2013高考文科数学密破仿真预测卷08 Word版含答案
- 格式:doc
- 大小:787.50 KB
- 文档页数:12
2013高考密破仿真----预测卷(八)考试时间:120分钟满分:150分注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致务必在答题卡背面规定的地方填写姓名和座位号后两位2.答第1卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号3.答第Ⅱ卷时,必须使用0 5毫米的黑色墨水签字笔在答题卡上书写......,要求字体工整、笔迹清晰作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0 5毫米的黑色墨水签字笔描清楚必须在题号所指示的答题区域作答,超出答题区域书写的.........答案..无效,在试.....题卷、草稿纸上答题无效............. 4.考试结束,务必将试题卷和答题卡一并上交第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设P ={y|y=-x 2+1,x ∈R},Q ={y| y=2x,x ∈R },则A.P ⊆ QB. Q ⊆ PC. C R P ⊆ QD. Q ⊆ C R P2. 设a 是实数,且复数()13a i Z i+-=在复平面内对应的点在第三象限,则a 的取值范围为( ) A .{}3a a > B .{}3a a <C .{}3a a ≥-D . {}3a a <-坐标都小于零,即a-3<0,a<3,选B3.函数()()2log 1f x x =+的定义域是( )A .()1,+∞B .()1,-+∞C .[1,)+∞D .[1,)-+∞4. 某校 1 000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.规定•••于低不90分为优秀等级,则该校学生优秀等级的人数是( )A. 300B. 150C. 30D. 155.设变量x ,y 满足:34,2y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z=|x-3y|的最大值为A .8B .3C .134 D .92则对于目标函数z=x-3y,当直线经过A(-2,2)时,z=|x-3y|,取到最大值,Z max=8.故选:A.6.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为 ( )A.43 B.83 C.123 D.2437、如图所示程序图运行的结果是( )序输出的结果为10. 8.在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A. 3B. 3C. 3或3D. 3或39、直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则∆EOF (O 是原点)的面积为A 、23B 、43 C 、52 D 、55610.已知抛物线22y px =的焦点F 与双曲线2213y x -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且||2||AK AF =,则AFK ∆的面积为( ) A .4 B .8 C .16 D .3211.函数)10(1||log )(<<+=a x x f a 的图象大致为( )12. 过双曲线22221(0,0)x y a b a b-=>>的左焦点)0)(0,(>-c c F ,作圆:2224a x y += 的切线,切点为E ,延长FE 交双曲线右支于点P ,若1()2OE OF OP =+u u u r u u u r u u u r ,则双曲线的离心率为 10 10102第Ⅱ卷二.填空题:本大题共4小题,每小题4分。
2013高考数学文科模拟试题(带答案)2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)第Ⅰ卷选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设全集集合集合,则=()A.B.C.D.2.设复数(其中为虚数单位),则z的共轭复数等于()A.1+B.C.D.3.已知条件p:,条件q:,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件4.如右图的程序框图所示,若输入,则输出的值是()A.B.1C.D.25.若抛物线上一点到轴的距离为3,则点到抛物线的焦点的距离为()A.3B.4C.5D.76.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为()A.1B.2C.3D.47.已知是单位向量,且夹角为60°,则等于()A.1B.C.3D.8.已知函数对任意,有,且当时,,则函数的大致图象为()9.设函数,则不等式的解集是()A.B.C.D.10.一个三棱锥的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A.B.C.1D.第Ⅱ卷非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置)11.若函数的图象在处的切线方程是,则.12.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是.13.已知变量满足约束条件,则的最大值为;14.若则;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A(选修4—4坐标系与参数方程)已知点是曲线上任意一点,则点到直线的距离的最小值是;B(选修4—5不等式选讲)已知则的最大值是.;C(选修4—1几何证明选讲)如图,内接于,,直线切于点C,交于点.若则的长为.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(Ⅰ)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(Ⅱ)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.17.(本小题满分12分)在中,角A,B,C的对边分别为,b,c,且满足,.(Ⅰ)求的面积;(Ⅱ)若,求边与的值.18.(本小题满分12分)各项均为正数的等比数列中,.(Ⅰ)求数列通项公式;(Ⅱ)若等差数列满足,求数列的前项和.19.(本小题满分12分)已知是矩形,,分别是线段的中点,平面.(Ⅰ)求证:平面;(Ⅱ)在棱上找一点,使∥平面,并说明理由.20.(本小题满分13分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,判断方程在区间上有无实根.(Ⅲ)若时,不等式恒成立,求实数的取值范围.21.(本题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)已知、为椭圆上的动点,当时,求证:直线恒过一个定点.并求出该定点的坐标.2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)参考答案与评分标准一、选择题:题号12345678910答案DAADBCCCAD二、填空题:11.312.13.1114.15.A;B.;C.三、解答题16.(本小题满分12分)【解】:在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)212(1)i i +=-( ) (A )112i --(B )112i -+ (C )112i + (D )112i - (3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )14 错误!未找到引用源。
(D )16错误!未找到引用源。
(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为错误!未找到引用源。
,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =± (D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧(B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为错误!未找到引用源。
的等比数列{}n a 的前n 项和为n S ,则( )(A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S属于(A )[3,4]-(B )[5,2]-(C )[4,3]-(D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B ) (C ) (D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9(C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考模拟系列试卷(一)数学试题【新课标版】(文科)题 号 第Ⅰ卷第Ⅱ卷总分一二171819202122得 分注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1.复数z=i 2(1+i)的虚部为( ) A .1 B .iC .– 1D .– i2.设全集()()2,{|21},{|ln 1}x x U R A x B x y x -==<==-,则右图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤ 3。
已知各项均为正数的等比数列{na }中,1237895,10,a a aa a a ==则456a a a =( )UA.52B.7 C 。
6 D 。
424.已知0.81.2512,,2log 22a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.c b a <<B. c a b <<C 。
b c a <<D .b ac <<5.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )A .3242π- B .243π- C .24π-D .242π-6.设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是( )A .当n ⊥α时,“n ⊥β”是“α∥β"成立的充要条件B .当α⊂m 时,“m ⊥β”是“βα⊥"的充分不必要条件C .当α⊂m 时,“//n α”是“n m //”的必要不充分条件D .当α⊂m 时,“α⊥n "是“n m ⊥"的充分不必要条件7。
