0,0,2),B (0,1,0),C (1,0,0),D (0,12,1),所以 OC ⃗⃗⃗⃗⃗ =(1,0,0),OD ⃗⃗⃗⃗⃗⃗ =(0,12,1),BC ⃗⃗⃗⃗⃗ =(1,−1,0),BD⃗⃗⃗⃗⃗⃗ =(0,−12,1), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 为平面 OCD 的法向量,所以 {n 1⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 1=0,12y 1+z 1=0, 令 z 1=1,则 y 1=−2,所以 n 1⃗⃗⃗⃗ =(0,−2,1) 是平面 BCD 的一个法向量, 设 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) 为平面 OCD 的法向量, 所以 {n 2⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,n 2⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 2−y 2=0,−12y 2+z 2=0, 令 z 2=1,则 x 2=2,y 2=2,所以 n 2⃗⃗⃗⃗ =(2,2,1) 是平面 OCD 的一个法向量,所以 cos 〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n 2⃗⃗⃗⃗⃗ ∣∣=√02+(−2)2+12⋅√22+22+12=−√55, 所以二面角 B −CD −O 的余弦值为 √55. (3) 解法一:因为 OC ⊥平面AOB ,所以 ∠CDO 为 CD 与平面 AOB 所成的角, 因为 OC =1,所以点 O 到直线 AB 的距离最小时,∠CDO 的正弦值最大, 即当 OD ⊥AB 时,∠CDO 的正弦值最大, 此时 OD =2√55, 所以 CD =3√55, 所以 sin∠CDO =√53. 解法二:设 AD⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ (λ∈[0,1]), 所以 D (0,λ,2−2λ).CD ⃗⃗⃗⃗⃗ =(−1,λ,2−2λ),平面 AOB 的法向量 n ⃗ =(1,0,0),所以 sinθ=∣∣n ⃗ ⋅CD⃗⃗⃗⃗⃗ ∣∣∣∣n ⃗ ∣∣∣∣CD⃗⃗⃗⃗⃗ ∣∣=√5λ2−8λ+5=√5(λ−45)2+95,所以当 λ=45 时,CD 与平面 AOB 所成的角最大,sinθ=√53. 【知识点】二面角、平面与平面垂直关系的判定、线面角20. 【答案】(1) 如图,取 BB 1 的中点 E ,连接 AE ,EH . 因为 H 为 BQ 的中点, 所以 EH ∥B 1Q .在平行四边形 AA 1B 1B 中,P ,E 分别为 AA 1,BB 1 的中点, 所以 AE ∥PB 1.又 EH ∩AE =E ,PB 1∩B 1Q =B 1, 所以 平面EHA ∥平面B 1QP . 因为 AD ⊂平面EHA , 所以 AD ∥平面B 1PQ .(2) 如图,连接 PC 1,AC 1,因为四边形 A 1C 1CA 为菱形,∠C 1A 1A =60∘, 所以 AA 1=AC 1=A 1C 1=4, 即 △AC 1A 1 为等边三角形. 因为 P 为 AA 1 的中点, 所以 PC 1⊥AA 1.因为 平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1, 所以 PC 1⊥平面ABB 1A 1.在平面 ABB 1A 1 内过点 P 作 PR ⊥AA 1 交 BB 1 于 R .以 PR ,PA 1,PC 1 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Pxyz ,则 P (0,0,0),A 1(0,2,0),A (0,−2,0),C 1(0,0,2√3),C(0,−4,2√3).设 AQ ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ =λ(0,−2,2√3),λ∈(0,1](当 λ=0 时,平面 B 1PQ 即平面 ABB 1A 1,不符合题意),所以 Q(0,−2(λ+1),2√3λ). 所以 PQ⃗⃗⃗⃗⃗ =(0,−2(λ+1),2√3λ). 因为 A 1B 1=AB =2,∠B 1A 1A =60∘, 所以 B 1(√3,1,0), 所以 PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0).设平面 PQB 1 的法向量为 m ⃗⃗ =(x,y,z ),则 {m ⃗⃗ ⋅PQ⃗⃗⃗⃗⃗ =0⃗ ,m ⃗⃗ ⋅PB 1⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,所以 {−2(λ+1)y +2√3λz =0,√3x +y =0,令 x =1, 则 y =−√3,z =−λ+1λ,所以平面 PQB 1 的一个法向量为 m ⃗⃗ =(1,−√3,−λ+1λ).设平面 AA 1C 1C 的法向量为 n ⃗ =(1,0,0), 二面角 B 1−PQ −C 1 的平面角为 θ, 则cosθ=∣m⃗⃗⃗ ⋅n ⃗ ∣∣m⃗⃗⃗ ∣∣n ⃗ ∣=√1+3+(−λ)2=√1313.所以 λ=12 或 λ=−14(舍), 所以 AQ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ , 所以 Q(0,−3,√3), 又 B(√3,−3,0),所以 QB⃗⃗⃗⃗⃗ =(√3,0,−√3), 所以 ∣QB ⃗⃗⃗⃗⃗ ∣=√3+3=√6. 又 ∣B 1Q ⃗⃗⃗⃗⃗⃗⃗ ∣=√22, 所以 BQ 2+BB 12=B 1Q 2, 所以 ∠QBB 1=90∘.连接 BP ,设点 P 到平面 BQB 1 的距离为 ℎ, 则 13×12×4×√3×√3=13×12×4×√6⋅ℎ.所以 ℎ=√62, 即点 P 到平面 BQB 1 的距离为√62. 【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】连接 BD 交 AC 于 G ,连接 FG .因为 F ,G 分别为 BE ,BD 的中点, 所以 FG ∥DE ,因为 FG ⫋平面ACF ,DE ⊄面ACF , 所以 DE ∥面ACF .【知识点】直线与平面平行关系的判定22. 【答案】① EF ⊥平面BDD 1② EF ⊥DE③ DE ⊥BD 1 ④线线平行 ⑤线面平行【知识点】直线与平面垂直关系的判定、直线与直线的位置关系、直线与平面平行关系的判定、直线与平面垂直关系的性质。
高一数学必修第二册第八章《立体几何初步》单元练习题卷6(共22题)一、选择题(共10题) 1. 已知 4+(a−2)ii为纯虚数,则实数 a 的值为 ( )A . 4B . 2C . 1D . −22. 如图,在矩形 OACB 中,E 和 F 分别是边 AC 和 BC 上的点,且满足 AC =3AE ,BC =3BF ,若 OC⃗⃗⃗⃗⃗ =λOE ⃗⃗⃗⃗⃗ +μOF ⃗⃗⃗⃗⃗ ,其中 λ,μ∈R ,则 λ+μ 是A .83B .32C .53D .13. 棱锥的侧面和底面可以都是 ( ) A .三角形B .四边形C .五边形D .六边形4. 有下列三个说法:① 两个互相平行的面是正方形,其余各面都是四边形的几何体一定是棱台; ②有两个面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. 其中正确的有 ( ) A . 0 个B . 1 个C . 2 个D . 3 个5. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是 ( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半6.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关7.已知i为虚数单位,下列各式的运算结果为纯虚数的是( )A.i(1+i)B.i(1−i)2C.i2(1+i)2D.i+i2+i3+i48.在下列结论中,正确的是( )A.若两个向量相等,则它们的起点和终点分别重合B.模相等的两个平行向量是相等向量C.若a和b⃗都是单位向量,则a=b⃗D.两个相等向量的模相等9.某书店新进了一批书籍,如表是某月中连续6天的销售情况记录:日期6日7日8日9日10日11日根据上表估计该书店该月(按31天计当日销售量(本)304028443842算)的销售总量是 ( ) A . 1147 本 B . 1110 本 C . 1340 本 D . 1278 本10. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 bsin (π−C )−√2ccos (π+B )=0,则tanB = ( ) A .√22B . √2C . −√22D . −√2二、填空题(共6题)11. A ,B 两种品牌各三种车型 2017 年 7 月的销量环比(与 2017 年 6 月比较)增长率如下表:A 品牌车型A 1A 2A 3环比增长率−7.29%10.47%14.70%B 品牌车型B 1B 2B 3环比增长率−8.49%−28.06%13.25%根据此表中的数据,有如下四个结论:① A 1 车型销量比 B 1 车型销量多;② A 品牌三种车型总销量环比增长率可能大于 14.70%; ③ B 品牌三种车型车总销量环比增长率可能为正;④ A 品牌三种车型总销量环比增长率可能小于B 品牌三种车型总销量环比增长率.其中正确的结论个数是 .12. 设复数 z 1=x +2i ,z 2=3−yi (x,y ∈R ),若 z 1+z 2=5−6i ,则 z 1−z 2= .13. 如果两个球的体积之比为 8:27,那么两个球的表面积之比为 .14. 在复平面内,点 A (−2,1) 对应的复数 z ,则 ∣z +1∣= .15. 已知点 A (−2,0),设 B ,C 是圆 O :x 2+y 2=1 上的两个不同的动点,且向量 OB⃗⃗⃗⃗⃗ =tOA ⃗⃗⃗⃗⃗ +(1−t )OC ⃗⃗⃗⃗⃗ (其中 t 为实数),则 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ = .16. 如图,在平面四边形 ABCD 中,AB ⊥BC ,AB =√3,BC =1,△ACD 是等边三角形,则 AC⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ 的值为 .三、解答题(共6题)17. 某鱼苗实验场进行某种淡水鱼的人工孵化试验,按在同一条件下的试验结果,10000 个鱼卵能孵出 8520 尾鱼苗.(1) 求这种鱼卵孵化的频率(经验概率);(2) 估计 30000 个这种鱼苗能孵化出多少尾鱼苗? (3) 若要孵出 5000 尾鱼苗,估计需要准备多少个鱼卵?18. 在数学考试中,小明的成绩在 90 分以上的概率是 0.18,在 80∼89 分的概率是 0.51,在70∼79 分的概率是 0.15,在 60∼69 分的概率是 0.09,60 分以下的概率是 0.07,计算: (1) 小明在数学考试中取得 80 分以上成绩的概率; (2) 小明考试及格的概率.19. 从① B =π3,② a =2,③ bcosA +acosB =√3+1 这三个条件中任选一个,补充在下面问题中,并解决相应问题.已知在锐角 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,△ABC 的面积为 S ,若 4S =b 2+c 2−a 2,b =√6,且 ,求 △ABC 的面积 S 的大小.20. 现有一个底面是菱形的直四棱柱,它的体对角线长为 9 和 15,高是 5,求该直四棱柱的侧面积、表面积.21. 某班抽取 20 名学生周测物理考试成绩(单位:分)的频率分布直方图如下.(1) 求频率分布直方图中 a 的值,并写出众数;(2) 分别求出成绩落在 [50,60) 与 [60,70) 中的学生人数;(3) 从成绩在 [50,70) 的学生中任选 2 人,求这 2 人的成绩都在 [60,70) 中的概率.22. 已知点 O (0,0),A (1,2),B (4,5),且 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +tAB⃗⃗⃗⃗⃗ . (1) t 为何值时,P 在 x 轴上?P 在 y 轴上?P 在第二象限?(2) 四边形 OABP 能否成为平行四边形?若能,求出相应的 t 值;若不能,说明理由.答案一、选择题(共10题)1. 【答案】B【解析】4+(a−2)ii =−i[4+(a−2)i]−i⋅i=a−2−4i为纯虚数,则实数a满足:a−2=0,解得a=2.【知识点】复数的乘除运算2. 【答案】B【解析】以O为原点,OA为x轴、OB为y轴建立平面直角坐标系.设OA=a,OB=b,则E(a,b3),F(a3,b),C(a,b).由已知,得(a,b)=λ(a,b3)+μ(a3,b),则有{a=λa+μa3,b=λb3+bμ,解得λ=μ=34,因此λ+μ=32.【知识点】平面向量的分解、平面向量的坐标运算3. 【答案】A【解析】三棱锥的侧面和底面都是三角形.故选A.【知识点】棱锥的结构特征4. 【答案】A【解析】当两个互相平行的正方形全等时,不是棱台,故①中说法错误;②③可用反例去检验,如图(1)(2)所示,故②③中说法错误.故选A.【知识点】棱台的结构特征5. 【答案】A【解析】设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a0.06a0.3a0.04a建设后经济收入0.74a0.56a0.6a0.1a据如表可知B,C,D中结论均正确,A中论不正确.【知识点】频率分布直方图6. 【答案】D【解析】由柱形图可知:A,B,C均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,所以D不正确.【知识点】频率分布直方图7. 【答案】C【解析】对于A,i(1+i)=i−1不是纯虚数;对于B,i(1−i)2=−2i2=2是实数;对于C,i2(1+i)2=−2i为纯虚数;对于D,i+i2+i3+i4=i−1−i+1=0不是纯虚数.【知识点】复数的乘除运算8. 【答案】D【解析】由平面向量的基本概念可得,D是正确的.【知识点】平面向量的概念与表示9. 【答案】A=37(本),【解析】从表中6天的销售情况可得,一天的平均销售量为30+40+28+44+38+426该月共31天,故该月的销售总量约为37×31=1147(本).【知识点】样本数据的数字特征10. 【答案】D【解析】由已知得bsinC+√2ccosB=0,即sinBsinC+√2sinCcosB=0,因为sinC≠0,所以sinB+√2cosB=0,故tanB=−√2.【知识点】正弦定理二、填空题(共6题)11. 【答案】2【知识点】概率的应用12. 【答案】 −1+10i【解析】因为 z 1+z 2=x +2i +(3−yi )=(x +3)+(2−y )i =5−6i (x,y ∈R ), 所以 x =2 且 y =8,所以 z 1−z 2=2+2i −(3−8i )=−1+10i . 【知识点】复数的加减运算13. 【答案】 4:9【解析】因为 V 1:V 2=8:27=R 13:R 23,所以 R 1:R 2=2:3,所以 S 1:S 2=R 12:R 22=4:9.【知识点】球的表面积与体积14. 【答案】 √2【知识点】复数的几何意义15. 【答案】 3【解析】 OB⃗⃗⃗⃗⃗ =tOA ⃗⃗⃗⃗⃗ +(1−t )OC ⃗⃗⃗⃗⃗ ⇒CB ⃗⃗⃗⃗⃗ =tCA ⃗⃗⃗⃗⃗ , 所以 A ,B ,C 三点共线,所以设直线 BC :y =k (x +2).{x 2+y 2=1,y =k (x +2)⇒(1+k 2)x 2+4k 2x +4k 2−1=0, 设 B (x 1,y 1),C (x 2,y 2), 所以 x 1+x 2=−4k 21+k 2,x 1x 2=4k 2−11+k 2.所以AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =(x 1+2,y 1)(x 2+2,y 2)=(x 1+2)(x 2+2)+k 2(x 1+2)(x 2+2)=(1+k 2)[x 1x 2+2(x 1+x 2)+4]=(1+k2)⋅(4k 2−11+k 2−8k 21+k 2+4)=3.【知识点】平面向量数量积的坐标运算16. 【答案】 −1【解析】 AB ⊥BC ,AB =√3,BC =1, 所以 AC =2,∠BCA =60∘; 又 △ACD 是等边三角形, 所以 AD =AC =2,AD ⊥AB , 所以AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )⋅(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ =−√3×√3+1×2=−1.