凹凸教育高考文科数学模拟题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.下列有关命题的说法正确的是(A )命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. (B )“1x =-”是“2560x x --=”的必要不充分条件.(C )命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. (D )命题“若x y =,则sin sin x y =”的逆否命题为真命题.4.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千米()a b <,再前进c 千米,则此人离起点的距离s 与时间t 的关系示意图是(A ) (B ) (C ) (D )5.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么 a 的取值范围是(A )17⎡⎢⎣,⎪⎭⎫31 (B )(0,13) (C )(0,1) (D )⎪⎭⎫⎢⎣⎡1,716.如图是一个算法程序框图,当输入的x 值为3时,输出的结果恰好是31,则空白框处的关系式可以是 (A )xy -=3 (B )xy 3= (C ) 31-=x y (D ) 31x y =7.底面边长为2,各侧面均为直角三角形的正三棱锥的四个顶点都在同一球面上,则此球的表面积为(A )π4(B )34π(C )π2(D ) π38.若]2,0(π∈x ,则使x x x x cot tan sin cos <<<成立的x 取值范围是 (A )(2,4ππ) (B )(ππ,43) (C )(ππ45,) (D )(ππ2,47)9. 设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于 (A )103(B )31(C )91 (D )81 10.已知函数x x f x 2log )31()(-=,正实数a 、b 、c 满足()0()()f c f a f b <<<,若实数d 是函数()f x 的一个零点,那么下列四个判断:①a d <;②b d >;③c d <;④c d >. 其中可能成立的个数为(A )1 (B )2 (C )3 (D )4 11.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2=++,那么(A ) AO OD = (B ) 2AO OD = (C ) 3AO OD = (D ) 2AO OD =12.函数)(x f 、)(x g 都是定义在实数集R 上的函数,且方程-x [])(x g f =0有实根,则函数[])(x f g 的解析式可能是(A )342++x x (B )542+-x x (C ) 322++x x (D )532+-x x二.填空题:本大题共4小题,每小题4分,共16分.13.若在区域34000x y x y +-≤⎧⎪≥⎨⎪≥⎩内任取一点P ,则点P 落在单位圆221x y +=内的概率为 . 14. 过圆04622=-++x y x 与028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程是 .15.设21,F F 是椭圆1162522=+y x 的两个焦点,P 是椭圆上的动点(不能重合于长轴的两端点),I 是21F PF ∆的内心,直线PI 交x 轴于点D ,则=IDPI. 16.老师给出一个函数=y )(x f ,四个学生甲、乙、丙、丁各指出这个函数的一个性质:甲:对于R x ∈,都有)1()1(x f x f -=+;乙:在(]0,∞-上函数递减;丙:在()+∞,0上函数递增;丁:函数的最小值为0.如果其中恰有三人说得正确,请写出一个这样的函数 .三.解答题:本大题共6小题,共74分.17.(本小题满分12分)函数πφωφω<>>+=||,0,0),sin()(A x A x f 的图象的一部分如图 (Ⅰ)求函数)(x f 的解析式 ;(Ⅱ)求函数)(x g 的解析式,使得函数)(x f 与)(x g 的图象关于)1,4(π对称.18.(本小题满分12分)如图,在长方体1111D C B A ABCD -中,2==BC AB ,过A 1, C 1 , B三点的平面截去长方体的一个角后得到几何体111D C A ABCD -,且这个几何体的体积为340. (Ⅰ)证明:直线A 1B // CDD 1C 1; (Ⅱ)求 A 1 A 的长;(Ⅲ)求经过A 1、C 1、B 、D 四点的球的表面积.19.(本小题满分12分)某学校举行“科普与环保知识竞赛”,并从中抽取了部分学生的成绩(均为整数),所得数据的分布直方图如图.已知图中从左至右前3个小组的频率之比为1:2:3,第4小组与第5小组的频率分别是0.175和0.075,第2小组的频数为10.(Ⅰ)求所抽取学生的总人数,并估计这次竞赛的优秀率(分数大于80分);(Ⅱ)从成绩落在)5.0.5,650(和)5.100,5.90(的学生中任选两人,求他们的成绩在同一组的概率.20.(本小题满分12分)已知数列{}n a 中,13a =,对于*N n ∈,以1,n n a a +为系数的一元二次方程21210n n a x a x +-+=都有实数根αβ,,且满足(1)(1)2αβ--=.(Ⅰ)求证:数列1{}3n a -是等比数列;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)求{}n a 的前n 项和n S .21.(本小题满分12分)已知点)0,1(),0,1(C B -,P 是平面上一动点,且满足CB PB BC PC ⋅=⋅||||. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)直线l 过点(-4,43)且与动点P 的轨迹交于不同两点M 、N ,直线OM 、ON (O 是坐标原点)的倾斜角分别为α、β.求βα+的值.22.(本小题满分14分)若存在实常数k 和b ,使函数)(x f 和)(x g 对于其定义域上的任意实数x 分别满足b kx x f +≥)(和b kx x g +≤)(,则称直线b kx y l +=:为曲线)(x f 和)(x g 的“隔离直线”.已知函数2)(x x h =,x e x ln 2)(=ϕ(e为自然对数的底数).(Ⅰ)求函数)()()(x x h x F ϕ-=的极值;(Ⅱ)函数)(x h 和)(x ϕ是否存在隔离直线?若存在,求出此隔离直线;若不存在,请说明理由.参考答案1. B 解析:312|1|≤≤-⇔≤-x x ;42086<<⇔<+-x x x , ()U C A B =],32(.选B.2. C 解析:23213332iii z --=+-=,故选C.3. D 解析:“若x y =,则sin sin x y =”为真命题,∴其逆否命题为真命题.故选D.4. C 解析:匀速沿直线前进,图象应为斜率为正的直线;休息的一段时间s 应为常数,沿原路返回,图象应为斜率为负的直线;再前进,图象应为斜率为正的直线.故选C.5. A 解析:要使函数)(x f 在(,)-∞+∞上是减函数,需满足⎪⎩⎪⎨⎧≥+-<-<<041301310a a a a ,解得3171<≤a ,故选A.6. B 解析:根据框图,空白框处函数一个满足31)1(=-f ,故选B. 7. D 解析:底面边长为2,则侧棱长为1.三棱锥的外接球,即为棱长为1的正方体的外接球,设外接球的半径为R ,则31112222=++=R ,此球的表面积为S =πππ343442=⋅=R .故选D. 8. C 解析:4个选项逐一验证,可知应选C. 9. A 解析:3184=S S ,得2:1)(:484=-S S S , )(),(),(,1216812484S S S S S S S ---成等差数列,∴4:3:2:1)(:)(:)(:1216812484=---S S S S S S S ,168S S =103432121=++++,故选A. 10. A 解析:如图,由在同一个坐标系内xy )31(=和xy 2log =图象可知,正实数a 、b 、c 与d 的大小关系应为,c d a b <<<,②③成立.故选B.11. A 解析:D 为BC 边中点,OD OC OB 2=+∴, 02=++OC OB OA ,0=+∴OD OA ,即AO OD =,故选A.12. B 解析:设1x 是-x [])(x g f =0的实数根,即=1x [])(1x g f ,则有=)(1x g []{})(1x g f g .令=)(1x g 2x ,则[])(22x f g x =,∴方程[]0)(=-x f g x 有实根,故选B. 13.332π解析: 如图 ,设阴影部分的面积为1S , 则所求的概率为3231π=∆AOB S S . 14. 0192722=++-+y x y x 解析:由题意,可把所求圆的方程设为028*******=-+++-++)(y y x x y x λ,即028*******=--+++++λλλλy x y x ,其圆心坐标为)1313(λλλ+-+-,,代入04=--y x 得041313=-+++-λλλ,解得7-=λ,∴所求圆的方程S 是0192722=++-+y x y x 15.35 解析:I 是21F PF ∆的内心,=D F PF 11ID PI ;=D F PF 22ID PI .∴=ID PI35222121==++c a D F D F PF PF . 16. |2|)(2x x x f -= 解析:若甲、乙、丁正确,丙不正确的一个函数可以是|2|)(2x x x f -=;若乙、丙、丁正确,甲不正确可以是2)(x x f =.答案不唯一,写出一个即可. 17.解:(Ⅰ)根据图象,5.1=A ,-------------------------------------------------------------------------------------------1分πππ=-⋅=)365(2T ,222===πππωT ,---------------------------------------------------------------------------------------3分 于是,)2si n(5.1)(φ+=x x f ,2z k k ∈=+⋅,23πφπ, z k k ∈-=,322ππφ,-----------------------------5分πφ<|| ,32πφ-=∴.函数)(x f 的解析式为)322si n(5.1)(π-=x x f .-------------------------------------------6分 (Ⅱ)设点),(y x P 是函数)(x g 图象上任意一点,点P 关于直线4π=x 对称的点为),('''y x P ,------------------7分12,42''=+=+y y x x π,y y x x -=-=2,2''π.-------------------------------------------------------------------------------9分 ),('''y x P 在函数)(x f 的图象上,∴]32)2(2si n[5.12ππ--=-x y ,化简得2)32si n(5.1+-=πx y .∴函数)(x g 的解析式为2)32si n(5.1)(+-=πx x g .---------------------------------------------------------------------------12分18.解:(Ⅰ)法一:1111D C B A ABCD -是长方体,∴平面//1AB A 平面11C CDD , AB A B A 11平面⊂,111C CDD B A 平面⊄,∴直线A 1B //平面CDD 1C 1.---------------------------------------------------------------------------3分法二:连接1CD ,1111D C B A ABCD -是长方体,∴BC AD D A ////11,且BCAD D A ==11,∴四边形11B C DA 是平行四边形,∴11//CDB A .111C CDD B A 平面⊄,111C CDD CD 平面⊂,∴直线A 1B //平面11C CDD .----------------------------------------------------------------------------------------------------3分 (Ⅱ)设h A A =1, 几何体ABCD - A 1C 1D 1的体积是340. 340111111111=-=∴---C B A B D C B A ABCD D AC ABCD V V V ,------------------------------------------------------------------------------5分 即34022213122=⨯⨯⨯⨯-⨯⨯h h ,解得4=h .--------------------------------------------------------------------------7分 (Ⅲ)法一:如图,连接B D 1,设B D 1的中点为O ,连OD OC OA ,,11,ABCD - A 1B 1C 1D 1是长方体,⊥∴11D A 平面AB A 1,AB A B A 11平面⊂,⊥∴11D A B A 1.----------------------------------------------------8分B D OA 1121=∴.同理B D OC OD 1121==,∴OB OC OD OA ===11. ∴经过A 1、C 1、B 、D 的球的球心为点O .---------------------------------------------------10分2424222222121121=++=++=∴AB A A D A B D .∴πππ24)2(4)(42121=⨯==B D OD S 球.-------------------------------------------------------------------------------12分 法二:A 1、C 1、B 、D 四点同时在长方体ABCD - A 1B 1C 1D 1的外接球上,而空间四边形BD C A 11的外接球是唯一的.所以经过A 1、C 1、B 、D 的球,就是长方体ABCD - A 1B 1C 1D 1的外接球.--------------------------------------------10分设长方体外接球的半径为R ,则244222222=++=R .∴ππ2442==R S 球.-------------------------------------------------------------------------------------------------------12分19. 解:(Ⅰ)设第一小组的频率为x ,则1075.0175.032=++++x x x ,解得125.0=x . 第二小组的频数为10,得抽取顾客的总人数为4025.10210=⨯人.------------------------------------------3分依题意,分数大于80分的学生所在的第四、第五小组的频率和为5.2075.0075.10=+,所以估计本次竞赛的优秀率为%25.----------------------------------------------------6分(Ⅱ)落在)5.0.5,650(和)5.100,5.90(的学生数分别为54025.10=⨯;34075.00=⨯.-----------------7分 落在)5.0.5,650(的学生设为:)5,4,3,2,1(=i A i ;落在)5.100,5.90(的学生设为:)3,2,1(=j B j , 则从这8人中任取两人的基本事件为:),,(),,(),,(),,(),,(),,(322212312111B A B A B A B A B A B A),,(),,(),,(),,(),,(),,(342414332313B A B A B A B A B A B A ),(),,(),,(352515B A B A B A ,),,(),,(),,(323121A A A A A A ),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(54534352423251413121B B B B B B B B B B B B B B B B B B B B 共28个基本事件;------------------------------------------------------------------------------------------------------------------------------------10分 其中“成绩落在同一组”包括),,(),,(),,(323121A A A A A A),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(54534352423251413121B B B B B B B B B B B B B B B B B B B B 共包含13个基本事件,故所求概率为2813.----------------------------------------------12分20. 解:(Ⅰ)由题意得:12n n a a αβ++=,1na αβ⋅=,代入(1)(1)2αβ--=整理得: 1111()323n n a a +-=--,---------------------------------------------------------------------------------------------------4分当113n n a a +==时方程无实数根,∴13n a ≠,由等比数列的定义知:1{}3n a -是以11833a -=为首项,公比为12-的等比数列.-----------------------6分(Ⅱ)由(1)知1181()332n n a --=⨯-,∴1811()323n n a -=⨯-+. -------------------------------------------------------------------------9分 (Ⅲ)n S 218111[1()()()]32223n n-=+-+-++-+16161()9923n n=-⨯-+ . -------------------------------------------------------------------------12分21. 解:(Ⅰ)设),(y x P ,则),1(y x PC --=,)0,2(=BC ,),1(y x PB ---=,)0,2(-=CB ,---------1分CB PB BC PC ⋅=⋅||||,∴)1(22)()1(22x y x +⋅=⋅-+-,----------------------------------------------------------------4分化简得动点P 的轨迹方程是:x y 42=.-----------------------------------------------------------------------------------------------------------5分(Ⅱ)由于直线l 过点(-4,43),且与抛物线x y 42=交于两个不同点,所以直线l 的斜率一定存在,且不为0.设)4(34:+=-x k y l --------------------------------------------------------------------------------------------------------------6分⎩⎨⎧=+=-x y x k y 4)4(342,消去x 得,0)31616(42=++-k y ky , 0)31616(442>+-=∆k k ,232232-<<--k ,且0≠k . ky y k y y 31616,42121+==+.---------------------------------------------------------------------------------------------------------8分 =-+=-+=+212122111tan tan 1tan tan )tan(x x y y x y x y βαβαβα3316316161616)(41614421212121=-+=-+=-+kk y y y y y y y y ,-------------------------------------------------------------------------------------------------------------------------------------------------------11分,20,0πβαπβα<+<∴<≤,所以6πβα=+67π或.--------------------------------------------------------------------------------------------------12分22. 解:(Ⅰ)x e x x x h x F ln 2)()()(2-=-=ϕ,xe x x e x x F 2222)(2'-=-=, ------------------------------------------------------------------------------------------------------------------------1分022)(2'=-=xex x F ,解得e x =,e x -=(舍)----------------------------------------------------2分∴当e x =时,)(x F 取得极小值,)(x F 极小值=0)(=-=e e e F --------------------------------------------5分(Ⅱ)若函数)(x h 和)(x ϕ存在隔离直线b kx y l +=:,则)()(x b kx x h ϕ≥+≥,由(1)知∴当e x =时,)(x F 取得极小值0.∴e e e h ==)()(ϕ,点),(e e 在b kx y l +=:上.-------------------------------------------------6分∴),(e x k e y -=-∴e k e kx y -+=,b kx x h +≥)(,即02≥+--e k e kx x 在),(+∞-∞∈x 上恒成立. ∴0)2()(422≤-=+--=∆e k e k e k ,e k 2=∴.---------------------------------------------------------8分 代入:l e k e kx y -+=得,y l :=e x e 22-.----------------------------------------------------------------------9分)(x b kx ϕ≥+,即x e e x e ln 222≥-在),0(+∞∈x 上恒成立.即022ln 2≤+-e x e x e 在),0(+∞∈x 上恒成立. 令=)(x g e x e x e 22ln 2+-,xx e e e x e x g )(222)('-=-=,易知当),0(e x ∈时)(x g 递增,当),(+∞∈e x 时)(x g 递减,当e x =时,)(x g 在),0(+∞取最大值,-----------------------------------------------11分 02)()(m ax =+-==e e e e g x g ,即022ln 2≤+-e x e x e 在),0(+∞∈x 上恒成立.-----------------------13分综上所述:函数)(x h 和)(x ϕ存在隔离直线y =e x e 22-.------------------------------------------------------14分。
绝密★启用前2013年普通高等学校招生全国统一考试文 科 数 学(学与考联合体押题卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差 锥体体积公式s =13V S h = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U=R ,设函数y=lg(x-1)的定义域为集合A ,函数y=522++x x 的值域为集合B ,则A∩(C U B)=( )A .[1,2]B .[1,2)C .(1,2]D .(1,2) 2.已知sinθ=54,且sinθ-cosθ>1,则sin2θ=( ) A . -2524 B .-2512 C .-54 D .2524 3.已知等差数列}{n a 满足,0101321=++++a a a a 则有( )A .01011>+a aB .01002<+a aC .0993=+a aD .5151=a4.已知011<<ba ,则下列结论不正确的是( )A .a 2<b 2B .ab<b 2C .2>+abb a D .|a|+|b|>|a+b|5. 下图给出了下一个算法流程图,该算法 流程图的功能是( )A .求a,b,c 三数的最大数B .求a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列6. 已知函数)5(,)0)(3()0(2)(f x x f x x f x则⎪⎩⎪⎨⎧>-≤==( )A .32B .16C .21D .321 7. 若命题“p ∧q”为假,且“⌝p”为假,则( ) A .p 或q 为假 B .q 假 C .q 真 D .不能判断q 的真假??文科数学试卷 第1页(共5页) 文科数学试卷 第2页(共5页)8.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( )A .π12B .π36C .π72D .π1089.函数y=sinxcosx+3cos 32-x 的图象的一个对称中心是( )A )23,32(-π B )23,65(-π C )23,32(π- D )3,3(-π10.甲、乙两棉农,统计连续五年的面积产量(千克∕亩)如下表:则平均产量较高与产量较稳定的分别是( ) A .棉农甲,棉农甲B .棉农甲,棉农乙C .棉农乙,棉农甲D .棉农乙,棉农乙11. 已知函数34)(2+-=x x x f ,集合(){}0)()(,≤+=y f x f y x M , 集合(){}0)()(,≥-=y f x f y x N ,则集合N M 的面积是( )A .4π B .2πC .πD .π212.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,0)(')()()('>+x g x f x g x f ,且0)3(=-f ,则不等式0)()(<x g x f 的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题(本大题共4个小题,每小题5分,共20分.) 13 椭圆19822=++y k x 的离心率为21,则k 的值为________.14. 已知函数),(1222)(R x a a x f xx∈+-+⋅=是奇函数,则实数a 的值________.15. 已知边长分别为a 、b 、c 的三角形ABC 面积为S ,内切圆O 半径为r ,连接OA 、OB 、OC ,则三角形OAB 、OBC 、OAC 的面积分别为21cr 、21ar 、21br ,由S=21cr+21ar+21br 得r=cb a S ++2,类比得若四面体的体积为V ,四个面的面积分别为A 、B 、C 、D ,则内切球的半径R=_____________.16.若数列}{n a 满足}*1112()1nn n na a a a n N a ++==∈-数列满足,,则该数列的前2013项的乘积______.三、解答题:本大题共5小题,共计70分。