【知识点】平面向量的数量积与垂直三、解答题(共6题) 17. 【答案】(1) 0.852.(2) 25560 尾.(3) 约 5869 个.【知识点】频率与概率18. 【答案】(1) 分别记小明的成绩“在 90 分以上”“在 80∼89 分”“在 70∼79 分”“在 60∼69 分”为事件 B ,C ,D ,E ,这四个事件彼此互斥.小明的成绩在 80 分以上的概率是 P (B ∪C )=P (B )+P (C )=0.18+0.51=0.69. (2) 法一:小明考试及格的概率是P (B ∪C ∪D ∪E )=P (B )+P (C )+P (D )+P (E )=0.18+0.51+0.15+0.09=0.93.法二:小明考试不及格的概率是 0.07,又小明考试不及格与及格互为对立事件,故小明考试及格的概率 P =1−0.07=0.93. 【知识点】事件的关系与运算19. 【答案】因为 4S =b 2+c 2−a 2,cosA =b 2+c 2−a 22bc,S =12bcsinA ,所以 2bcsinA =2bccosA ,显然 cosA ≠0, 所以 tanA =1, 又 A ∈(0,π), 所以 A =π4.若选择① B =π3,由 asinA =bsinB ,得a=bsinAsinB =√6×√22√32=2.又sinC=sin[π−(A+B)]=sin(A+B)=sinAcosB+cosAsinB=√22×12+√22×√32=√6+√24,所以S=12absinC=3+√32.若选择② a=2,由asinA =bsinB,得sinB=bsinAa=√32,B∈(0,π2),所以cosB=12.sinC=sin[π−(A+B)]=sin(A+B)=sinAcosB+cosAsinB=√6+√24.所以S=12absinC=3+√32.若选择③ bcosA+acosB=√3+1,所以acosB=1,即a⋅a 2+c2−62ac=1,所以a2=6+2c−c2,又a2=6+c2−2√6c⋅√22=6+c2−2√3c,所以6+2c−c2=6+c2−2√3c,解得c=√3+1,所以S=12bcsinA=3+√32.【知识点】正弦定理、余弦定理20. 【答案】如图,设底面对角线AC=a,BD=b,交点为O,体对角线A1C=15,B1D=9,所以a2+52=152,b2+52=92,所以a2=200,b2=56.因为该直四棱柱的底面是菱形,所以AB2=(AC2)2+(BD2)2=a2+b24=200+564=64,所以AB=8.所以直四棱柱的侧面积 S 侧=4×8×5=160. 所以直四棱柱的底面积 S 底=12AC ⋅BD =20√7.所以直四棱柱的表面积 S 表=160+2×20√7=160+40√7. 【知识点】棱柱的表面积与体积21. 【答案】(1) 据直方图知组距 =10,由 (2a +3a +6a +7a +2a )×10=1,解得 a =1200=0.005, 众数:75.(2) 成绩落在 [50,60) 中的学生人数为 2×0.005×10×20=2, 成绩落在 [60,70) 中的学生人数为 3×0.005×10×20=3.(3) 记成绩落在 [50,60) 中的 2 人为 A 1,A 2,成绩落在 [60,70) 中的 3 人为 B 1,B 2,B 3, 则从成绩在 [50,70) 的学生中任选 2 人的基本事件共有 10 个:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3), 记“两人成绩都落在 [60,70)”为事件 C ,则事件 C 包含的基本事件有 3 个:(B 1,B 2),(B 1,B 3),(B 2,B 3), P (C )=310.【知识点】样本数据的数字特征、频率分布直方图、古典概型22. 【答案】(1) OA⃗⃗⃗⃗⃗ =(1,2),OB ⃗⃗⃗⃗⃗ =(4,5),OP ⃗⃗⃗⃗⃗ =(1+3t,2+3t ). 若 P 在 x 轴上,则 t =−23. 若 P 在 y 轴上,则 t =−13. 若 P 在第二象限,则 −23<t <−13.(2) OA⃗⃗⃗⃗⃗ =(1,2),PB ⃗⃗⃗⃗⃗ =(3−3t,3−3t ). 若 OABP 成平行四边形,则 OA ⃗⃗⃗⃗⃗ =PB⃗⃗⃗⃗⃗ ,即 {3−3t =1,3−3t =2, 此方程无解.故不能. 【知识点】平面向量的坐标运算、平面向量数乘的坐标运算。
高一数学必修第二册第八章《立体几何初步》单元练习题卷7(共22题)一、选择题(共10题)1.如图,三棱柱A1B1C1−ABC中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.A1C1∥平面AB1ED.AE与B1C1为异面直线,且AE⊥B1C12.长方体的表面积为11,十二条棱长之和为24,则这个长方体的一条体对角线长为( )A.2√3B.√14C.5D.6.则3.如图,正方体ABCD−A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=12下列结论中正确的个数为( )① AC⊥BE;② EF∥平面ABCD;③三棱锥A−BEF的体积为定值;④ △AEF的面积与△BEF的面积相等.A.4B.3C.2D.14.已知三棱柱ABC−A1B1C1的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为( )A.1B.2C.√6D.√625.下列几何体中是棱柱的有( )A.1个B.2个C.3个D.4个6.四条线段顺次首尾相连,它们最多可确定的平面个数有( )A.4B.3C.2D.17.空间四点A,B,C,D共面而不共线,那么这四点中( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线8.若一个长方体的长、宽、高分别为√3,√2,1,则它的外接球的表面积为( )πB.5πC.6πD.24πA.329.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3B.至多等于4C.等于5D.大于510.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.6B.8C.12D.24二、填空题(共6题)11.在棱长为2的正方体ABCD−A1B1C1D1中,P是A1B1的中点,过点A1作与截面PBC1平行的截面,所得截面的面积是.12.在棱长为6的正方体ABCD−A1B1C1D1中,P,Q是直线DD1上的两个动点.如果PQ=2,那么三棱锥P−BCQ的体积等于.13.一条直线a上的3个点A,B,C到平面M的距离都为1,这条直线和平面的关系是.14.侧棱长为3,底面面积为8的正四棱柱的体对角线的长为.15.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,CD=.16.如图,点M为矩形ABCD的边BC的中点,AB=1,BC=2.将矩形ABCD绕直线AD旋转所得到的几何体体积记为V1,将△MCD绕直线CD旋转所得到的几何体体积记为V2,则V1V2的值为.三、解答题(共6题)17.如图,四棱锥S−ABCD中,△ABS是正三角形,四边形ABCD是菱形,点E是BS的中点.(1) 求证:SD∥平面ACE;(2) 若平面ABS⊥平面ABCD,AB=4,∠ABC=120∘,求三棱锥E−ASD的体积.18.如图,在长方体ABCD−A1B1C1D1中,AB=1,AD=2,E,F,Q分别为AD,AA1,BC的中点,求证:平面BEF∥平面A1DQ.19.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠BAD=60∘,Q为AD的中点,(1) 若PA=PD,求证:平面PQB⊥平面PAD;(2) 点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB;(3) 在(2)的条件下,若平面PAD⊥平面ABCD,PA=AD=PD=2,求二面角M−BQ−C的大小.20.用符号表示下列语句,并画出图形.(1) 平面α与β相交于直线l,直线a与α,β分别相交于点A,B.(2) 点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.AD=1,21.如图,四棱锥P−ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAD=90∘,BC=CD=12 PA=2√2,M为PD的中点.(1) 求证:PA⊥AB;(2) 求证:CM∥平面PAB;(3) 求直线CM与平面PAD所成的角.22.一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3cm,高(两底面圆心连线的长度)为4cm,圆锥的高(顶点与底面圆心连线的长度)为3cm,画出此几何体的直观图.答案一、选择题(共10题)1. 【答案】D【知识点】直线与平面的位置关系、直线与直线的位置关系2. 【答案】C【解析】设长方体的长,宽,高分别为a,b,c,由题意可知,4(a+b+c)=24, ⋯⋯①2ab+2bc+2ac=11, ⋯⋯②联立①②可得a2+b2+c2=25,则这个长方体的一条体对角线长为5.【知识点】棱柱的结构特征3. 【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;② EF∥平面ABCD,由正方体ABCD−A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A−BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A−BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确.【知识点】棱锥的表面积与体积、直线与平面垂直关系的性质、直线与平面平行关系的判定4. 【答案】D【解析】因为三棱柱内接于球,所以棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直于底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为a,b,因为三棱柱ABC−A1B1C1的高为2,体积是1,所以12ab⋅2=1,即ab=1,将直三棱柱ABC−A1B1C1补成一个长方体,则直三棱柱ABC−A1B1C1与长方体有同一个外接球,所以球O的半径为√a2+b2+42≥√2ab+42=√62(当且仅当a=b=1时,等号成立).【知识点】棱柱的结构特征、球的结构特征5. 【答案】C【解析】观察图形得:“有两个面互相平行,其余各面都是四边形,”的几何体有:①③⑤,只有它们是棱柱,共三个.【知识点】棱柱的结构特征6. 【答案】A【解析】首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.【知识点】平面的概念与基本性质7. 【答案】B【解析】由题意,四点共面不共线分为图①和图②两种情况,只有选项B正确.【知识点】平面的概念与基本性质8. 【答案】C【知识点】球的表面积与体积、组合体9. 【答案】B【解析】由正四面体的定义可知n=4能满足条件.当n≥5时,可设其中三个点为A,B,C,由直线与平面垂直的性质及点到点的距离定义可知到A,B,C三点距离相等的点必在过△ABC 的重心且与平面ABC垂直的直线上,从而易知到A,B,C的距离等于正三角形ABC边长的点有两个,分别在平面ABC的两侧.此时可知这两点间的距离大于正三角形的边长,从而不可能有5个点满足条件.当然也不可能有多于5个的点满足条件.【知识点】空间线段的长度、直线与平面垂直关系的性质10. 【答案】B【知识点】由三视图还原空间几何体、棱锥的表面积与体积二、填空题(共6题)11. 【答案】2√6【解析】如图,取AB,C1D1的中点E,F,连接A1E,A1F,EF,则平面A1EF∥平面BPC1.在△A1EF中,A1F=A1E=√5,EF=2√2,S△A1EF =12×2√2×√(√5)2−(√2)2=√6,从而所得截面面积为2S△A1EF=2√6.【知识点】平面与平面平行关系的判定12. 【答案】12【解析】因为在棱长为6的正方体ABCD−A1B1C1D1中,P,Q是直线DD1上的两个动点,PQ=2,所以S△PQC=12×PQ×CD=12×2×6=6,所以三棱锥P−BCQ的体积:V P−BCQ=V B−PQC=13×S△PQC×BC=13×6×6=12.【知识点】棱锥的表面积与体积13. 【答案】平行【解析】假设直线a与平面α相交,则A,B,C三点中必有两个点在平面α同一侧,不妨设为A,B,过A,B分别作平面α的垂线,垂足为M,N,则AM∥BN,AM=BN.所以四边形AMNB是平行四边形,所以AB∥MN,又MN⊂α,AB⊄α,所以AB∥α,这与假设直线a与平面α相交矛盾,故假设错误,于是直线a与平面α平行.【知识点】直线与平面的位置关系14. 【答案】5【解析】正四棱柱的底面为正方形,设底面边长为a,侧棱长为b,则有a2=8,所以a=2√2,则四棱柱的体对角线为√a2+a2+b2=√8+8+9=5.故答案为:5.【知识点】棱柱的结构特征15. 【答案】2【解析】如图,取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC.又CE⊂平面ABC,所以DE⊥CE.由已知可得DE=√3,CE=1,在Rt△DEC中,CD=√DE2+CE2=2.【知识点】平面与平面垂直关系的性质16. 【答案】6【知识点】圆柱的表面积与体积三、解答题(共6题)17. 【答案】(1) 连接BD,设AC∩BD=O,连接OE,则点O是BD的中点.又因为E是BS的中点,所以SD∥OE,又因为SD⊄平面ACE,OE⊂平面ACE,所以SD∥平面ACE.(2) 因为四边形ABCD是菱形,且∠ABC=120∘,所以∠ABD=12∠ABC=60∘.又因为AB=AD,所以三角形ABD是正三角形.取AB的中点F,连接SF,则DF⊥AB,DF=2√3.又平面ABS⊥平面ABCD,DF⊂平面ABCD,平面ABS∩平面ABCD=AB,所以DF⊥平面ABS,即DF是四棱锥D−AES的一条高,而S△ASE=12SA⋅SE⋅sin∠ASE=2√3,所以V E−ADS=V D−AES=13S△ASE⋅DF=13×2√3×2√3=4.综上,三棱锥E−ASD的体积为4.【知识点】直线与平面平行关系的判定、棱锥的表面积与体积18. 【答案】因为E是AD的中点,Q是BC的中点,所以ED=BQ,ED∥BQ,所以四边形BEDQ是平行四边形,所以BE∥DQ,又因为BE⊄平面A1DQ,DQ⊂平面A1DQ,所以BE∥平面A1DQ,又因为F是A1A的中点,所以EF∥A1D,因为EF⊄平面A1DQ,A1D⊂平面A1DQ,所以EF∥平面A1DQ,因为BE∩EF=E,EF⊂平面BEF,BE⊂平面BEF,所以平面BEF∥平面A1DQ.【知识点】平面与平面平行关系的判定(1) 因为 PA =PD ,Q 为 AD 的中点,所以 PQ ⊥AD .因为底面 ABCD 为菱形,∠BAD =60∘,所以 △ABD 为正三角形,所以 BQ ⊥AD .又 BQ ∩PQ =Q ,所以 AD ⊥平面PQB .又 AD ⊂平面PAD ,所以 平面PQB ⊥平面PAD .(2) 当 t =13 时,PA ∥平面MQB .下面证明:设 AC ∩BQ =N ,连接 MN .因为 AQ ∥BC ,所以 AN NC =AQ BC =12.由 PM =13PC ,得 PM MC =12, 所以 AN NC =PM MC ,所以 PA ∥MN .又 MN ⊂平面MQB ,PA ⊄平面MQB ,所以 PA ∥平面MQB .(3) 由(1),得 BQ ⊥AD ,PQ ⊥AD .因为平面 PAD ⊥平面ABCD ,平面 PAD ∩平面ABCD =AD ,所以 PQ ⊥平面ABCD .如图,建立空间直角坐标系,则 Q (0,0,0),A (1,0,0),B(0,√3,0),C(−2,√3,0),P(0,0,√3),则 QB ⃗⃗⃗⃗⃗ =(0,√3,0), 且 QM ⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ =(−23,√33,2√33). 设平面 MQB 的一个法向量为 n ⃗ =(x,y,z ).由 {n ⃗ ⋅QB ⃗⃗⃗⃗⃗ =0,n ⃗ ⋅QM ⃗⃗⃗⃗⃗⃗ =0, 得 {√3y =0,−2x 3+√3y 3+2√3z 3=0, 取 z =1,则 n ⃗ =(√3,0,1).又因为平面 ABCD 的一个法向量为 m ⃗⃗ =(0,0,1),所以 cos 〈m ⃗⃗ ,n ⃗ 〉=m ⃗⃗⃗ ⋅n ⃗ ∣m ⃗⃗⃗ ∣∣n ⃗ ∣=12, 于是,二面角 M −BQ −C 的大小为 π3.【知识点】直线与平面平行关系的判定、二面角、平面与平面垂直关系的判定、空间向量的应用(1) 用符号表示a∩β=l,a∩α=A,a∩β=B,如图.(2) 用符号表示A∈α,B∈α,a∩α=C,C∉AB,如图.【知识点】平面的概念与基本性质21. 【答案】(1) 因为∠PAD=90∘,所以PA⊥AD.又因为PA⊥CD,CD∩AD=D,所以PA⊥平面ABCD.又因为AB⊂平面ABCD,所以PA⊥AB.(2) 取PA中点N,连接MN,BN.因为M,N分别是PA,PD的中点,所以MN∥AD且MN=12AD,又因为BC∥AD且BC=12AD,所以MN∥BC且MN=BC,所以四边形MNBC是平行四边形,所以CM∥BN,又因为CM⊄平面PAB,BN⊂平面PAB,所以CM∥平面PAB.(3) 因为CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.所以∠CMD为直线CM与平面PAD所成的角.在Rt△PAD中,因为PA=2√2,AD=2,所以PD=2√3,所以MD=√3.所以在Rt△CMD中,tan∠CMD=CDMD =√33.所以,直线CM与平面PAD所成的角为π6.【知识点】线面角、直线与平面垂直关系的判定、直线与平面平行关系的性质22. 【答案】(1)画轴.如图①所示,画x轴,z轴,使∠xOz=90∘.(2)画圆柱的下底面.在x轴上取A,B两点,使AB=3cm,且OA=OB,选择椭圆模板中适当的椭圆且过A,B两点,使它为圆柱的下底面.(3)在Oz上截取OOʹ=4cm,过点Oʹ作平行于Ox轴的Oʹxʹ轴,类似圆柱下底面的画法画出圆柱的上底面.(4)画圆锥的顶点.在Oz上截取点P,使POʹ=3cm.(5)成图.连接AʹA,BʹB,PAʹ,PBʹ,整理(去掉辅助线,将被遮挡部分改成虚线)得到此几何体的直观图,如图②所示.【知识点】直观图。