2013年高考数学文科押题试卷(附答案)数学(文)试题本试题卷分第1卷(选择题)和第Ⅱ卷(必考题和选考题两部分)。
考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={1,2,3,4,5},B={},下图中阴影部分所表示的集合为A.{0,1,2}B.{1,2}C.{1}C.{0,1}2.复数,在复平面上对应的点位于A.第一象限B.第二象限C.第二象限D.第四象限3.在用二分法求方程的一个近似解时,已将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为A.(1,4,2)B.(1,1,4)C.(1,)D.4.已知命题使得命题,下列命题为真的是A.pqB.(C.D.5.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为A.B.C.D.6.设函数是A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数7.如图是计算函数的值的程序框图,在①、②、③处分别应填入的是A.y=ln(一x),y=0,y=2xB.y=0,y=2x,y=In(一x)C.y=ln(一x),y=2z,y=0D.y=0,y=ln(一x),y=2x8.如果数列是首项为1,公比为的等比数列,则等于A.B.—32C.D.329.在同一坐标系中画出函数的图象,可能正确的是10.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)•(b一c)=0,则|c|的最大值是A.1B.C.2D.11.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6则该球的表面积为A.16B.24C.32D.4812.过双曲线的右顶点A作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若A,B,C三点的横坐标成等比数列,则双曲线的离心率为A.B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第2l题为必考题,每个试题考生都必须做答。
2013高考密破仿真—---预测卷(十一)考试时间:120分钟满分:150分注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致务必在答题卡背面规定的地方填写姓名和座位号后两位2.答第1卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号黑.如需改动,用橡皮擦干净后,再选涂其他答案标号3.答第Ⅱ卷时,必须使用0 5毫米的黑色墨水签字笔在答题卡上书.....写.,要求字体工整、笔迹清晰作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0 5毫米的黑色墨水签字笔描清楚必须在题号所指示的答题区域作答,超出答题区域书写的.........答案..无.效,在试题卷、草稿纸上答题无效.................4.考试结束,务必将试题卷和答题卡一并上交第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设{}{}4|,4|2<=<=xx Q x x P ,则( )A .Q P ⊆B .P Q ⊆C .Q C P R⊆ D .P C Q R⊆2.i 是虚数单位,ii -25=___________;3.函数()()()1ln 23x x f x x --=-的零点有( )A .0个B .1个C .2个D .3个【解析】选A 因为函数的定义域为(2,3)(3,)+∞,函数f(x)的没有零点.4。
下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y 2.5 t4 4.5 根据上表提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,那么表中t 的值为A. 3 B 。
3.15 C. 3.5 D 。
4。
55.设O 为坐标原点,(1,1)A ,若点(,)B x y 满足2210101x y x y ⎧+≥⎪≤≤⎨⎪≤≤⎩,则OA OB 取得最小值时,点B 的个数是A。
开始 0k =k =k +131n n =+150?n >输出k ,n结束是 否输入n2013年高考数学模拟试卷(文)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B xx =>,则A B =A .B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 为虚数单位,则212ii-++的值等于 ( )A. i -B.12i -C. 1-D.2.定义{|,,}x A B z z x y x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 4.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan()42y x ππ=-的部分图象如图所示,则()O AO BA B +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( ) A.72种 B.36种 C.144种 D.108种O xyAB第6题图图18.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
2013新课标高考考前密押卷数学 (文科 )试题参考公式:柱体的体积公式V=Sh ,其中 S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=1Shh 是锥体的高。
,其中 S 是锥体的底面积,3如果事件 A,B互斥 , 那么 P(A+B)=P(A)+P(B);R如果事件 A,B 独立 ,那么 P(AB)=P(A)P(B).事件 A 在一次试验中发生的概率是p ,那么 n 次独立重复试验中事件 A 恰好发生k次的概率 : P k)C k p k(1p n k(k0,1,2,n .n (n), )第Ⅰ卷 (共 60分)一、选择题:本大题共12小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 .已知全集U R.集合A x | x3, B x | log2 x 0 ,则 A C U B ()A. x 1 x 3B. x | x 0或1 x 3C.x x 3D.x 1 x 32 .设z1i (i是虚数单位),则2z zA .2B .2 i C.2 i D .2 2i3.某几何体的俯视图是如右图所示的矩形,正视图 (或称主视图 )是一个底边长为 8 、高为 5 的等腰三角形,侧视图 (或称左视图)是一个底边长为6 、高为 5 的等腰三角形.则该儿何体的体积为 ()A.24 B .80C. 64 D .2404 .已知向量a(1,2),b(1,0), c(3,4) .若为实数, (b a) c ,则A .3B .11C .1D .3113255. 已知直线 l 1 : x(a2)y 20, l 2 : (a 2)x ay 1 0,则“ a1”是“l1l 2的()A .充分不必要条件 B. 必要不充分条件C.充要条件 D. 既不充分也不必要条件6. 把函数y sin( x) 图象上各点的横坐标缩短到原来的1倍(纵坐标不变),再将图象62向右平移个单位,那么所得图象的一条对称轴方程为3A .x8B .x C .x D .x4247. 已知函数①y sin x cos x ,②y2 2 sin x cosx ,则下列结论正确的是( A )两个函数的图象均关于点(,0) 成中心对称4( B )①的纵坐标不变,横坐标扩大为原来的 2 倍,再向右平移个单位即得②4( C )两个函数在区间(,) 上都是单调递增函数4 4(D )两个函数的最小正周期相同8 、已知等差数列{ a n } 的前 n 项和为18,若 S3 1, a n a n 1 a n 2 3 ,则 n 的值为()A.21B.9C.27D.369 .现有四个函数:①y xsin x②y x cos x③y x cox④y x2 x的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③ B .①④③②C.①④②③ D .③④②①10、已知 x , y 的取值如下表:X0134y 2.2 4.3 4.8 6.7从散点图可以看出y 与 x 线性相关,且回归方程为y0.95x a ,则 a () A, 3.2 , B. 2.6C, 2.8 D. 2.0.11.已知双曲线的方程为x 2y 21(a 0, b0) ,过左焦点F1作斜率为3的直线交双曲线的右支于点P,且 y 轴平分线段F1P , 则双曲线的离心率为()A.3B.51C.2D.2312 、已知定义在R 上的奇函数 f ( x) 满足 f (x2e) f ( x) (其中 e 2.7182),且在区间 e,2e 上是减函数,令a ln 2, b ln 3 , c ln 5,则()235A、f (a) f (b) f (c) B 、f (b) f (c) f (a)C、f ( c) f (a) f (b) D 、f (c) f (b) f (a)第卷二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。
绝密★启用前 试卷类型:A理科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-第Ⅰ卷 (选择题 满分40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -12.设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( ) A .{x|-2≤x <1} B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}3.下列函数中,最小值为2的是( ) A .21222+++=x x yB .xx y 12+=C .)220)(22(<<-=x x x yD .1222++=x x y 4.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(xx a -的展开式中含2x项的系数是( )XYOA .192B .182C .-192D .-182 5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.57.已知方程20ax bx c ++= ,其中a 、b 、c 是非零向量,且a 、b不共线,则该方程( )A .至多有一个解B .至少有一个解C .至多有两个解D .可能有无数个解8.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函 数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51( B .),5()31,(+∞⋃-∞ C .)5,31(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共6小题,每小题5分,满分30分)9.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ONE”,“WORLD”,“ONE”,“DREAM”的四张卡片随机排成一排,若卡片按从左到右的顺序排成“ONE WORLD ONE DREAM”,则孩子会得到父母的奖励,那么孩子受奖励的概率为 .12.已知三棱锥P ABC -的四个顶点均在半径为3的球面上,且PA 、PB 、PC 两两互相垂直,则三棱锥P ABC -的侧面积的最大值为 .13.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C = .14.设直角三角形的两条直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有 ①2222h c b a +>+, ②3333h c b a +<+,③4444h c b a +>+,④5555h c b a +<+.其中正确结论的序号是 ;进一步类比得到的一般结论是 .三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.16.(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ; (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.17.(本小题满分14分)已知几何体BCDE A -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)探究在DE 上是否存在点Q ,使得BQ AQ ⊥,并说明理由.开始输入n11=a ,12=a ,1=ii i i a a a 6512-=++n i ≥1+=i i否是输出2+i a结束18.(本小题满分14分)某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=,在销售淡季近似地符合函数关系:2)(b kx x r +=,其中21210,0b b k b b k 、、且、><为常数; ②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (Ⅰ)填出表格中空格的内容:数量关系销售关系标价(元/件)销售量)(x r (件)(含k 、1b 或2b )销售总利润y (元)与标价x (元/件)的函数关系式旺季 x 1)(b kx x r +=淡季x(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件? 19.(本小题满分14分)已知数列}{n a 满足如图所示的程序框图. (Ⅰ)写出数列}{n a 的一个递推关系式; (Ⅱ)证明:}3{1n n a a -+是等比数列, 并求}{n a 的通项公式;(Ⅲ)求数列)}3({1-+n n a n 的前n 项和n T .20.(本小题满分14分)已知函数2()2ln .f x x x a x =++ (Ⅰ)若函数()(0,1)f x 在区间上是单调函数, 求实数a 的取值范围;(Ⅱ)当t ≥1时,不等式(21)2()3f t f t -≥- 恒成立,求实数a 的取值范围.正视图 侧视图俯视图55 3 4 34 绝密★启用前 试卷类型:A汕头市2010~2011学年度普通高中毕业班教学质量监测试题文科数学本试卷分选择题和非选择题两部分,共 4 页,20题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷 (选择题 满分50分)一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -1 2.设{}{}(,),()()cos 2sin 2M a b N f x f x a x b x ==|=+平面内的点,给出M 到N 的映射:(,)()cos 2sin 2f a b f x a x b x →=+,则点(1,3)的象()f x 的最小正周期为( )A .2π B .4πC .πD .2π3.在等差数列{}n a 中,已知5710a a +=,n S 是数列{}n a 的前n 项和,则11S =( )A .45B .50C .55D .604.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .72B .66C .60D .305.在边长为1的等边ABC ∆中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则( )A .32-B .0C .32D .3XYO频率组距0.100.25 0.409 10 11 12 13 14时间6.已知函数1()x f x a =,2()a f x x =,3()log a f x x =(其中0a >且1a ≠),在同一坐标系中画出其中两个函数在x ≥0且y ≥0的范围内的大致图象,其中正确的是( )x y O1 Ax y O1 B 1xy O1 C 1xyO 1D17.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( ) A .6万元B .8万元C .10万元D .12万元8.若m 、n 为两条不重合的直线,α、β为两个 不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .49.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第 三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 10.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则22++a b 的取值范围是( )A .)21,31(B .),3()21,(+∞⋃-∞C .)3,21(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共4小题,每小题5分,满分20分)11.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .12.已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 .13.曲线3141,33y x x ⎛⎫=+ ⎪⎝⎭在点处的切线与两坐标轴所围成的三角形面积是 .14.观察以下等式:11=123+= 1236++=123410+++= 1234515++++=311=33129+= 33312336++= 33331234100+++= 3333312345225++++=可以推测3333123...n ++++= (用含有n 的式子表示,其中n 为自然数).三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知不等式()221,(0)x a a -≤>的解集为A ,函数22lg)(+-=x x x f 的定义域为B. (Ⅰ)若φ=⋂B A ,求a 的取值范围;(Ⅱ)证明函数22lg)(+-=x x x f 的图象关于原点对称.16.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.17.(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀FG BDE AC后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设(,)i j 表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.18.(本题满分14分)如图,三角形ABC 中,AC=BC=AB 22,ABED 是边长为1 的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点.(Ⅰ)求证:GF//底面ABC ; (Ⅱ)求证:AC ⊥平面EBC ; (Ⅲ)求几何体ADEBC 的体积V .19.(本题满分14分)某品牌电视生产厂家有A 、B 两种型号的电视机参加了家电下乡活动,若厂家A 、B 对两种型号的电视机的投放金额分别为p 、q 万元,农民购买电视机获得的补贴分别为101p 、52ln q万元,已知A 、B 两种型号的电视机的投放总额为10万元,且A 、B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln 4 1.4≈).20.(本题满分14分)已知二次函数2()f x ax bx =+的图像过点(4,0)n -,且'(0)2f n =,n N *∈.(Ⅰ)求()f x 的解析式;(Ⅱ)若数列{}n a 满足'111()n n f a a +='(0)f n ='111()n nf a a +=,且14a =,求数列{}n a 的通项公式;(Ⅲ)记1n n n b a a +=,数列{}n b 的前n 项和n T ,求证:423n T ≤< .汕头市2010——2011学年高中毕业班教学质量监测理科数学参考答案及评分意见一、选择题:本小题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BCDCAAAC二、填空题(本大题共6小题,每小题5分,满分30分)9.20; 10.3; 11.121; 12.18; 13.1; 14.②④, *)(N n h c b a n n n n ∈+<+。
2013年普通高考文科数学仿真试题(三)本试卷分第I 卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、演算步骤或推证过程.第I 卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的. 1.复数121iz i-=-(i 为虚数单位)在复平面上对应的点位于 A.第一象限 B.第二象限C.第三象限D.第四象限2.函数()()2lg 1f x x =+A.)(2,00,2-⋃⎡⎤⎣⎦B.)(1,00,2-⋃⎡⎤⎣⎦C.[]2,2-D.(]1,2-3.已知等比数列{}122373,6n a a a a a +=+==满足,则aA.64B.81C.128D.2434.在给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若,21a b a b a ->则>”的否命题为“若,21a b a b a ≤≤-则”;③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+≤”;④在ABC ∆中,“A B >”是“sin sin A B >”的充要条件.其中不正确的命题的个数是A.4B.3C.2D.15.设变量x,y 满足约束条件,236,y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+的最小值为 A.2 B.3 C.4 D.96.执行如图所示的程序框图,若输入x=2,则输出y 的值为A.2B.5C.11D.237.如图,梯形//2ABCD AB CD AB CD =中,,且,对角线AC 、DB 相交于点O.若,,AD a AB b AO ===A.4233a b - B.2133a b + C.2133a b -D.1233a b + 8.已知集合{}21230,lg 3x A x x x B x y x -⎧⎫=--==⎨⎬+⎩⎭<,在区间()3,3-上任取一实数x ,则“x A B ∈⋂”的概率为 A.14B.18C.13D.1129.函数()22cos 0963x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为A.2B.0C.1-D.1-10.函数()()cos lg f x x x =-的部分图象是11.曲线()2120C y px p =:>的焦点F 恰好是曲线()22222:1x y C a a b-=>0,b >0的右焦点,且曲线1C 与曲线2C 交点连线过点F ,则曲线2C 的离心率是1112.已知函数()2,0,0ln ,0,kx x f x k x x +≤⎧=⎨⎩若>>,则函数()1y f x =-的零点个数是A.1B.2C.3D.4第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.下图是某几何体的三视图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是_________.14.为了调查某厂生产某种产品的能力,随机抽查了部分工人某天生产该产品的数量,产品数量的分组区间为[)[)[)[)[)45,55,55,65,65,75,75,85,85,95,由此得到频率分布直方图如图.已知样本中一天生产该产品数量在[)45,65有12人,则样本中一天生产该产品数量在[)75,95的人数为_________.15.已知两点()()222,0,0220A B y x -+-=,,点C 是圆x 上任意一点,则△ABC 面积的最小值是________.16.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)⋅⋅⋅则第57个数对是______.三、解答题:本大题共6小题,共74分,答题时要写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,已知445,cos 5A B ==. (I )求sinC 的值;(II )若BC=10,D 为AB 的中点,求CD 的长.18.(本小题满分12分)某公司有男职员45名、女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组。