立体几何复习易做易错题选如皋市教育局教研室一、选择题:1.(石庄中学)设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则BC AD EF ,,满足( )A 共线B 共面C 不共面D 可作为空间基向量正确答案:B 错因:学生把向量看为直线。
2.(石庄中学)在正方体ABCD-A 1B 1C 1D 1,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM( )A 是AC 和MN 的公垂线B 垂直于AC 但不垂直于MNC 垂直于MN ,但不垂直于ACD 与AC 、MN 都不垂直正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。
3.(石庄中学)已知平面α∥平面β,直线L ⊂平面α,点P ∈直线L,平面α、β间的距离为8,则在β内到点P 的距离为10,且到L 的距离为9的点的轨迹是( )A 一个圆B 四个点C 两条直线D 两个点正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。
4.(石庄中学)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持A P ⊥BD 1,则动点P 的轨迹( )A 线段B 1C B BB 1的中点与CC 1中点连成的线段C 线段BC 1D CB 中点与B 1C 1中点连成的线段正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。
5. (石庄中学)下列命题中:① 若向量a 、b 与空间任意向量不能构成基底,则a ∥b 。
② 若a ∥b , b ∥c ,则c ∥a .③ 若 OA 、OB 、OC 是空间一个基底,且 OD =31OA +31 OB +31OC ,则A 、B 、C 、D 四点共面。
④ 若向量 a + b , b + c , c + a 是空间一个基底,则 a 、 b 、 c 也是空间的一个基底。
其中正确的命题有( )个。
A 1B 2C 3D 4正确答案:C 错因:学生对空间向量的基本概念理解不够深刻。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷(共22题)一、选择题(共10题)1.棱锥的侧面和底面可以都是( )A.三角形B.四边形C.五边形D.六边形2.分别在两个平面内的两条直线间的位置关系是( )A.异面B.平行C.相交D.以上都有可能3.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m,5m,10m,四棱锥的高为8m,若按1:500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A.4cm,1cm,2cm,1.6cm B.4cm,0.5cm,2cm,0.8cmC.4cm,0.5cm,2cm,1.6cm D.2cm,0.5cm,1cm,0.8cm4.一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱5.下列三个命题中错误的个数是( )①经过球面上任意两点,可以作且只可以作一个球的大圆;②球面积是它大圆面积的四倍;③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长.A.0B.1C.2D.36.已知圆柱的侧面展开图是一个边长为4π的正方形,则这个圆柱的表面积是( )A.8π+16π2B.2π+4π2C.4π+16π2D.8π+4π27.某几何体的三视图如图所示,其中俯视图是正方形,那么该几何体的表面积是( )A.32B.24C.4+12√2D.12√28.如图,下列表示该平面错误的是( )A.平面αB.平面AB C.平面AC D.平面ABCD9.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π10.下面空间图形的画法中错误的是( )A.B.C.D.二、填空题(共6题)11.棱柱的概念12.平面的概念几何中所说的“平面”,是从课桌面、黑板面、平静的水面等,这样的一些物体中抽象出来的.类似于直线向两端无限延伸,几何中的平面是向四周的.13.若圆锥的母线长l=5(cm),高ℎ=4(cm),则这个圆锥的体积等于(cm3).14.空间两个平面的位置关系有.15.判断正误.两两相交的三条直线最多可以确定三个平面.( )16.思考辨析,判断正误.在几何体的直观图中,原来平行的直线仍然平行.( )三、解答题(共6题)17.如图,正方体ABCD−A1B1C1D1的棱长为2.(1) 求证:AC⊥B1D;(2) 求三棱锥C−BDB1的体积.18.几何中的“平面”有边界吗?用什么图形表示平面?19.请回答下列问题:(1) 已知:l⫋α,D∈α,A∈l,B∈l,C∈l,D∉l.求证:直线AD,BD,CD共面于α.(2) 将一个苹果切3刀,最多可以切成x块,最少可切成y块,求x+y的值.20.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.21.若两个平面平行,那么两个平面内的所有直线都相互平行吗?22.观察(1),(2),(3)三个图形,说明它们的位置关系有什么不同,并用字母表示各个平面.答案一、选择题(共10题) 1. 【答案】A【解析】三棱锥的侧面和底面都是三角形.故选A . 【知识点】棱锥的结构特征2. 【答案】D【解析】分别在两个平面的两条直线平行、相交、异面都可能,可将两条直线放在长方体里进行研究.【知识点】直线与直线的位置关系3. 【答案】C【解析】由比例尺可知长方体的长、宽、高和四棱锥的高分别为 4cm ,1cm ,2cm 和 1.6cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为 4cm ,0.5cm ,2cm ,1.6cm . 【知识点】直观图4. 【答案】C【知识点】棱柱的结构特征5. 【答案】C【知识点】球面距离、球的结构特征6. 【答案】A【解析】设圆柱的底面半径为 r ,母线长为 l , 因为侧面展开图是一个边长为 4π 的正方形, 所以 2πr =l =4π,可得 r =2,l =4π,所以圆柱的表面积为 S =2πr 2+2πrl =8π+16π2. 【知识点】圆柱的表面积与体积7. 【答案】C【解析】由三视图可知,该几何体是一个底面为正方形的长方体, 长方体的底面正方形的对角线长为 2,长方体的高是 3; 所以,底面正方形的边长为 √12+12=√2,该长方体的表面积为 2×(√2)2+4×3×√2=4+12√2. 【知识点】棱柱的表面积与体积、由三视图还原空间几何体8. 【答案】B【解析】该平面可用希腊字母 α,β,γ 表示,故A 正确;该平面可用平行四边形的对角线表示,故C正确;该平面可用平行四边形的四个顶点表示,故D正确;该平面不可用平行四边形的某条边表示,故B不正确.【知识点】平面的概念与基本性质9. 【答案】D【解析】因为球的半径为r=2,所以该球的表面积为S=4πr2=16π.【知识点】球的表面积与体积10. 【答案】D【解析】遮住的地方应该画成虚线或不画,故选项D中的图形画法有误.【知识点】平面的概念与基本性质二、填空题(共6题)11. 【答案】平行;四边形;平行;平行;公共边;公共顶点【知识点】棱柱的结构特征12. 【答案】无限延展【知识点】平面的概念与基本性质13. 【答案】12π【解析】设圆锥底面的半径为r,则r=√52−42=3,×π×9×4=12π,填12π.故V=13【知识点】圆锥的表面积与体积14. 【答案】平行、相交、重合【知识点】平面与平面的位置关系15. 【答案】√【知识点】平面的概念与基本性质16. 【答案】√【知识点】直观图三、解答题(共6题)17. 【答案】(1) 因为四棱柱ABCD−A1B1C1D1为正方体,所以BB1⊥平面ABCD.因为AC⊂平面ABCD,所以BB1⊥AC.因为底面ABCD为正方形,所以AC⊥BD.因为BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D.因为B1D⊂平面BB1D,所以AC⊥B1D.(2) 易知V C−BDB1=V B1−BDC.因为B1B⊥平面ABCD,所以B1B是三棱锥B1−BDC的高.因为V B1−BDC =13S△BDC⋅BB1=13×12×2×2×2=43,所以三棱锥C−BDB1的体积为43.【知识点】直线与平面垂直关系的判定、棱锥的表面积与体积18. 【答案】没有,平行四边形.【知识点】平面的概念与基本性质19. 【答案】(1) 因为l⫋α,A∈l,B∈l,C∈l,所以A,B,C∈α又D∈α,D∉l,所以AD⫋α,BD⫋α,CD⫋α,则直线AD,BD,CD共面.(2) x=8,y=3,x+y=11.【知识点】平面的概念与基本性质20. 【答案】(1) 取PB的中点M,连接EM,CM,过点C作CN⊥AB,垂足为N,如图所示.因为CN⊥AB,DA⊥AB,所以CN∥DA,又AB∥CD,所以四边形CDAN为矩形,所以CN=AD=8,DC=AN=6.在Rt△BNC中,BN=√BC2−CN2=√102−82=6,所以AB=12.因为E,M分别为PA,PB的中点,所以EM∥AB且EM=6,又DC∥AB,且CD=6,所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题21. 【答案】不是.【知识点】平面与平面平行关系的性质22. 【答案】图(1)表示两个相交的半平面;图(2)表示开口向里的两个相交的半平面;图(3)表示开口向外的两个相交的半平面. 【知识点】平面的概念与基本性质。
第八章 立体几何初步 综合测试(原卷版)考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三棱柱有a 个顶点,b 条棱,则a -b =( ) A .-3 B .3 C .4D .-42.在正方体ABCD -A 1B 1C 1D 1的所有面对角线中,所在直线与直线A 1B 互为异面直线且所成角为60°的面对角线的条数为( )A .2B .4C .6D .83.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( )A .49π2B .49πC .81π2D .81π4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线5.设α,β为两个不同的平面,则α∥β的一个充分条件可以是( ) A .α内有无数条直线与β平行 B .α,β垂直于同一条直线 C .α,β平行于同一条直线D .α,β垂直于同一个平面6.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( )A .0B .1C .2D .37.如图,P为平行四边形ABCD所在平面外一点,过BC的平面与平面P AD交于EF,E在线段PD上且异于P、D,则四边形EFBC是()A.空间四边形B.矩形C.梯形D.平行四边形8.(2022·新高考Ⅰ卷)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5 m时,相应水面的面积为140.0 km2;水位为海拔157.5 m时,相应水面的面积为180.0 km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m上升到157.5 m时,增加的水量约为(7≈2.65)() A.1.0×109 m3B.1.2×109 m3C.1.4×109 m3D.1.6×109 m3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.以下关于空间几何体特征性质的描述,错误的是()A.以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B.有两个面互相平行,其余各面都是四边形的几何体是棱柱C.有一个面是多边形,其余各面都是三角形的几何体是棱锥D.两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台10.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,一定正确的为()A.AC⊥BD B.AC∥截面PQMNC.AC=BD D.异面直线PM与BD所成的角为45°11.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC 的中点,若平行六面体的各棱长均相等,则下列说法正确的是()A.A1M∥D1P B.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB112.如图,在棱长均相等的正四棱锥P-ABCD中,M、N分别为侧棱P A、PB的中点,O是底面四边形ABCD对角线的交点,下列结论正确的有()A.PC∥平面OMN B.平面PCD∥平面OMNC.OM⊥P A D.PD⊥平面OMN三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是____.14.将长为3,宽为2的长方形,绕其一边旋转成的几何体的表面积为____.15.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为___厘米.16.我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为____.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,圆锥底面半径为1,高为3.(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;(2)圆锥内接圆柱的表面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,侧面P AD⊥底面ABCD,侧棱P A⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面P AB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.21.(本小题满分12分)(2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB⊥AM.(1)求BC;(2)求二面角A-PM-B的正弦值.22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,AB=2A1A=4,以AB,BC为邻边作平行四边形ABCD,连接A1D,DC1.(1)求证:DC1∥平面A1ABB1;(2)若二面角A1-DC-A为45°.①求证:平面A1C1D⊥平面A1AD;②求直线AB1与平面A1AD所成角的正切值.。
必修二立体几何【知识要点】空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.空间中平行的判定a∥c,b∥c,a∥α,a⊂βα∥βa⊥α,b⊥αα∩β=bγ ∩α=a,γ ∩β=b⇒a∥b⇒a∥b⇒a∥b⇒a∥b(2)a∩α=∅a∥bα∥βb⊂α,a⊄αa⊂β⇒a∥α⇒a∥α⇒a∥αα∩β=∅a∥β,b∥βa⊥α,a⊥βα∥γ ,β∥γa,b⊂α,a∩b=A⇒α∥β⇒α∥β⇒α∥β⇒α∥βa⊥c,b∥c,a⊥αb⊂α⇒a⊥b⇒a⊥ba⊥m,a⊥n a∥b,b⊥αα∥β,a⊥βα⊥β,α∩β=l m,n⊂α,m∩n=A a⊂β,a⊥l ⇒a⊥α⇒a⊥α⇒a⊥α⇒a⊥αa⊥β,a⊂α⇒α⊥β1.如果平面α外有两点A 、B ,它们到平面α的距离都是d ,则直线AB 和平面α的位置关系一定是 ( ) A.平行 B.相交 C.平行或相交 D. AB ⊂α2.已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.; 其中可能成立的有A.2个 B.3个 C.4个 D.5个3.直线a ∥平面α,点A ∈α,则过点A 且平行于直线a 的直线 ( ) A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内4.已知直线a ∥平面α,且它们的距离为d ,则到直线a 与到平面α的距离都等于d 的 点的集合是 ( )A.空集 B.两条平行直线 C.一条直线 D.一个平面5. A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是 ( ) A.0个 B.1个 C.无数个 D.以上都有可能6.已知直线a 、b ,平面α、β,以下条件中能推出α∥β的是 ( )①a ⊂α,b ⊂β,a ∥b ; ②a ⊂α,b ⊂α,a ∥β,b ∥β;③a ∥b ,a ⊥α,b ⊥β. A.① B.② C. ③ D.均不能7.若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么直线a ,b 的位置关系是 ( )A.垂直B.平行C.相交D.不相交 8.设l 是直线,,αβ是两个不同的平面A. 若l ∥α,l ∥β,则α∥βB. 若l ∥α,l ⊥β,则α⊥βC. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β, l ∥α,则l ⊥β9.若有平面α与β,且,,,l P P l αβαβα=⊥∈∉,则下列说法不正确的是( ) A.过点P 且垂直于α的直线平行于β B.过点P 且垂直于l 的平面垂直于β C.过点P 且垂直于β的直线在α内 D.过点P 且垂直于l 的直线在α内 10.已知l ⊥α,m ⊂β,则下面说法中正确的是 ( ) ①α∥β则l ⊥m ②α⊥β则l ∥m ③l ∥m 则α⊥β ④l ⊥m 则α∥β A.①② B.③④ C.②④ D .①③11.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,AD =2,E 为BC 的中点,点M 为棱AA 1的中点. (1)证明:DE ⊥平面A 1AE ;(2)证明:BM ∥平面A 1ED .12.如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ;(2)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .13.在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB.2==DC54(1)设M是PC上的一点,证明:平面MBD⊥平面P AD;(2)求四棱锥P-ABCD的体积.14.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.求证:(1)AB⊥平面CDE;(2)平面CDE⊥平面ABC;(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.简单几何体的面积和体积1.已知一个长方体的同一顶点处的三条棱长分别为1,3,2,则其外接球的表面积为________.2.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是_________.3.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.4.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成两个互相垂直的平面 则四面体ABCD 的外接球的体积为________.5.已知过球面上三点A 、B 、C 的截面到球心的距离等于球半径的一半,且AC =BC =6,AB =4,则球的半径等于________,球的表面积等于________.6.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,且这个几何体的体积为403.(1)证明:直线A 1B ∥平面CDD 1C 1; (2)求棱A 1A 的长;(3)求经过A 1,C 1,B ,D 四点的球的表面积.7.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为________.8.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是________.9.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为________.10.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为________11.正方体ABCD -A 1B 1C 1D 1的棱长为23,则四面体A -B 1CD 1的外接球的体积为________.12.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB =2,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求证:AF ∥平面BCE ; (3)求四棱锥C -ABED 的体积.。
高中数学必修2立体几何部分测试卷答案 班级 姓名 学号一、选择题:(本大题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、垂直于同一条直线的两条直线一定 ( D ) A 、平行 B 、相交 C 、异面 D 、以上都有可能2、过直线l 外两点作与直线l 平行的平面,可以作 ( D )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为( C ) A .41 B . 21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为( D )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( A )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( D ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβC .若,//,m m n n αβ⊥⊂,则αβ⊥D .若//,m n ααβ=I ,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( B )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o ,如图所示。
若将ABC ∆绕BC旋转一周,则所形成的旋转体的体积是 ( D )(A )92π (B )72π (C )52π (D )32π(第8题图)二、填空题(本大题共8小题,每小题4分,共28分)9、如图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单位正方体共有 7块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直②过直线外一点有且仅有一个平面与已知直线平行③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为 112、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。
人教A版高中数学必修第二册第八章 立体几何初步全卷满分150分 考试用时120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )2.23.已知圆锥侧面展开图的圆心角为60°,底面圆的半径为8,4.5.6.如图,在直三棱柱ABC-A1B1C1中,点D,E分别在棱AA1,CC1上,AB=AC=AD=2A1D=CE=2C1E=2,点F满足BF=λBD(0<λ<1),若B1E∥平面ACF,则λ的值为( )A.23B.12C.13D.147.8.,,EF=12 D.642π每小题6分,共18分.在每小题给出的选项中部分选对的得部分分,有选错的得9.10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则下列四个命题中正确的是( )A.直线BC 与平面ABC 1D 1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C和BC1所成的角为π4D.二面角C-BC1-D的余弦值为-3311.如图1,在等腰梯形ABCD中,AB∥CD,EF⊥AB,CF=EF=2DF=2,AE=3,EB=4,将四边形AEFD沿EF进行折叠,使AD到达A'D'的位置,且平面A'D'FE⊥平面BCFE,连接A'B,D'C,如图2,则( )A.BE⊥A'D'B.平面A'EB∥平面D'FCC.多面体A'EBCD'F为三棱台D.直线A'D'与平面BCFE所成的角为π4三、填空题(本题共3小题,每小题5分,共15分)12.正四棱锥P-ABCD的底面边长为2,高为3,则点A到不经过点A的侧面的距离为 .13.在△ABC中,∠ACB=90°,AC=2,BC=5,P为AB上一点,沿CP将△ACP折起形成直二面角A'-CP-B,当A'B最短时,A'P= .BP14.农历五月初五是端午节,民间有吃粽子的习惯,一般情况下粽子的形状是四面体.如图1,已知底边和腰长分别为8 cm和12 cm的等腰三角形纸片,将它沿虚线(中位线)折起来,可以得到如图2所示粽子形状的四面体,若该四面体内包一蛋黄(近似于球),则蛋黄的半径的最大值为 cm(用最简根式表示);当该四面体的棱所在的直线是异面直线时,其所成的角中最小的角的余弦值为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(13分)现需要设计一个仓库,由上下两部分组成,如图所示,上部分是正四棱锥P-A1B1C1D1,下部分是正四棱柱ABCD-A1B1C1D1,正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,求仓库的容积(含上下两部分);(2)若上部分正四棱锥的侧棱长为6 m,当PO1为多少时,下部分正四棱柱的侧面积最大?最大面积是多少?16.(15分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,E为PD的中点,EA=12 PD,EF⊥AC,垂足为F,且AC=4AF.证明:(1)PB∥平面ACE;(2)PA⊥平面ABCD.17.(15分)如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.18.(17分)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出AP的PD 值;若不存在,请说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.,平面ABB1A1⊥平面BCC1B1,△ABC 19.(17分)如图,已知三棱台ABC-A1B1C1的体积为7312是以B为直角顶点的等腰直角三角形,且AB=2AA1=2A1B1=2BB1.(1)证明:BC⊥平面ABB1A1;(2)求点B到平面ACC1A1的距离;?若存在,求出CF的长;若不(3)在线段CC1上是否存在点F,使得二面角F-AB-C的大小为π6存在,请说明理由.答案全解全析1.D 对于A,长方体是四棱柱,底面不是长方形的直四棱柱不是长方体,A 错误;对于B,棱台侧棱的延长线必须相交于一点,B 错误;对于C,各侧面都是正方形,底面不是正方形(如菱形)的四棱柱不是正方体,C 错误;对于D,棱柱的侧棱相等,侧面都是平行四边形,D 正确. 2.3.母线长为l,则r=8,πrl=8×48π=384π.4.由扇环的圆心角为180°,又C=2π×10,所以SA=20,同理SB=40,则AB=SB-SA=20,圆台的高h=AB 2-(20-10)2=103,表面积S=π(10+20)×20+100π+400π=1 100π,体积V=13π×103×(102+10×20+202)=700033π.故选C.5.A 取BD 的中点E,连接ED 1,AE,易得PD 1∥BE 且PD 1=BE,所以四边形BED 1P 为平行四边形,所以PB ∥D 1E,故∠AD 1E(或其补角)为直线PB 与AD 1所成的角.设AB=AD=AA 1=2,因为∠ABD=45°,所以∠DAB=90°,因为E 为BD 的中点,所以AE=DE=22AB=2.易得AD 1=AD 2+D D 21=22,D 1E=DE 2+D D 21=6,因为A D 21=AE 2+D 1E 2,所以AE ⊥D 1E.故cos ∠AD 1E=D 1EAD 1=622=32,又0°<∠AD 1E<180°,所以∠AD 1E=30°.故选A.6.C 在BB 1上取一点G,使得B 1G=2BG,连接CG,AG,如图所示.∵CE=2C 1E=2,∴CC 1=BB 1=3,∴在直三棱柱ABC-A 1B 1C 1中,B 1G ∥CE,且B 1G=CE=2,∴四边形B 1GCE 为平行四边形,∴B 1E ∥CG,∵B 1E ⊄平面ACG,CG ⊂平面ACG,∴B 1E ∥平面ACG,若B 1E ∥平面ACF,则F 在平面ACG 内,又F 为BD 上一点,∴F 为BD 与AG 的交点.易知△BFG ∽△DFA,∴BF DF =BG DA =12,∴BF =13BD ,即λ的值为13.故选C.7.D 取AD 的中点M,AB 的中点N,连接PD,MD 1,MN,NB 1,B 1D 1,A 1C 1,AC.易知M,N,B1,D1四点共面,D1M⊥PD,D1M⊥CD,∵PD∩CD=D,PD,CD⊂平面PCD,∴D1M⊥平面2,AB∥MN,点O是MN的中点AE2-A N2=22,同理FM=2EN2-MN-EF22=7,当点O1在线段O2O的延长线(含点O)上时,视OO1为非负数;当点O1在线段O2O(不含点O)上时,视OO1为负数,即O2O1=O2O+OO1=7+OO1,所以(22)2+O O21=1+(7+O O1)2,解得OO1=0,因此刍甍的外接球球心在点O处,半径为OA=22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选A.9.AC 对于A,因为圆锥的底面半径为3,所以圆锥的底面周长为2π×3=6π,又因为圆锥的母线长为4,所以圆锥的侧面展开图的圆心角为6π4=3π2,故A选项正确.对于B,因为圆锥的底面半径为3,母线长为4,所以圆锥的高h=42-32=7,故圆锥的体积V=13×π×32×7=37π,故B选项不正确.对于C,设圆锥的两条母线的夹角为θ,则过这两条母线所作截面的面积为12×4×4×sin θ=8sinθ,易知过圆锥母线的截面中,轴截面三角形对应的θ最大,此时cos θ=42+42-622×4×4=-18,所以θ最大是钝角,所以当θ=π2时,截面的面积最大,为8sin π2=8,故C选项正确.对于D,易知圆锥的轴截面的面积为12×6×7=37,故D选项不正确.故选AC.10.AB 如图,取BC1的中点H,连接CH,易证CH⊥平面ABC1D1,所以∠C1BC是直线BC与平面ABC1D1所成的角,为π4,故A正确.点C到平面ABC1D1的距离即为CH的长,为22,故B正确.易证BC1∥AD1,所以异面直线D1C和BC1所成的角为∠AD1C(或其补角),连接AC,易知△ACD1为等边三角形,所以∠AD1C=π3,所以异面直线D1C和BC1所成的角为π3,故C错误.连接DH,易知BD=DC1,所以DH⊥BC1,又CH⊥BC1,所以∠CHD为二面角C-BC1-D的平面角,易求得DH=62,又CD=1,CH=22,所以由余弦定理的推论可得cos∠CHD=DH2+C H2-C D22DH·CH =33,故D错误.故选AB.11.ABD 对于A,因为平面A'D'FE⊥平面BCFE,平面A'D'FE∩平面BCFE=EF,BE⊂平面BCFE,BE⊥EF,所以BE⊥平面A'D'FE,又因为A'D'⊂平面A'D'FE,所以BE⊥A'D',故A正确.对于B,因为A'E ∥D'F,A'E ⊄平面D'FC,D'F ⊂平面D'FC,所以A'E ∥平面D'FC,因为BE ∥CF,BE ⊄平面D'FC,CF ⊂平面D'FC,所以BE ∥平面D'FC,又因为A'E∩BE=E,A'E,BE ⊂平面A'EB,所以平面A'EB ∥平面D'FC,故B 正确.