文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集R U =,集合}03|{},0)1)(2(|{<≤-=>-+=x x B x x x A ,则)(B C A U 为 (A) }02|{≥-<x x x 或 (B) }12|{>-<x x x 或(C)}03|{≥-<x x x 或 (D) }13|{>-<x x x 或 2. 已知R a ∈,且ii a -+-1为实数,则a 等于(A) 1 (B) 1- (C)2 (D)2-3.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是(A)(B)(C)(D) 834. 命题:“若12<x ,则11<<-x ”的逆否命题是(A)若12≥x ,则11-≤≥x x ,或 (B)若11<<-x ,则12<x (C)若11-<>x x ,或,则12>x (D)若11-≤≥x x ,或,则12≥x5.当x y 、满足不等式组1101x y y x ⎧-≤⎪≥⎨⎪≤+⎩时,目标函数t x y =+的最大值是(A) 1 (B) 2 (C) 3 (D) 5 6. 将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为(A)π23 (B)π32 (C)6π(D)34π7.对变量,x y 有观测数据(,)(1,2,,10)i i x y i = ,得散点图1;对变量,u v 有观测数据(,)(1,2,,10)i i u v i = ,得散点图2. 由这两个散点图可以判断.(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关俯视图8. 如图,是一个计算1922221++++ 的程序框图,则其中空白的判断框内,应填入 下列四个选项中的(A)i 19≥ (B) i 20≥ (C)i 19≤ (D)i 20≤9. 已知函数)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f 是R 上的偶函数,则ϕ的值为(A)6π(B)3π(C)32π (D)65π10.已知ABC ∆的三边长为c b a 、、,满足直线0=++c by ax 与圆122=+y x 相离,则ABC ∆是 (A )锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 以上情况都有可能 11. 已知集合}),()(|)({R x x f x f x f M ∈=-=,}),()(|)({R x x f x f x f N ∈-=-=,}),1()1(|)({R x x f x f x f P ∈+=-=,}),1()1(|)({R x x f x f x f Q ∈+-=-=,若R x x x f ∈-=,)1()(3,则(A)M x f ∈)( (B) N x f ∈)( (C)P x f ∈)( (D)Q x f ∈)(12. 王先生购买了一步手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A) 300秒 (B) 400秒 (C) 500秒 (D) 600秒 二.填空题:本大题共4小题,每小题4分,共16分.13. 设向量(12)(23)a b == ,,,,若向量a b λ+ 与向量(47)c =--,共线,则=λ .14.ΔABC 中,3=a ,2=b ,45=∠B ,则A ∠= .15.考察下列三个命题,是否需要在“ ”处添加一个条件,才能构成真命题(其中m l ,为直线,βα,为平面)?如需要,请填这个条件,如不需要,请把“ ”划掉. ① αα//_____//l m l m ⇒⎪⎭⎪⎬⎫⊂ ② αα//_____////l m ml ⇒⎪⎭⎪⎬⎫③ αβαβ⊥⇒⎪⎭⎪⎬⎫⊥l l _____// 16. 若从点O 所做的两条射线OM ,ON 上分别有点M 1,M 2,与点N 1,N 2,则面积之比 11221122OM N OM N S O M O N S O M O N ∆∆⋅=⋅.若从点O 所做的不在同一平面内的三条射线OP ,OQ ,OR 上分别有点P 1,P 2,Q 1,Q 2,R 1,R 2,则能推导出的结论是 . 三.解答题:本大题共6小题,共74分. 17. (本小题满分12分)已知函数.cos2)62sin()62sin()(2x x x x f +-++=ππ(Ⅰ)求)(x f 的最小正周期和单调递增区间; (Ⅱ)求使)(x f ≥2的x 的取值范围.18. (本小题满分12分)在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,AB // CD ,PAD ∆是等边三角形,已知BD = 2AD =8, AB = 2DC = 54,设M 是PC 上一点, (Ⅰ)证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P - ABCD 的体积.19. (本小题满分12分)已知关于x 的一元二次函数14)(2+-=bx ax x f .(Ⅰ)设集合}3211{,,,-=P 和}3,2,1,1,2{--=Q 分别从P ,Q 中各取一个数作为a ,b .求函数)(x f y =在区间),1[+∞是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求函数)(x f y =在区间),1[+∞是增函数的概率.20. (本小题满分12分)设函数b x x g ax x x f +=+=232)(,)(,已知它们的图象在1=x 处有相同的切线. (Ⅰ)求函数)(x f 和)(x g 的解析式;(Ⅱ)若函数)()()(x g m x f x F ⋅-=在区间]3,21[上是减函数,求实数m 的取值范围.21. (本小题满分12分)已知中心在原点,焦点在x 轴上,离心率为552的椭圆的一个顶点是抛物线241x y =的焦点 .(Ⅰ)求椭圆方程;(Ⅱ)若直线l 过点),(02F 且交椭圆于B A 、两点,交y 轴于点M ,且.,21BF MB AF MA λλ==求21λλ+的值.22. (本小题满分14分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a .(Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n nn ∈+=,若数列}{n b 成等差数列,求实数t ;(Ⅲ)求数列}{n a 的前n 项和n S .附:答案及评分标准:一.选择题:AACDD CCBAC DB1. 解析:A.{|12}A x x x =><-或;{|03}U C B x x x =≥<-或,得{|02}U A C B x x x =≥<- 或.2. 解析:A.2()(1)111122a i a i i a a i ii-+-++---==+--,∴1a =.3. 解析:C.该几何体为正四棱锥,底面边长为222=,其体积12233V =⨯⨯⨯=.4. 解析:D.“若p ,则q ”的逆否命题为“若q ⌝,则p ⌝”,易知应选D.5. 解析:D.如图,易求点B 的坐标为(2,3),所以当2,3x y ==时t 取最大值5.6. 解析:C. 最大球为正方体的内切球,则内切球的半径为12,341()326V ππ=⋅=.7. 解析:C.由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.8. 解析:B.当1922221++++ 时,19=i ,而1i i =+,此时20i =,输出S 为1922221++++ .9. 解析:A .)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f =12(sin(2)))22x x φφ+++=2sin(2)3x πφ++;∵()f x 为偶函数,∴()32k k Z ππφπ+=+∈,又∵0φπ<<,∴6πφ=.10. 解析:C. 根据题意,圆心(0,0)到直线0=++c by ax 的距离1d =>,∴222c a b >+,故选C.11. 解析:D. ()f x M ∈,则函数()f x 关于y 轴对称;()f x N ∈,则函数()f x 关于原点对称;()f x P ∈,则函数()f x 关于直线1x =对称;()f x Q ∈,则函数()f x 关于(1,0)中心对称;3()(1),f x x x R =-∈关于(1,0)中心对称,故选D.12. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥.二.填空题:13.2;14.3π或32π;15. α⊄l ;α⊄l ;\(划掉);16. 体积之比222111222111OR OQ OP OR OQ OP V V R Q P O R Q P O ⋅⋅⋅⋅=--.13. 解析:2.a b λ+ =(322++λλ,),a b λ+ 与向量(47)c =-- ,共线,则0)4()32()7()2(=-⋅+--⋅+λλ,解得=λ 2.14. 解析:3π或32π.45sin 2sin 3sin sin =⇒=ABb Aa 23sin =⇒A ,A ∠=3π或32π.15. 解析:α⊄l ;α⊄l ;\(划掉).根据线面平行和线面垂直的判定定理,3个位置依次填α⊄l ;α⊄l ;\(划掉).16. 解析:根据结论11221122OM N OM N S O M O N S O M O N ∆∆⋅=⋅可类比得到,在空间中有体积之比222111222111OR OQ OP OR OQ OP V V R Q P O R Q P O ⋅⋅⋅⋅=--.三.解答题17. (本小题满分12分)已知函数.cos2)62sin()62sin()(2x x x x f +-++=ππ(Ⅰ)求)(x f 的最小正周期和单调递增区间; (Ⅱ)求使)(x f ≥2的x 的取值范围. 解:(Ⅰ)x x x x f 2cos2)62sin()62sin()(+-++=ππ12cos 6sin2cos 6cos2sin 6sin2cos 6cos2sin ++-++=x x x x x ππππ--------------1分12cos 2sin 3++=x x 1)62sin(2++=πx --------------------------------------3分ππωπ===22||2T ------------------------------------------------------------5分Z k k x k ∈+≤+≤+-,226222πππππ,Z k k x k ∈+≤≤+-∴,63ππππ,函数)(x f 的递增区间是Z k k k ∈++-∴],6,3[ππππ-----------------------------7分(Ⅱ)由()2f x ≥ 得2sin(2)126x π++≥, 21)62sin(≥+∴πx πππππ6526262+≤+≤+∴k x k )(Z k ∈----------------------------9分)(3Z k k x k ∈+≤≤∴πππ ,2)(≥∴x f 的x 的取值范围是},3|{Z k k x k x ∈+≤≤πππ---------------------------12分18. (本小题满分12分)在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,AB // CD ,PAD ∆是等边三角形,已知BD = 2AD =8, AB = 2DC = 54,设M 是PC 上一点, (Ⅰ)证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P - ABCD 的体积.