对于C,因为D 'F A 'E =13,FC EB =24=12,则D 'F A 'E ≠FCEB ,所以多面体A'EBCD'F 不是三棱台,故C 错误.对于D,延长A'D',EF,相交于点G,A'D'FE∩平面BCFE=EF,A'E 为直线A'D'与平面GF+2,则32+12=10,到侧面PBC 的距离相等易知S △PDC =S △PBC =12×2×10=10,正四棱锥P-ABCD 的体积V=13S 四边形ABCD ·PO=13×2×2×3=4,设点A 到侧面PBC 的距离为d,则V=V A-PDC +V A-PBC =13S △PDC ·d+13S △PBC ·d=13d×210=4,解得d=3105.故答案为3105.13.答案 25解析 过点A 作AD ⊥CP 于点D,连接BD,设∠ACP=α0<α<则∠PCB=π2-α,所以A'D=2sin α,CD=2cos α,在△BCD 中,由余弦定理可得BD 2=CD 2+BC 2α=4cos 2α+25-10sin 2α,因为A'-CP-B 为直二面角,所以A'D ⊥平面BCP,所以A'D ⊥BD,则A'B 2=A'D 2+BD 2=4sin 2α+4cos 2α+25-10sin 2α=29-10sin 2α,当A'B 2最小时,A'B 最短,2α=π2,所以α=π4,此时CP 平分∠ACB,由角平分线定理可得AP BP =AC BC =25,即A 'P BP =25.14.答案 144;59解析 对题图1中各点进行标记,同时将题图2置于长方体中如下,其中A,B,C 三点重合.设EP=x cm,ER=y cm,SE=z cm,则x 2+y 2=36,x 2+z 2=36,y 2+z 2=16,解得x =27,y =z =22,∴四面体ADEF 的体积为13V 长方体=13xyz=1673(cm 3),四面体ADEF 的表面积S=4S △DEF =4×12×4×42=322(cm 2).当蛋黄与四面体各个面相切时,蛋黄的半径最大,设此时蛋黄(近似于球)的半径为r cm,则V 长方体=13Sr,∴r=3V 长方体S =167322=144.设SQ∩DF=O,取DQ 的中点M,连接OM,则OQ=3 cm,MQ=2 cm,在Rt △OMQ 中,sin ∠QOM=MQ OQ =23,∴cos ∠DOQ=cos(2∠QOM)=1-2sin 2∠QOM=1-49=59,∴∴则∴∵∴又则AE=OE,又AE=12PD,OE=12PB,所以PB=PD,连接OP,则PO ⊥BD,(9分)因为四边形ABCD 为菱形,所以AC ⊥BD,又PO∩AC=O,PO,AC ⊂平面PAC,所以BD ⊥平面PAC,又PA ⊂平面PAC,所以BD ⊥PA.(11分)因为AE=12PD,E 为PD 的中点,所以∠PAD=90°,即PA ⊥AD,(13分)又AD∩BD=D,AD,BD ⊂平面ABCD,所以PA ⊥平面ABCD.(15分)17.解析 (1)证明:∵AC 2+BC 2=AB 2,∴AC ⊥BC.又∵C 1C ⊥AC,C 1C∩BC=C,∴AC ⊥平面BCC 1B 1.(3分)∵BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(5分)(2)证明:设CB 1与C 1B 的交点为E,则E 是BC 1的中点,连接DE,∵D 是AB 的中点,∴DE ∥AC 1.(8分)∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(10分)(3)∵DE ∥AC 1,∴∠CED(或其补角)为AC 1与B 1C 所成的角.在Rt △AA 1C 1中,AC 1=AA 21+A 1C 21=5,∴ED=12AC 1=52,易得CD=12AB=52,CE=12CB 1=22,(13分)∴cos ∠CED=252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.(15分)18.解析 (1)假设存在满足条件的点P.如图,过点P 作PM ∥FD,交AF 于点M,连接ME,∵CE ∥FD,∴MP ∥EC,∴M,P,C,E 四点共面.(2分)∵CP∥平面ABEF,CP⊂平面CEMP,平面ABEF∩平面CEMP=ME,∴CP∥ME,∴四边形CEMP为平行四边形,(4分)∴MP=CE=4-BE=1,易得FD=6-3=3,由MP∥FD可得APAD =MPFD=13,∴APPD=12.(7分)此时AP=1.(8∴又故∴∴在∴∴设由在三棱台ABC-A1B1C1中,AB∥A1B1,∵AB=2AA1=2A1B1=2BB1,∴四边形ABB1A1为等腰梯形且∠ABB1=∠BAA1=60°,(1分)设AB=2x,则BB1=x.由余弦定理得A B21=AB2+B B21-2AB·BB1cos 60°=3x2,∴AB2=A B21+B B21,∴AB1⊥BB1,(2分)∵平面ABB 1A 1⊥平面BCC 1B 1,平面ABB 1A 1∩平面BCC 1B 1=BB 1,AB 1⊂平面ABB 1A 1,∴AB 1⊥平面BCC 1B 1,(3分)又BC ⊂平面BCC 1B 1,∴AB 1⊥BC.∵△ABC 是以B 为直角顶点的等腰直角三角形,∴BC ⊥AB,∵AB∩AB 1=A,AB,AB 1⊂平面ABB 1A 1,∴BC ⊥平面ABB 1A 1.(4分)(2)延长AA 1,BB 1,CC 1交于一点P,∵A 1B 1=12AB,∴S △ABC =4S △A 1B 1C 1,∴V P-ABC =8V P -A 1B 1C 1,∴V P-ABC =87V ABC -A 1B 1C 1=87×7312=233,(5分)∵BC ⊥平面ABB 1A 1即BC ⊥平面PAB,∴BC 的长即为点C 到平面PAB 的距离.(6分)由(1)知AB=BC=2x,∠PAB=∠PBA=60°,∴△PAB 为等边三角形,∴PA=PB=AB=2x,∴V P-ABC =13S △PAB ·BC=13×12×(2x)2×32·2x=233x 3=233,∴x=1,∴AB=BC=PA=PB=2,∴AC=PC=22,∴S △PAC =12×2×(22)2-12=7,(8分)设点B 到平面ACC 1A 1的距离为d,即点B 到平面PAC 的距离为d,∵V B-PAC =V P-ABC ,∴13S △PAC ·d=73d=233,解得d=2217.即点B 到平面ACC 1A 1的距离为2217.(10分)(3)假设存在满足条件的点F.∵BC ⊥平面PAB,BC ⊂平面ABC,∴平面ABC ⊥平面PAB,取AB 的中点N,连接PN,NC,则PN ⊥AB,∵平面ABC∩平面PAB=AB,PN ⊂平面PAB,∴PN ⊥平面ABC,(12分)作FE ∥PN,交CN 于点E,则FE ⊥平面ABC,作ED⊥AB于D,连接FD,则ED即为FD在平面ABC上的射影,∵FE⊥平面ABC,AB⊂平面ABC,∴AB⊥FE,∵∵V由设则∴∴。
人教A版(2019)必修二第八章立体几何初步单元测试卷(1)(基础版)1.将一个等边三角形绕它的一条边所在的直线旋转一周,所得的几何体包括A. 一个圆柱、一个圆锥B. 一个圆台、一个圆锥C. 两个圆锥D. 两个圆柱2.祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为A. ①②B. ①③C. ②④D. ①④3.如图正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积为A. B. 1 C. D.4.如图,圆柱内有一内切球圆柱侧面和底面都与球面相切,若内切球的体积为,则圆柱的侧面积为A. B. C. D.5.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.下面三条直线一定共面的是A. a,b,c两两平行B. a,b,c两两相交C. ,c与a,b均相交D. a,b,c两两垂直7.如图所示,用符号语言可表示为A. B. C. D.8.下列四个命题中错误的是A. 若直线a,b互相平行,则直线a,b确定一个平面B. 若四点不共面,则这四点中任意三点都不共线C. 若两条直线没有公共点,则这两条直线是异面直线D. 两条异面直线不可能垂直于同一个平面9.分别在两个相交平面内的两条直线间的位置关系是A. 平行B. 相交C. 异面D. 以上皆不可能10.设,是两个不同的平面,l是一条直线,若,,,则下列四个结论正确的是A. l与m一定平行B. l与m可能相交C. l与m不会异面D. l与m可以垂直11.设a,b是互不垂直的两条异面直线,则下列命题不成立的是A. 存在唯一直线l,使得,且B. 存在唯一直线l,使得,且C. 存在唯一平面,使得,且D. 存在唯一平面,使得,且12.下列四个命题中正确的是A. 若两条直线互相平行,则这两条直线确定一个平面B. 若四点不共面,则这四点中任意三点都不共线C. 若两条直线没有公共点,则这两条直线是异面直线D. 两条异面直线不可能垂直于同一个平面13.在正方体各个表面的对角线中,与直线异面的有__________ 条.14.如果角的两边与角的两边分别平行,则的大小是__________.15.在正三棱锥中,D,E分别是AB,BC的中点,有下列三个论断:①;②平面PDE;③平面其中正确的个数是__________.16.已知异面直线a,b所成的角为,且直线,,则__________,直线OA,OB所成的角为__________.17.空间四边形ABCD中,的中点分别为,且,,,求证:18.如图,三棱锥中,,,E、F、G分别为PA、AB、PB的中点,求证:平面PBC;求证:平面19.如图,在四棱锥中,侧棱底面ABCD,且底面ABCD是边长为1的正方形,侧棱,AC与BD相交于点证明:;求三棱锥的体积.20.如图,将直角边长为的等腰直角三角形ABC,沿斜边上的高AD翻折,使二面角的大小为,翻折后BC的中点为证明:平面ADM;求点D到平面ABC的距离.21.如图,四棱锥的底面是正方形,底面ABCD,点E在棱PB上.求证:平面平面PDB;当,且E为PB的中点时,求AE与平面PDB所成的角的大小.22.如图所示,在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面底面求证:平面VAD;求平面VAD与平面VDB所成的二面角的正切值.答案和解析【答案】1. C2. D3. A4. C5. B6. C7. B8. C9. ABC10. AC11. ABD12. ABD13. 614. 或15. 216. 或17. 证明:如图,因为分别为的中点,所以,,所以或其补角为异面直线AC和BD所成的角.又,,,所以,所以,即AC和BD所成的角为,所以18. 证明:、F分别为PA、AB的中点,,又平面PBC,平面PBC,平面,,G为PB的中点,,,又,平面ACG,平面ACG,平面ACG,又,平面19. 证明:平面ABCD,平面ABCD,,四边形ABCD是正方形,,又平面SAC,平面SAC,,平面SAC,平面SAC,解:四边形ABCD是边长为1的正方形,20. 证明:折叠前,AD是斜边上的高,是BC的中点,,又因为折叠后M是BC的中点,,折叠后,,又,且AM,平面ADM,平面ADM;解:设点D到平面ABC的距离为d,由题意得,由已知得,则,,,,,21. 证明:四边形ABCD是正方形,,底面ABCD,底面ABCD,,又,PD,平面PDB,平面PDB,且平面AEC,平面平面PDB;解:设,连接OE,由知平面PDB于O,为AE与平面PDB所的角,,E分别为DB、PB的中点,,,又底面ABCD,底面ABCD,底面ABCD,,在中,,,即AE与平面PDB所成的角的大小为22. 证明:底面ABCD是正方形,又平面底面ABCD,平面底面,底面ABCD,平面取VD的中点E,连接AE,BE,是正三角形,,平面VAD,平面VAD,,又,AB,平面ABE,平面底面ABE,,就是平面VAD与平面VDB所成的二面角的平面角.在中,平面VAD与平面VDB所成的二面角的正切值为【解析】1. 【分析】本题考查的知识点是旋转体的结构特征,熟练掌握旋转体的结构特征是解答本题的关键,属于基础题.由等边三角形的结构特点,可得旋转体.【解答】解:将一个等边三角形绕它的一条边所在的直线旋转一周,所得的几何体是共用一个底面的两个圆锥.故选2. 【分析】本题考查满足祖暅原理的两个几何体的判断,是基础题.利用祖暅原理分析题设中的四个图形,能够得到在①和④中的两个几何体满足祖暅原理.【解答】解:设截面与底面的距离为h,则①中截面内圆半径为h,则截面圆环的面积为②中截面圆的半径为,则截面圆的面积为③中截面圆的半径为,则截面圆的面积为④中截面圆的半径为,则截面圆的面积为,所以①④中截面的面积相等,故选3. 【分析】本题考查斜二测画法的应用,属于基础题.将直观图还原成原来的图形,即平行四边形,由题意求出直观图中OB的长度,根据斜二测画法,求出原图形的高,即可求出原图形的面积.【解答】解:由题意正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以原图形为平行四边形,且OA为其中一边,OB是其一条对角线直观图中:计算得,所以由斜二测画法知,对应原图形,即平行四边形的高为,所以原图形的面积为:故选4. 【分析】本题考查的知识点是球的体积与圆柱的表面积公式,属于基础题.根据已知得到球的半径.【解答】解:由,可得球的半径,可得圆柱的高为,圆柱的底面周长为,则圆柱的侧面积为故选5. 【分析】本题借助空间的位置关系,考查了充分条件和必要条件,属于基础题.由m,n,l在同一平面,则m,n,l两两相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行,根据充分条件,必要条件的定义即可判断.【解答】解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l两两相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.故充分性不成立;若m,n,l两两相交,则m,n,l在同一平面,故必要性成立.故m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件,故选:6. 【分析】本题主要考查平面的基本性质,属于基础题.根据空间公理1、公理2即可判断.【解答】解:因为两条平行直线确定一个平面,根据题意得,a与b确定一个平面,又因为c与a,b均相交,所以直线a,b,c一定共面.故选7. 【分析】本题考查直线与平面、平面与平面的位置关系的符号语言的表示,属于基础题. 根据图示的位置关系易得和平行,l在内,再用数学符号语言表达即可.【解答】解:由图可得:,,所以,故选8. 【分析】本题考查平面的基本性质,异面直线,属于基础题.根据相关的知识逐项进行判断即可.【解答】解:A、过两条平行直线,有且只有一个平面,故A正确;B、如果四点中存在三点共线,则四点共面,故B正确;C、若两条直线没有公共点,则这两条直线异面或平行,故C错误;D、垂直于同一个平面的两条直线平行,两直线共面,故D正确.故选9. 【分析】本题考查空间中两直线的位置关系,属于基础题.利用空间中两直线的位置关系,逐一判定即可.【解答】解:当两直线分别平行于交线时,这两条直线平行,A正确;两条直线可以交于交线上一点,故可以相交,B正确;一条直线和交线平行,另一条直线在另一个平面内过交线上一点和交线外一点时,两直线异面,C正确;故选:10. 【分析】本题考查空间中直线和直线、线面平行的性质的应用,属于基础题.根据过l作平面与、相交,交线分别为a,b利用线面平行的性质易得,从而可得答案.【解答】解:过l作平面与、相交,交线分别为a,b,可得,,,,,,,所以。