证明:(Ⅰ)AB =54,BD =8, AD =4,则AB 2 = BD 2+AD 2.∴BD ⊥AD .------------------------------------------2分 设AD 的中点为E ,连接AE ,因为PAD ∆是等边三角形,所以PE ⊥AD ,又平面PAD ⊥平面ABCD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,------------------------------------------4分 BD ⊂平面ABCD ,∴PE ⊥BD .E PE AD =⋂,∴BD ⊥平面PADBD ⊂平面BDM ,∴平面MBD ⊥平面P AD .-------------------------------------------------------------------------6分 解(Ⅱ)3223==AD PE ,----------------------------------------------------------------------------------------8分ABCD S 梯形==+∆∆BCD ABD S S ABD ABD ABD S S S ∆∆∆=+2321=2484432123=⋅⋅=⋅⋅⋅DB AD .--------------------------------------------------------------10分 316322431=⋅⋅=-ABCD P V ---------------------------------------------------------------12分19. (本小题满分12分)已知关于x 的一元二次函数14)(2+-=bx axx f(Ⅰ)设集合}3211{,,,-=P 和}3,2,1,1,2{--=Q 分别从P ,Q 中各取一个数作为a ,b .求函数)(x f y =在区间),1[+∞是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求函数)(x f y =在区间),1[+∞是增函数的概率. 解:(Ⅰ)分别从P ,Q 中各取一个数作为a ,b 全部可能的基本结果有:(-1,-2),(-1,-1),(-1,1),(-1,2),(-1,3),(1,-2),(1,-1),(1,1),(1,2),(1,3),(2,-2),(2,-1),(2,1),(2,2),(2,3),(3,-2),(3,-1),(3,1),,(3,2),(3,3).共20个基本结果.-------------------------------------------------------------------------------3分函数14)(2+-=bx axx f 的对称轴a bx 2=,要使函数)(x f 在),1[+∞上是增函数,需满足⎪⎩⎪⎨⎧≤>120ab a , ----------------------------------------------------------------------------------------------------------------------------------4分于是满足条件的基本结果为:(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3,1)共8个.函数)(x f y =在区间),1[+∞是增函数的概率52208==P .----------------------------------------------------------6分(Ⅱ)⎪⎩⎪⎨⎧>>≤-+0008y x y x 所表示的区域如图OAB ∆所示,从区域内取点且函数)(x f y =在),1[+∞上是增函数需满足 的条件⎪⎩⎪⎨⎧≤>>200x y y x 如图阴影部分OAC ∆所示.-----------------------------------------------------------------------------9分解⎪⎩⎪⎨⎧==+28x y y x 得C (38,316).---------------------------------------------------------------------------------------10分 函数)(x f y =在区间),1[+∞是增函数的概率OABOAC S S P ∆∆=31838==----------------------------------------12分20. (本小题满分12分)设函数b x x g ax x x f +=+=232)(,)(,已知它们的图象在1=x 处有相同的切线.(Ⅰ)求函数)(x f 和)(x g 的解析式;(Ⅱ)若函数)()()(x g m x f x F ⋅-=在区间]3,21[上是减函数,求实数m 的取值范围.解:(Ⅰ)根据题意,)1()1(),1()1(''g f g f ==;--------------------------------------------------------------2分4)1(,4)(''==g x x g ,又∵a x x f +=2'3)(,----------------------------------------------------------------------3分∴41(3)1(''==+=)g a f ,∴1=a ;21)1(=+=a f ,∴2)1(2)1(==+=g b g ,得0=b .---5分∴函数)(x f 与)(x g 的解析式为:x x x f +=3)(,22)(x x g =------------------------------------------6分 (Ⅱ)232)()()(mx x x x g m x f x F -+=⋅-=;143)(2'+-=mx x x F ------------------------------7分 ∵函数)(x F 在区间]3,21[上是减函数,∴0143)(2'≤+-=mx x x F 在区间]3,21[上恒成立.-----------8分⎪⎩⎪⎨⎧≤≤0)3(0)21('F F ‘---------------------------------------------------------------------------------------------------------------10分 =⎪⎩⎪⎨⎧≤+⨯-⨯≤+⨯-⨯013433012144132m m 37≥⇒m . 实数m 的取值范围是),37[+∞∈m -------------------------------------------------------------------------------------12分21. (本小题满分12分)已知中心在原点,焦点在x 轴上,离心率为552的椭圆的一个顶点是抛物线241x y =的焦点 .(Ⅰ)求椭圆方程;(Ⅱ)若直线l 过点),(02F 且交椭圆于B A 、两点,交y 轴于点M ,且.,21BF MB AF MA λλ==求21λλ+的值.解:(Ⅰ) 设椭圆的方程为)0(12222>>=+b a by ax ;∵241x y =y x42=⇒的焦点坐标为(0,1),∴1=b . -------------------------------------------------------------------------------------2分⇒==552a c e 5412222=-=a a ac ,得5=a .--------------------------------------------------------------------4分∴所求的椭圆的方程为1522=+yx.-----------------------------------------------------------5分(Ⅱ)因为点),(02F 在椭圆内部,且直线与y 轴相交,所以直线l 不与x 轴垂直,斜率一定存在.设l :)2(-=x k y ------------------------------------------------------------------------------------------------------------6分则052020)51(15)2(222222=-+-+⇒⎪⎩⎪⎨⎧=+-=k x k k x y x x k y --------------- ①设),0(),,(),,(02211y M y x B y x A由①得2221222151520;5120kkx x kkx x +-=+=+,---------------------------------------------------------------8分1M A AF λ= 即 1101111,)(2,)M A x y y AF x y λλ=-==--(得110111,)(2,)x y y x y λ-=--(,111(2)x x λ=-即1112x x λ=-,同理2222x x λ=-------------------------------------------------------------------------------------------------9分12λλ+=112x x -+222x x -=121212122()242()x x x x x x x x +--++=222222222222202052()2()4040101515102020542040542()1515kk k k k k k k k k k k---+++==--+---+++ -----------------------------------------------------------------------------------------------------------------------------------------12分 22. (本小题满分14分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n nn ∈+=,若数列}{n b 成等差数列,求实数t ;(Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a n n n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2n n n n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n nn a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------6分 1111122n n nn a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =.----------------------------------------------------------------------------------------------8分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n nn b a +=+=;得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------10分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅- -----------①2n S =23325272(21)22nn n ⋅+⋅+⋅+++⋅- --------------------② ① - ② 得213222222(21)2n nn S n n --=+⋅+⋅++⋅-+⋅+ --------------------------------------------11分11 233222(21)2n n n n =++++-+⋅+ 14(12)3(21)212n nn n --=+-+⋅+- =(21)21n n n -+⋅+-.所以(21)21n n S n n =-⋅-+*()n N ∈-------------------------------------------------------------14分.解法二:(Ⅱ)))((21*N n t a b n n n ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈ 1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t t a a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------8分。