高一数学必修 2 立体几何测试题试卷满分: 150 分考试时间:120分钟班级 ___________ 姓名 __________学号_________分数___________第Ⅰ卷一、选择题(每题 5 分,共 60 分)1、以下说法正确的选项是A、三点确立一个平面 B 、四边形必定是平面图形C、梯形必定是平面图形D、平面和平面有不一样在一条直线上的三个交点2 .有一个几何体的三视图以以下图所示,这个几何体应是一个()A、棱台 B 、棱锥C、棱柱 D 、都不对3、在正方体ABCD A1B1C1 D1中,以下几种说法正确的选项是A、AC ADB、DC AB1 1 1 1C、AC与DC成45角D、AC与BC成60角1 1 114、正三棱锥S—ABC的侧棱长和底面边长相等,假如 E、 F 分别为 SC, AB 的中点,那么P异面直线 EF 与 SA 所成角为()Q A.900B.60 0C.45 0D.3005、以下命题中:( 1)、平行于同向来线的两个平面平行;(2)、平行于同一平面的两个平面平行;( 3)、垂直于同向来线的两直线平行;(4)、垂直于同一平面的两直线平行.此中正确的个数有A、 1B、 2C、 3 D 、 46、一个水平搁置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为 1 的等腰梯形,则这个平面图形的面积是()122A. 2B.2C.12122 D.27、设 a、 b 是两条不一样的直线,、是两个不一样的平面,则以下四个命题:①若 a b , a, b,则 b //;②若 a //,,则a;③若a,,则 a //或a;④若ab , a,b,则此中正确命题的个数为()A . 0B. 1C. 2D. 38、给出以下对于互不同样的直线m, n,l 和平面 ,的四个命题 :( 1)m, l A,点 Am,则 l 与m不共面;( 2)l、 m 是异面直线,l //, m // ,且 n l , n m,则 n;(3)若 l // , m // , //, 则 l // m ;( 4)若l, m,l m点 A, l //, m //,则//,此中为错误的命题是(A.1个B.2个C.3个D.4个9、以下各图是正方体或正四周体, P, Q,R, S 分别是所在棱的中点,这四个点中不共面的一个图是P SSP SSPS SP QP SRP SPRP R P R Q PQ R RP QP RR R P Q RP PQ RQSSQ RQ S S S S RQ QS S RR RQ Q Q QA 、B、C、D、10、在棱长为 1 的正方体上,分别用过共极点的三条棱中点的平面截该正方体,则截去8 个锥后 ,剩下的凸多面体的体积是2745A、3B、6C、5D、6A'11、已知球的两个平行截面的面积分别为5π和 8π,它们位于球心的同一B侧且相距是1,那么这个球的半径是()P上, AP=C 1Q,则四棱锥 B—APQC 的体积为A、V V V V 2B、C、 D 、345二、填空题(每题 4 分,共 16 分)13、等体积的球和正方体,它们的表面积的大小关系是S球_____ S正方体(填”大于、小于或等于”).A 114、正方体ABCD A1B1C1D1中,平面 AB1D1和平面 BC1 D 的地点关系为15、已知PA垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形B 1ABCD 必定是.16、如图,在直四棱柱 A1B1C1D1- ABCD 中,当底面四边形ABCD 知足条件 _________时,D 有 A1 B⊥ B1 D1.(注:填上你以为正确的一种条件即可,不用考虑全部可能的情况.)A第Ⅱ卷一、选择题(每题 5 分,共 60 分)题号123456789101112答案二、填空题(每题 4 分,共 16 分)13、14、15、16、三、解答题 ( 共 74 分, 要求写出主要的证明、解答过程 )17、已知圆台的上下底面半径分别是2、 5,且侧面面积等于两底面面积之和,求该圆台的母线长 .(10 分)D1C119、已知△ ABC 中∠ ACB=90°, SA ⊥面 ABC ,AD ⊥ SC,求证: AD ⊥面 SBC。
立体几何测试卷班级_________号数________姓名_______________成绩_____________ 一、选择题(本大题共12小题,共60.0分)1、如图所示,观察四个几何体,其中判断正确的是( ) A. 是棱台B. 是圆台C. 是棱锥D. 不是棱柱2、如果直线n m //,且α面//m ,那么n 与α的位置关系是( )A. 相交B. α//nC. α⊂nD. α//n 或α⊂n3、在棱柱中( ) A. 只有两个面平行 B. 所有的棱都平行C. 所有的面都是平行四边形D. 两底面平行,且各侧棱也互相平行4、若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积是( ) A. 3π B.π33 C. 6π D. 9π5、沿一个正方体三个面的对角线截得的几何体如图所示,若正视图的视线方向与前面的三角形面垂直, 则该几何体的左视图为( )A. B. C. D.6、直线//a 平面α,α∈P ,那么过P 且平行于直线a 的直线( ).A. 只有一条,不在平面α内B. 有无数条,不一定在平面α内C. 只有一条,且在平面α内D. 有无数条,一定在平面α内7、如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( )A. 11//D CB BD 平面B. BD AC ⊥1C. 111D CB AC 平面⊥D. 111D CB BCB 平面平面⊥8、ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为( )A.22 B. 1 C.2 D. 29、若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A.3:2:6B.4:3:2C.4:2:3D. 2:1:310、已知某棱锥的三视图如图所示,则该棱锥的表面积为( )A. 2+5B. 3+25C. 2+25 D. 3+5 11、空间三个平面能把空间分成的部分为( )A. 6或4B. 7或8C. 5或6或7D. 4或6或7或812、如图为平面中两个全等的直角三角形,将这两个三角形绕着它们的对称轴(虚线所在直线)旋转一周得到一个几何体,则该几何体的体积为( )A. 4πB. 8πC. 16πD. 32π二、填空题(本大题共4小题,共20.0分)13、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,则四个侧面PAB ∆,PBC ∆,PCD ∆,PAD ∆中,有______个直角三角形.14、若一圆锥的底面半径为3,体积是π12,则该圆锥的侧面积等于______.15、正方体的对角线长为a ,则它的棱长为______ .16、设m ,n 是不同的直线,γβα,,是不同的平面,有以下四种说法:①γβγαβα//////⇒⎭⎬⎫ ②βαβα⊥⇒⎭⎬⎫⊥m m // ③βαβα⊥⇒⎭⎬⎫⊥//m m ④αα////m n n m ⇒⎭⎬⎫⊂ 其中正确的说法为______.三、解答题(本大题共5小题,共70.0分)17、 如图,在正方体1111D C B A ABCD -中,S 是11D B 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,(1)直线//EG 平面BDD 1B 1(2)平面EFG //平面BDD 1B 118、如图,在三棱锥P -ABC 中⊥PC ,底面ABC ,BC AB ⊥,D ,E 分别是AB ,PB 的中点.(1)求证:DE //平面PAC ;(2)求证:PB AB ⊥;19、如图,已知斜三棱柱111C B A ABC -中,AC AB =,D 为BC 的中点.(1)若平面ABC ⊥平面11B BCC ,求证:1DC AD ⊥;(2)求证:B A 1//平面1ADC .20、如图为一简单组合体,其底面ABCD 为正方形,棱PD 与EC 均垂直于底面ABCD ,PD =2EC ,N 为PB 的中点,求证:(1)平面//EBC 平面PDA ;(2)NE ⊥平面PDB .21、如图,三棱柱111C B A ABC -,1AA 底面ABC ,且ABC A 为正三角形,A 1A =AB =6,D 为AC 中点.(1)求三棱锥C 1﹣BCD 的体积;(2)求证:平面BC 1D ⊥平面ACC 1A 1;(3)求证:直线AB 1//平面BC 1D .。
高一数学必修2立体几何测试题试卷满分:150分 考试时间:120分钟班级___________ 姓名__________ 学号_________ 分数___________第Ⅰ卷一、选择题(每小题5分,共50分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是( )A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有( )A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么( ) A 、点P 必在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABD 内 D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有( )A 、0个B 、1个C 、2个D 、3个 9、一个棱柱是正四棱柱的条件是( )A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、底面是正方形,每个侧面都是全等矩形的四棱柱10、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱ABB 1C 1A 1D 1BACD的距离为4,那么tan θ的值等于 ( )A 、34B 、35C D 二、填空题(每小题5分,共25分)11、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).12、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 13、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是______________ 14、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是 . 15、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)第Ⅱ卷11、 12、 13、 14、 15、___ ____三、解答题(共75分,要求写出主要的证明、解答过程)16、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分)17、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)H E D BA18、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)19、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)20、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . (14分)SD CB AD 1ODB AC 1B 1A 1C21、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)一、选择题(每小题5分,共50分)ACDDD BA B DA二、填空题(每小题5分,共25分)11、小于 12、平行13、6514、菱形 15、1111AC B D 对角线与互相垂直 三、解答题(共74分,要求写出主要的证明、解答过程)16、解:设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上圆台的上底面面积为2525S ππ=⋅=下 所以圆台的底面面积为29S S S π=+=下上又圆台的侧面积(25)7S l l ππ=+=侧 于是725l ππ=即297l =为所求. 17、证明:,EH FG EH ⊄面BCD ,FG ⊂面BCD EH ∴面BCD又EH ⊂面BCD ,面BCD 面ABD BD =,EH BD ∴18、证明:90ACB ∠= B C A C ∴⊥又SA ⊥面ABC S A B C ∴⊥BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SCBC C ⊥=AD ∴⊥面SBC19、解:如图,设所截等腰三角形的底边边长为xcm . 在Rt EOF 中,15,2EF cm OF xcm ==,所以EO =于是13V x =依题意函数的定义域为{|010}x x <<FEDBAC20、证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =11AOC O ∴是平行四边形111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!C C B D∴⊥ 又1111A C B D ⊥, 1111B D A C C ∴⊥面 111A CB D ⊥即 同理可证11AC AB ⊥, 又1111D B AB B = ∴1A C ⊥面11AB D21、证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD , ∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 又),10(<<==λλADAF AC AE∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值恒有平面BEF ⊥平面ABC. (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2===AB BD,722=+=∴BC AB AC 由AB 2=AE ·AC 得,76,76==∴=ACAE AE λ故当76=λ时,平面BEF ⊥平面ACD.。
高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分)1,三个平面可将空间分成n 个部分,n 的取值为( )A ,4;B ,4,6;C ,4,6,7 ;D ,4,6,7,8。
2,两条不相交的空间直线a 、b ,必存在平面α,使得( )A ,a ⊂α、b ⊂α;B ,a ⊂α、b ∥α ;C ,a ⊥α、b ⊥α;D ,a ⊂α、b ⊥α。
3,若p 是两条异面直线a 、b 外的任意一点,则( )A ,过点p 有且只有一条直线与a 、b 都平行;B ,过点p 有且只有一条直线与a 、b 都垂直;C ,过点p 有且只有一条直线与a 、b 都相交;D ,过点p 有且只有一条直线与a 、b 都异面。
4,与空间不共面四点距离相等的平面有( )个A ,3 ;B ,5 ;C ,7;D ,4。
5,有空间四点共面但不共线,那么这四点中( )A ,必有三点共线;B ,至少有三点共线;C ,必有三点不共线;D ,不可能有三点共线。
6,过直线外两点,作与该直线平行的平面,这样的平面可有( )个A ,0;B ,1;C ,无数 ;D ,涵盖上三种情况。
7,用一个平面去截一个立方体得到的截面为n 边形,则( )A ,3≤n ≤6 ;B ,2≤n ≤5 ;C ,n=4;D ,上三种情况都不对。
8,a 、b 为异面直线,那么( )A ,必然存在唯一的一个平面同时平行于a 、b ;B ,过直线b 存在唯一的一个平面与a 平行;C ,必然存在唯一的一个平面同时垂直于a 、b ;D ,过直线b 存在唯一的一个平面与a 垂直。
9,a 、b 为异面直线,p 为空间不在a 、b 上的一点,下列命题正确的个数是( )①过点p 总可以作一条直线与a 、b 都垂直;②过点p 总可以作一条直线与a 、b 都相交;③过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。
一、选择题1.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( ) A .323π B .86π C .36π D .323π 2.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 3.正三棱锥底面边长为a ,高为66a ,则此正三棱锥的侧面积为( ) A .234a B .232a C .233a D .233a 4.已知l ,m 是两条不同的直线,α是一个平面,且//l α,则下列选项正确的是( ) A .若//l m ,则//m αB .若//m α,则//l mC .若l m ⊥,则m α⊥D .若m α⊥,则l m ⊥5.用长度分别是2,3,5,6,9(单位:cm )的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为( ) A .2258cm B .2414cm C .2416cm D .2418cm 6.如图,在长方体1111ABCD A B C D -中,若,,,E F G H 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD7.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线8.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 9.在长方体1111ABCD A B C D -中,P 为BD 上任意一点,则一定有( )A .1PC 与1AA 异面B .1PC 与1A C 垂直 C .1PC 与平面11ABD 相交 D .1PC 与平面11AB D 平行10.在长方体1111ABCD A B C D -中,23AB AD ==,12CC =,则二面角1C BD C --的大小是( )A .30ºB .45ºC .60ºD .90º11.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 12.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件13.一个几何体的三视图如图所示,则该几何体的表面积为( )A .186+B .206+C .2010+D .1810+ 14.已知,m n 是两条不同的直线,,αβ为两个不同的平面,有下列四个命题: ①若m α⊥,n β⊥,m n ⊥,则a β⊥;②若//m α,//n β,m n ⊥,则//a β;③若m α⊥,//n β,m n ⊥,则//αβ;④若m α⊥,//n β,//αβ,则m n ⊥.其中所有正确的命题是( )A .①④B .②④C .①D .④二、解答题15.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为1515,试确定点E 的位置,并求三棱锥C-VDE 的体积. 16.如图,已知三棱柱111ABC A B C -的所有棱长都相等,侧棱1AA ⊥底面ABC ,,E F 分别是1111,A B AC 的中点.(1)求证:11B F AC ⊥ ;(2)求平面EFCB 与底面ABC 所成二面角的正切值.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB .(1)求证:AD ⊥平面BDE ;(2)点M 是线段DA 的中点,求三棱锥D MEC -的体积.18.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .(1)求证://EF MN ;(2)求证:平面CDH ⊥平面ABC .19.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且PCD 是边长为2的等边三角形,四边形ABCD 是矩形,22BC =,M 为BC 的中点.(1)证明:AM PM ⊥;(2)求二面角P AM D --的大小;(3)求点D 到平面APM 的距离.20.如图,在四棱锥P ABCD -中,ABCD 为菱形,PA ⊥平面ABCD ,连接AC ,BD 交于点O ,6AC =,8BD =,E 是棱PC 上的动点,连接DE .(1)求证:平面BDE ⊥平面PAC ;(2)当BED 面积的最小值是6时,求此时点E 到底面ABCD 的距离.21.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ︒∠=,PAD △为正三角形,且E ,F 分别为AD ,PC 的中点.(Ⅰ)求证://DF 平面PEB ;(Ⅱ)求证:BC ⊥平面PEB .22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,1ED =,//EF BD .(1)设EF BD λ=,是否存在实数λ,使//BF 平面ACE ;(2)证明:平面EAC ⊥平面BDEF ;(3)当12EF BD =时,求几何体ABCDEF 的体积. 24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线45DBP ∠=,求四棱锥P ABCD -的体积.26.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可.【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=,所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题. 2.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AE BE E =.所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥.所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,2233BO BE ==,2AB = 所以3cos BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠, 在CFD △中,3,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯, 即31=90cos cos =33αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题.3.A解析:A【分析】根据条件,可计算正三棱锥的斜高,利用侧面积公式计算即可求出.【详解】23⨯=,且棱锥高22632632a a a,斜高2221222aa a,所以侧面积为21133224S a a a.选A.【点睛】本题主要考查了正三棱锥的性质,侧面积公式,属于中档题.4.D解析:D【分析】根据空间中直线与平面平行与垂直的相关性质依次判断各个选项可得结果.【详解】对于A,若//l m,此时//mα或mα⊂,A错误;对于B,若//mα,此时l与m可能平行、相交或异面,B错误;对于C,若l m⊥,此时m与平面α可能平行或相交,C错误;对于D,若mα⊥,则m垂直于α内任意直线,必垂直于l的平行线,则l m⊥,D正确.故选:D.【点睛】本题考查空间中线线关系、线面关系相关命题的辨析,考查学生对于平行与垂直相关性质和定理掌握的熟练程度,属于基础题.5.C解析:C【分析】设出长方体的三条棱的长度为,,a b c,根据表面积公式()2S ab bc ac=++求解出,,a b c 在何种条件下取得最大值,由此考虑长方体棱的长度,并计算出对应的长方体的最大表面积.【详解】设长方体的三条棱的长度为,,a b c,所以长方体表面积()()()()2222S ab bc ac a b b c a c=++≤+++++,取等号时有a b c==,又由题意可知a b c==不可能成立,所以考虑当,,a b c 的长度最接近时,此时对应的表面积最大,此时三边长:8,8,9, 用2和6连接在一起形成8,用3和5连接在一起形成8,剩余一条棱长为9,所以最大表面积为:()22888989416cm ⨯+⨯+⨯=. 故选C.【点睛】本题考查基本不等式与长方体表面积最大值的综合,难度一般.求解()0,0ab a b >>的最2a b +≤可知最大值为2a b +⎛⎫ ⎪⎝⎭,此时要注意取等号的条件a b =是否成立,若取等号的条件不成立,则满足条件的,a b 相差最小时可取得最大值.6.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.7.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.8.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9.D解析:D【分析】取P 为BD 的中点可判断A 、B 、C 选项的正误;证明平面1//BC D 平面11AB D ,可判断D 选项的正误.【详解】如下图所示:对于A 选项,当点P 为BD 的中点时,1PC ⊂平面11AAC C ,则直线1PC 与1AA 相交,A 选项错误;对于B 选项,当点P 为BD 的中点时,1AC P ∠为锐角,1PC 与1A C 不垂直,B 选项错误;对于C 选项,当点P 为BD 的中点时,连接11A C 、11B D 交于点O ,则O 为11A C 的中点, 在长方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,则四边形11AAC C 为平行四边形,11//AC AC ∴且11AC A C =, O 、P 分别为11A C 、AC 的中点,则1//AP OC 且1AP OC =,∴四边形1OAPC 为平行四边形,1//PC AO ∴,AO ⊂平面11AB D ,1PC ⊄平面11AB D ,1//PC ∴平面11AB D ,C 选项错误;对于D 选项,在长方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,则四边形11BB D D 为平行四边形,11//BD B D ∴,BD ∴⊄平面11AB D ,11B D ⊂平面11AB D ,//BD ∴平面11AB D ,同理可证1//BC 平面11AB D ,1BD BC B ⋂=,∴平面1//BC D 平面11AB D ,1PC ⊂平面1BC D ,1//PC ∴平面11AB D .D 选项正确.故选:D.【点睛】本题考查空间中直线与直线、直线与平面位置关系的判断,考查推理能力,属于中等题. 10.A解析:A【分析】取BD 中点为O ,1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,易知CO BD ⊥,再利用线面垂直证明1BD C O ⊥,得到1COC ∠即二面角1C BD C --,再计算二面角大小即可.【详解】由题意,作出长方体1111ABCD A B C D -的图象,取BD 中点为O ,连接CE 、1C E ,因为1CC ⊥平面ABCD ,所以C 即1C 在平面ABCD 上的投影,又BD ⊂平面ABCD ,所以1CC BD ⊥,因为AB AD ==ABCD 是正方形,O 为BD 中点,所以CO BD ⊥,又1CO CC C =,所以BD ⊥平面1COC ,又1C O ⊂平面1COC ,所以1BD C O ⊥,1COC ∠即二面角1C BD C --,又1CC =CO ==所以1tan 3COC ∠==,130COC ∠=.故选:A【点睛】本题主要考查二面角的求法和线面垂直的判定定理和性质,考查学生空间想象能力,属于中档题.11.C解析:C【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误;对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误. 故选:C .【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题. 12.D解析:D【分析】根据线面平行的判定定理以及充分条件和必要条件的定义进行判断即可.【详解】若“//m n ”则“//m α”成立,即充分性成立,//m α,m ∴不一定平行n ,因为m 还有可能和n 异面.即“//m n ”是“//m α”的充分不必要条件,故选:D .【点睛】本题主要考查充分条件和必要条件的判断,结合线面平行的判断和性质是解决本题的关键.13.B解析:B【分析】根据所给三视图,还原出空间几何体,即可求得几何体的表面积.【详解】根据三视图,还原空间几何体如下图所示:在正方体中,去掉三棱锥111B A C M -,正方体的棱长为2,M 为1BB 的中点,则111111111B MC A B C A B M A C M S S S S S S =---+正方体 ()()22211116212221222522222=⨯-⨯⨯-⨯⨯-⨯⨯+⨯- 206=+故选:B.【点睛】本题考查了空间几何体三视图的简单应用,关键是能够正确还原出空间几何体,属于中档题.14.A解析:A【分析】①若m α⊥,m n ⊥,∴n ⊂α或//n α再由面面垂直的判定定理得到结论.②根据面面平行的判定定理判断.③若m α⊥,m n ⊥,则n ⊂α或//n α,再由面面平行的判定定理判断.④若m α⊥,//αβ,由面面平行的性质定理可得m β⊥,再由//n β得到结论.【详解】①若m α⊥,m n ⊥,∴n ⊂α或//n α,又∵n β⊥,∴a β⊥,故正确.②若//m α,//n β,由面面平行的判定定理可知,若m 与n 相交才平行,故不正确. ③若m α⊥,m n ⊥,则n ⊂α或//n α,又//n β,两平面不一定平行,故不正确. ④若m α⊥,//αβ,则m β⊥,又∵//n β,则m n ⊥.故正确.故选:A【点睛】本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.二、解答题15.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 的中点;22. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB平面ABC , 所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,15DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDES VC⋅⋅=⨯⨯⨯⨯=.【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.16.(1)证明见解析;(2)43.【分析】(1)由线面垂直得到线线垂直,再由线线垂直得到线面垂直;(2)取EF中点P,BC中点K,找到二面角,再在三角形中计算就可以了.【详解】(1)证明:1AA⊥平面11,ABC B F AA∴⊥,又111A B C为正三角形,F为11A C中点,111B F AC∴⊥得1B F⊥平面11ACC A.又因为1AC⊂平面11ACC A,所以11B F AC⊥;(2)设所有棱长都为2,取EF中点P,BC中点K,连,,PK AK PA. 易知,PK BC AK BC⊥⊥,则PKA∠为平面EFCB的与底面ABC所成二面角的平面角,在PKA中,取AK中点O,连PO,有PO⊥平面ABC,则PO AK⊥,且32,PO OK==,43tan332POPKAOK∠===,【点睛】第二问的关键点是由线面垂直找到线线垂直,求出二面角,然后在三角形中计算就可以了.17.(1)证明见解析;(2)23. 【分析】 (1)先利用勾股定理得出AE BE ⊥,再利用面面垂直的性质定理得到BE ⊥平面ADE ,进而得到AD BE ⊥,利用线面垂直的判定定理即可得证;(2)利用1122D MEC M DEC A DEC D AEC V V V V ----===,取AE 的中点O ,连接DO ,用面面垂直的性质定理得到DO ⊥平面ABCE ,利用体积公式求解即可.【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒,∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥,又平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)∵M 是线段DA 的中点,∴1122D MEC M DEC A DEC D AEC V V V V ----===, 取AE 的中点O ,连接DO ,∵DA DE =∴DO AE ⊥,又平面DAE ⊥平面ABCE ,∴DO ⊥平面ABCE ,又2DO =,1sin13522AEC S AE EC =⨯⨯⨯︒=,∴123D AEC V -=⨯=∴3D MEC V -=. 【点睛】方法点睛:证明线面垂直的常用方法:利用线面垂直的判定定理;利用面面垂直的性质定理;利用面面平行的性质;利用垂直于平面的传递性.18.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.19.(1)证明见解析;(2)45;(3)3. 【分析】(1)取CD 的中点E ,连接PE 、EM 、EA ,根据面面垂直的性质可知PE ⊥平面ABCD ,从而AM PE ⊥,由勾股定理可求得AM EM ⊥,又PE EM E =,满足线面垂直的判定定理则AM ⊥平面PEM ,根据线面垂直的性质可知AM PM ⊥;(2)由(Ⅰ)可知EM AM ⊥,PM AM ⊥,根据二面角平面角的定义可知PME ∠是二面角P AM D --的平面角,然后在三角形PME 中求出此角即可;(3)设D 点到平面PAM 的距离为d ,连接DM ,则根据等体积得P ADM D PAM V V --=,建立关于d 的等式解之即可得到点D 到平面PAM 的距离.【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥,平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCDAM PE ∴⊥四边形ABCD 是矩形ADE ∴、ECM 、ABM 均为直角三角形 由勾股定理可求得:3EM =,6AM =3AE =222EM AM AE ∴+=AM EM ∴⊥又PE EM E AM =∴⊥平面PEMAM PM ∴⊥(2)由(1)可知EM AM ⊥,PM AM ⊥PME ∴∠是二面角P AM D --的平面角3tan 13PE PME EM ∴∠=== 45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则P ADM D PAM V V --=,∴11··33ADM PAM S PE S d =而1·2ADMSAD CD ==在Rt PEM 中,由勾股定理可求得PM =1·32PAMSAM PM ∴==,所以:11333d ⨯=⨯⨯d ∴即点D 到平面PAM 的距离为3. 【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法:找→作→证→指→求;(2)向量法:利用向量中点到平面的距离公式求解;(3)等体积法:根据体积相等求出点到平面的距离.20.(1)证明见解析;(2)4. 【分析】(1)根据线面垂直的判定定理可证得BD ⊥平面PAC ,再由面面垂直的判定定理可得证.(2)由(1)知BD ⊥平面PAC ,根据三角形的面积公式求得()min 32OE =,作//EH PA 交AC 于H ,可得EH ⊥平面ABCD ,从而求得点E 到底面ABCD 的距离. 【详解】(1)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥.又PA AC A =,∴BD ⊥平面PAC ,又BD ⊂平面BDE ,∴平面BDE ⊥平面PAC .(2)解:如图(1),连接OE ,由(1)知BD ⊥平面PAC ,OE ⊂平面PAC .BD OE ∴⊥.∵8BD =,由()min 162BDE S BD OE =⋅⋅=△,得()min 32OE =,∵当OE PC ⊥时,OE 取到最小值32,此时2CE ===. 作//EH PA 交AC 于H ,∵PA ⊥平面ABCD ,∴EH ⊥平面ABCD ,如图(2),由OE CE EH OC ⋅==E 到底面ABCD【点睛】本题考查线面垂直的判定和面面垂直的判定定理,以及求点到面的距离,关键在于逐一满足判定定理所需的条件,在求点到面的距离时,可以采用几何法,由题目的条件直接过已知点作出面的垂线,运用求解三角形的知识,求点到面的距离,属于中档题. 21.(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【分析】(Ⅰ)取PB 中点G ,可证得四边形DEGF 是平行四边形,进而可得//DF EG ,最后可证//DF 平面PEB ;(Ⅱ)由条件可得PE AD ⊥,BE AD ⊥,进而由线面垂直的判定定理得出结论. 【详解】(Ⅰ)取PB 中点G ,因为F 是PC 中点,∴//FG BC ,且12FG BC =, ∵E 是AD 的中点,则//DE BC ,且12DE BC =,∴//FG DE ,且FG DE =, ∴四边形DEGF 是平行四边形,∴//DF EG ,又∵DF ⊄平面PEB ,EG ⊂平面PEB ,∴//DF 平面PEB ;(Ⅱ)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥, ∵四边形ABCD 为菱形,60BAD ︒∠=,∴正三角形BAD 中,BE AD ⊥,∵PE BE E ⋂=,∴AD ⊥平面PEB ,∵//AD BC ,∴BC ⊥平面PEB .【点睛】方法点睛:本题考查线面平行、线面垂直的判定,解题关键是熟记线面平行和线面垂直的判定定理,以及定理成立时的条件,考查空间想象能力,属于常考题. 22.(1)答案见解析;(233. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)22QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)存在;(2)证明见解析;(3)2. 【分析】 (1)存在12λ=满足题意,设AC 与BD 的交点为O ,连接EO ,由平面几何的知识可得//BF EO ,再由线面平行的判定即可得证;(2)由线面垂直的性质与判定可得AC ⊥平面BDEF ,再由面面垂直的判定即可得证;(3)结合(2)可得AC ⊥平面BDEF 、2ABCDEF A BDEF V V -=,再由棱锥的体积公式即可得解. 【详解】 (1)存在12λ=满足题意,理由如下: 设AC 与BD 的交点为O ,则12DO BO BD ==,连接EO ,如图,∵//EF BD ,当12λ=时,12EF BD BO ==, ∴四边形EFBO 是平行四边形,∴//BF EO ,又EO ⊂平面ACE ,BF ⊄平面ACE ,∴//BF 平面ACE ;(2)证明:ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED AC ⊥, ∵ABCD 为正方形,∴BD AC ⊥, 又EDBD D =,∴AC ⊥平面BDEF ,又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF ; (3)∵ED ⊥平面ABCD ,∴ED BD ⊥, 又∵//EF BD 且12EF BD =,∴BDEF 是直角梯形,又∵ABCD 是边长为2的正方形,BD =,EF =∴122BDEF S⨯==,由(2)知AC ⊥平面BDEF ,∴12222332ABCDEF A BDEF BDEF V V S AO -==⨯⋅=⨯=. 【点睛】本题考查了线面平行、面面垂直的判定及几何体体积的求解,考查了空间思维能力与运算求解能力,属于中档题. 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =,90DAB ABC,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(2)33. 【分析】(1)证明AC BD ⊥,PD AC ⊥,结合线面垂直的判定定理得出AC ⊥平面PBD ; (2)求出菱形ABCD 的面积,结合PD ⊥平面ABCD ,利用棱锥的体积公式得出四棱锥P ABCD -的体积. 【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥. 又因为PD ⊥平面ABCD ,AC ⊂平面ABCD , 所以PD AC ⊥.又PD BD D ⋂=,PD ⊂平面PBD ,BD ⊂平面PBD , 故AC ⊥平面PBD ;(2)因为45DBP ∠=,PD ⊥平面ABCD 因此2BD PD ==. 又2AB AD ==所以菱形ABCD 的面积为sin6023S AB AD =⋅⋅= 故四棱锥P ABCD -的体积1433V S PD =⋅=. 【点睛】本题主要考查了证明线面垂直以及求棱锥的体积,属于中档题. 26.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可. 【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点. ∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点. (2)∵AB AC =,D 为BC 的中点, ∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC 平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D , ∴1AC D ∆为直角三角形. 【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.。
立体几何测试题1.以下关于几何体的三视图的论述中,正确的是( )A .球的三视图总为全等的圆B .正方体的三个视图总是正三个全等的正方形C .水平放置的正四面体的三个视图都是正三角形D .水平放置的圆台的俯视图是一个圆2.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是( )A .S πB .S π2C .S π4D .S π332 3.正方体1111ABCD A BC D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )。
A .三角形B .四边形C .五边形D .六边形4.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为( )A .π23B .π32C .6πD .34π5.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( )A .75°B .60°C .45°D .30° 6.正六棱柱的底面边长为2,最长的一条对角线长为52,则它的侧面积为( )A .24B .12C .224D .2127.设γβα,,是三个不重合的平面,l 是直线,给出下列命题 ①若γββα⊥⊥,,则γα⊥; ②若l 上两点到α的距离相等,则α//l ; ③若βαβα⊥⊥则,//,l l④若.//,//,,//βαββαl l l 则且⊄其中正确的命题是 ( )A .①②B .②③C .②④D .③④8.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( )。
A .BC//平面PDF B .DF ⊥平面PA EC .平面PDF ⊥平面ABCD .平面PAE ⊥平面 ABC9.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( )A.2221+ B. 22+ C. 21+ D. 221+10.(文科)如图1,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是( )。
A .515B .22C .510 D .1 (理科)甲烷分子结构是:中心一个碳原子,外围四个氢原子构成四面体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cos θ值为( )A .31-B .31C .21D .21-11.在正三棱柱111C B A ABC -中,若AB =2,11AA =则点A 到平面BC A 1的距离为( )A .43 B .23 C .433 D .3 12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体的表面上与点A 距离是332的点的集合形成一条曲线,这条曲线的长度是 ( )A .π33 B π332 C .π635 D .π3 13.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是14.(文科)三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。
(理科)已长方体的全面积是8,则其对角线长的最小值是 15.如图2,在四棱锥P -ABCD 中,PA ⊥底面ABCD , 底面各边都相等,M 是PC 上的一个动点,当点M 满足 时,平面MBD ⊥平面PCD .16.在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 .(把符合要求的命题序号都填上)17.如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融AB CD A 1B 1C 1D 1EFG 图1P ABDCM图2化了,会溢出杯子吗?18.如图4,在三棱锥P-ABC 中,AB BC ⊥, 12AB BC PA ==, 点O,D分别是,AC PC 的中点,OP ⊥底面ABC . (1)求证OD //平面PAB ;(2)求直线OD 与平面PBC 所成角的正弦值的大小.19.(文科)如图5,已知直四棱柱1111D C B A ABCD -中,21=AA ,底面ABCD 是直角梯形,A 是直角,AB//CD ,AB=4,AD=2,DC=1,求异面直线1BC 与DC 所成角的余弦值。
图3ABCDOP图4ABCDD 1C 1B 1A 1图5A 1B 1CD 1(理科)如图6,在棱长2==AD AB ,31=AA 的长方体1AC 中,点E 是平面BCC 1B 1上的点,点F 是CD 的中点.(1)试求平面AB 1F 的法向量;(2)试确定E 的位置,使E D 1 ⊥平面F AB 1。
20.如图7所示,在正方体ABCD-A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点.(1)求二面角1B -MN-B 的正切值;(2)画出一个正方体的表面展开图,使其满足“有4个正方形相连成一个长方形”这一条件,并求展开图中P 、B 两点间的距离(设正方体的棱长为1).21.一只小船以10 m/s 的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以20 m/s 的速度前进(如图8),现在小船在水平P 点以南的40米处,汽车在桥上Q 点以西30米处(其中PQ ⊥水面),求小船与汽车间的最短距离为.(不考虑汽车与小船本身的大小).参考答案:A B CM D NP 1A 1C 1B 1D 图7图8P QP A B CO 第8题图 H1.选A 。
画几何体的三视图要考虑视角,对于球无论选择怎样的视角,其三个视图均为全等的圆。
2.选C 。
圆柱的底面积为S ,则底面半径πSr =,底面圆的周长是S r ππ22=,故侧面积S r S ππ4)2(2==侧。
3.选D 。
通过画图,可以得到这个截面与正方体的六个面都相交,所以截面为六边形。
4.选C 。
正方体削成最大的球,即正方体棱长为球的直径,即12=R ,21=R ,故621343ππ=⎪⎭⎫ ⎝⎛⋅=球V 。
5.如图所示,设侧棱与底面所成的角为α,则22c o s ==SC OC α,所以045=α。
6.选A 。
由底面边长为2,可知底面半径为2,由勾股定理可知侧棱长为2,所以24226=⨯⨯=侧S 。
7.选D 。
命题①α和β可能平行;命题②中l 和α相交。
8.选C 。
如图所示:取DF 的中点O ,易证POA ∠为二面角A DE P --的平面角,因为P 点在底面上的射影是底面的中心,故POA ∠不可能为直角,所以平面PDF 与平面ABC 不垂直。
9.选B 。
还原成平面图形为如图所示的直角梯形,且21+=AB ,2=AD ,1=DC ,故222)211(21+=⨯++⨯=S 。
A B C D 第9题图A BCDS第5题图O10.(文科)如图所示,连结G B 1、F B 1,则GF B 1∠或其补角是异面直线A 1E 与GF 所成的角,由余弦定理:510522352211221211=⨯-+=⋅-+=∠F B G B GF F B G B GF B ,所以510arccos=α。
(理科)选A 。
即正四面体的各顶点与中心连线所成的角,如图,设棱长为1,则有:23=AD ,33=AH ,3622=-=AH PA PH ,设r OP OD OC OB OA =====,在O A H Rt ∆中,由222AH OH OA +=得:46=r ,故3121cos 222-=-+=rr r θ。
11.设点A 到平面BC A 1的距离为h ,则由A B CA BC A A V V --=11可得:2315221311=-⨯⨯=⋅=∆∆BC A ABC S AA S h 。
12.曲线在过A 的三个面上都是以A 为圆心,332为半径的四分之一圆弧,所以曲线的总长度为ππ3332243=⨯⨯。
13.设P 点到面ABC 的距离为h ,由体积公式可得:()3261231a h a =⋅,故a h 332=。
14.如图,构造长方体,其中侧面AO ,BO ,A 1O 所在的平面即为已知的三个两两垂直的平面,则长方体的长、宽、高分ABCA 1B 1C 1第11题图ABC D A 1B 1C 1D 1E FG第10题(文)图PABC HOD第10题(理)图ABC P别为6,8,10,而OP 的长即为长方体的体对角线的长,所以OP 2=36+64+100=200. 故210=OP 。
(理科)设长方体的长、宽、高分别为c b a ,,,则4=++ca bc ab ,对角线222cb a l ++=222222222222=++≥++=ca bc ab c b a15.答案:BM ⊥PC (或DM ⊥PC ).底面四边形ABCD 各边都相等,所以四边形ABCD是菱形,故AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,又PA AC A ⋂=,所以BD ⊥平面PAC ,即有PC ⊥BD ,故要使平面MBD ⊥平面PCD ,只须BM ⊥PC ,或DM ⊥PC .16.答案②.①的逆命题是:“若四点中的任何三点都不共线,则这四点不共面”,为假命题,反例可以找正方形,没有三点共线,但四个顶点共面;②的逆命题是:“若两条直线是异面直线,那么这两条直线没有公共点”,由异面直线的定义知这个命题正确.17.解:3128434213ππ=⨯⨯=半球V ;πππ6412431313122=⨯⨯==⨯=h r Sh V 锥。
因为锥半球V V <,故冰淇淋融化了,不会溢出杯子。
18.如图,连结AQ ,∵PQ ⊥QD ,PA ⊥QD ,PQ ∩PA =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴12≥a,a ≥2.19.(1) O、D分别为AC 、PC 的中点.∴ //OD PA ,又PA ⊂平面PAB ,PAB OD 面⊄,∴ OD //平面PAB .(2) AB BC ⊥,OA OC =,∴,OA OB OC==又 OP ⊥平面ABC ,∴PA PB PC ==.取BC 中点E,连结PE ,则BC ⊥平面POE .作OF PE ⊥于F,连结PA BC DQ 第18题图P A B CD EFO 第19题图DF ,则OF ⊥平面PBC ,∴ODF ∠是OD 与平面PBC 所成的角.在ODF Rt ∆中,sin OF ODF OD ∠==OD 与平面PBC 所成的角正弦值为30210. 20.(文科)由题意AB ∥CD ,∴∠C 1BA 是异面直线BC 1与DC 所成的角。