2013年高三文科数学模拟试题(附答案)骞夸笢鐪佹儬宸炲競2013枃绉戯級?0鍒嗭級ぇ棰樺叡l0椤规槸绗﹀悎棰樼洰瑕佹眰鐨勶紟姣忓皬棰?鍒嗭紝婊″垎50鍒嗭紟 1.鈥?鈥濈殑鍚﹀懡棰樻槸( )锛?A. B. C. D. 2.鍔犲瘑浼犺緭锛屽彂閫佹柟鐢辨槑鏂?瀵嗘枃锛堝姞瀵嗭級锛屾帴鍙楁柟鐢卞瘑鏂?鏄庢枃锛堣В?瀵瑰簲瀵嗘枃锛屼緥濡傦紝鏄庢枃瀵瑰簲瀵嗘枃锛庡綋鎺ュ彈鏂规敹鍒板瘑鏂?鏃讹紝鍒欒В瀵嗗緱鍒扮殑鏄庢枃涓猴紙锛夛紟A锛?4锛?锛?锛? B锛?7锛?锛?锛? C锛?6锛?锛?锛? D锛?1锛?锛?锛? 3.宸茬煡鍚戦噺锛?锛岃嫢锛屽垯瀹炴暟鐨勫€肩瓑浜庯紙锛夛紟 A. B. C. D. 4.?鍊嶏紝鍒欐き鍦嗙殑绂诲績鐜囩瓑浜庯紙锛夛紟A锛?B锛?C锛?D锛?5.鍦ㄤ竴娆″?宸茬煡璇ュ皬缁勭殑骞冲潎鎴愮哗涓??锛夛紟锛?锛?锛?锛?6. ?锛夛紟锛?锛?锛?锛?7.涓や釜瑙嗗浘鐩稿悓鐨勬槸锛?銆€锛夛紟A锛庘憼鈶?B锛庘憼鈶?C锛庘憼鈶?D锛庘憽鈶?8.濡傛灉鎵ц?锛?锛夛紟锛★紟2450 锛?2500 锛o紟2550 锛わ紟2652 9.灏嗗嚱鏁?鐨勫浘璞″厛鍚戝乏骞崇Щ锛岀劧鍚庡皢鎵€寰楀浘璞′笂ョ殑鍊嶏紙绾靛潗鏍囦笉鍙橈級锛屽垯鎵€寰楀埌鐨勫浘璞?瀵瑰簲鐨勫嚱鏁拌В鏋愬紡涓猴紙锛夛紟A锛?B锛?C锛?D锛?10.宸茬煡鍏ㄩ泦R锛岄泦鍚?,>b>0锛?鍒欐湁( )锛?A. B. C. D. ?00鍒嗭級5?4锝?5棰樻槸閫夊仛棰樺緱鍒嗭紟姣忓皬棰?鍒嗭紝婊″垎20鍒嗭紟11锛庡寲绠€锛?锛?12. 宸茬煡R涓婄殑鍑芥暟锛屼笖瀵逛换鎰?锛岄兘鏈夛細锛屽張鍒?锛?13.鑻ュ疄鏁?婊¤冻鏉′欢鐨勬渶澶у€间负_____ 锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰??涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у€兼槸锛?15. (?濡傚彸鍥炬墍绀猴紝鐨勭洿寰勶紝锛?锛?锛屽垯锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.12鍒嗭級鍦ㄢ柍ABC鎵€瀵圭殑杈癸紝涓旀弧瓒?锛?(鈪?鐨勫ぇ灏忥紱(鈪?璁?锛屾眰鐨勬渶灏忓€? 17锛??4鍒?逛綋锛?锛孍涓烘1鐨勪腑鐐癸紟(鈪? 姹傝瘉锛?锛?(鈪? 姹傝瘉锛?骞抽潰锛?锛堚參锛夋眰涓夋1閿?18?2鍒嗭級鏈夋湅锛?(鈪?姹備粬涔樼伀杞︽垨椋炴満鏉ョ殑姒傜巼锛?(鈪?姹?锛堚參)19.14鍒嗭級璁惧嚱鏁?鐨勫浘璞″湪鐐?澶勭殑鍒囩嚎鐨勬枩鐜囦负锛屼笖褰?鏃?鏈夋瀬鍊硷紟(鈪?姹?鐨勫€硷紱(鈪?姹?鐨勬墍鏈夋瀬鍊硷紟20. (?4鍒?宸茬煡鍦?锛?鍜屽渾锛岀洿绾?涓庡渾鐩稿垏浜庣偣锛涘渾鐨勫渾蹇冨湪灏勭嚎涓婏紝鍦?杩囧锛?(鈪?姹傜洿绾?鐨勬柟绋?(鈪?姹傚渾鐨勬柟绋嬶紟21?4鍒嗭級宸茬煡鏁板垪锛涙暟鍒?鐨勫墠n椤瑰拰鏄?锛屼笖锛?(鈪? 姹傛暟鍒??(鈪? 姹傝瘉锛氭暟鍒?(鈪? 璁?锛屾眰鐨勫墠n椤瑰拰锛?骞夸笢鐪佹儬宸炲競2013鍙傝€冪瓟妗?1.瑙f瀽锛氬懡棰樷€?鈥濈殑鍚﹀懡棰樻槸锛氣€?鈥濓紝鏁呴€塁锛?2.瑙f瀽锛氱敱宸茬煡锛屽緱锛?锛屾晠閫?锛?3.瑙f瀽锛氳嫢锛屽垯锛岃В寰?锛庢晠閫?锛?4.瑙f瀽锛氱敱棰樻剰寰?锛屽張锛?鏁呴€?锛?5.愮哗涓??锛岀敱骞冲潎鏁扮殑姒傚康锛屽緱锛?锛?鏁呴€?锛?6.瑙f瀽锛???锛?7.ц?锛?8.?锛岄€?锛?9.瑙f瀽锛?鐨勫浘璞″厛鍚戝乏骞崇Щ锛屾í鍧愭爣鍙樹负鍘熸潵鐨?鍊?锛庣瓟妗堬細锛?10.瑙f瀽锛氱壒娈婂€兼硶锛氫护锛屾湁锛庢晠閫?锛?棰樺彿11 12 13 14 1511.瑙f瀽锛?锛?12.瑙f瀽锛氫护锛屽垯锛屼护锛屽垯锛?鍚岀悊寰?鍗冲綋鏃讹紝鐨勫€间互涓哄懆鏈燂紝鎵€浠?锛?13.瑙f瀽锛氱敱鍥捐薄鐭ワ細褰撳嚱鏁?鐨勫浘璞¤繃鐐?鏃讹紝鍙栧緱鏈€澶у€间负2锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰?愭爣鏂圭▼锛屽渾涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у蹇?鍒扮洿绾?鐨勮窛绂?鍐嶅姞涓婂崐寰?锛庢晠濉?锛?15. (閫夊仛棰?瑙f瀽锛氳繛缁?锛?鍒欏湪鍜?锛?涓?锛屾墍浠?锛?鏁?锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.殑鏈€鍊硷紟瑙o細(鈪?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€?鍒?鍙堚埖锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛?銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€銆€鈥︹€︹€︹€︹€?0鍒?鈭村綋鏃讹紝鍙栧緱鏈€灏忓€间负锛?鈥︹€︹€︹€?2鍒?17瑙o細(鈪?璇佹槑锛氳繛缁?锛屽垯// 锛?鈥︹€︹€︹€?鍒?鈭?舰锛屸埓锛庘埖闈?锛屸埓锛?鍙?锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?鍒?鈭?闈?锛屸埓锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夎瘉鏄庯細浣?鐨勪腑鐐笷锛岃繛缁?锛?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鈭村洓杈瑰舰锛?鈥︹€︹€?鍒?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鍙?锛屸埓锛?鈭村洓杈瑰舰洓杈瑰舰锛?// 锛?鈭?锛?锛?鈭村钩闈?闈?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍙?骞抽潰锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?0鍒?锛?锛?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?18瑙o細璁欢锛屽垯锛?锛?锛?锛屼笖浜嬩欢?(鈪?鈥︹€︹€?鍒?(鈪??锛??锛?鈥︹€︹€︹€︹€︹€?鍒嗐€€锛堚參)鐢变簬锛?鈥︹€︹€︹€︹€︹€︹€?2鍒嗐€€19.鏋ц?瑙o細(鈪?鐢卞嚱鏁??锛屸€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屽嵆锛庛€€銆€鈥︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€? 0 + 0锟終鏋佸皬锟絁鏋佸ぇ锟終鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?20锛庢瀽锛氫富瑕佽€冨療鐩寸嚎锛庡渾鐨勬柟绋嬶紝鐩寸嚎涓庡渾鐨勪綅缃瑙o細(鈪?锛堟硶涓€锛夆埖鐐?鍦ㄥ渾涓婏紝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛屽嵆锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堟硶浜岋級褰撶洿绾?鍨傜洿杞存椂锛屼笉绗﹀悎棰樻剰锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?褰撶洿绾?涓?杞翠笉鍨傜洿鏃讹紝璁剧洿绾?鐨勬柟绋嬩负锛屽嵆锛?鍒欏渾蹇?鍒扮洿绾?鐨勮窛绂?锛屽嵆锛?锛岃В寰?锛屸€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒??锛?锛屸埖鍦?杩囧師鐐癸紝鈭?锛?鈭村渾鐨勬柟绋嬩负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭靛渾洿绾?锛屸埓鍦嗗績鍒扮洿绾?锛?鐨勮窛绂伙細锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鏁寸悊寰楋細锛岃В寰?鎴?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?鈭村渾锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?21锛庢瀽锛氫富瑕佽€冨療绛夊樊銆佺瓑姣旀暟鍒楃殑瀹氫箟銆佸紡锛屾眰鏁板垪鐨勫拰鐨勬柟娉曪紟瑙o細(鈪?璁?锛屽垯锛?锛?锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夊綋鏃讹紝锛岀敱锛屽緱锛?鈥︹€︹€︹€︹€︹€︹€?鍒?褰?鏃讹紝锛?锛?鈭?锛屽嵆锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛庛€€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?癸紝涓哄叕姣旂殑绛夋瘮鏁板垪锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚參锛夌敱锛?锛夊彲鐭ワ細锛?銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?鈭?锛?鈥?4鍒?。
2013年毕业班解决方案高考预测卷数学(文科)试卷本试卷共150分.考试时长120分钟.一、 选择题(共40分,每小题5分)1. 已知复数z 满足(1)2,i z z -=则等于( ) A .1i +B .1i -C .1i -+D .1i --2. 如图所示的韦恩图中,A B ,是非空集合,定义A B 表示阴影部分集合.若,x y R ∈,{}A x y ==,{}3,0x B yy x ==>,则AB =( ).A .(2,)+∞B .[)0,1(2,)⋃+∞C .[]0,1(2,)⋃+∞D .[]0,1[2,)⋃+∞ 3. 已知命题,那么命题为( )A .B .C .D .4. 已知数列{}满足,且,则的值是( )A .15 B .15C .5 D .-5 5. 已知三棱锥的正视图与俯视图如右,那么该三棱锥的侧视图可能为( )6. 函数()=sin()f x M x ωϕ(M ωϕ,,是常数0M ,0ω,0ϕπ)的部分图像如图所示,其中A B ,两点之间的距离为5,那么(1)f ( )A .2B .1C .2D .1或27. 抛物线28y x =的焦点为F,O 为坐标原点,若抛物线上一点P 满足:3:2PF PO则,POF △的面积为( )A .B .C .D .8. 定义在R 上的函数满足,当[0,2]时,.若在上的最小值为-1,则nA .5B .4C .3D .2二、 填空题(共30分,每小题5分)9. 如果执行下面的框图,输入5N =,则输出的数等于_______10. 某单位有27名老年人,54名中年人,81名青年人. 为了调查他们的身体情况,用分层抽样的方法从他们中抽取了n 个人进行体检,其中有6名老年人,那么n =______. 11. 在平行四边形ABCD 中,若2,1,60AB AD BAD ==∠=,则A B B D ⋅=___________.:,20x p x R ∀∈>p ⌝,20x x R ∀∈<,20xx R ∃∈≤,20x x R ∀∈≤,20xx R ∃∈<n a *331log 1log ()n n a a n ++=∈N 2469a a a ++=15793log ()a a a ++()f x (2)2()f x f x +=x ∈()(31)(39)x x f x =--()f x [2,22]n n --+()n N *∈名: 校区: 考号: 考场: 密封线内不要答题12. 若变量x y ,满足210201x y x y x ≥,则点2P x y x y ,表示区域的面积为 _______13. 函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数,②存在[],a b D ⊆,使()f x 在[],a b 上的值域为[],b a --,那么()y f x =叫做对称函数,现有k x x f --=2)(是对称函数, 那么k 的取值范围是_____________.14. 如图所示:有三根针和套在一根针上的n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上. (1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的 金属片上面.将n 个金属片从1号针移到3号针最少需要移 动的次数记为;则(Ⅰ) ________(Ⅱ) ________【答案】7(3分) (2分)三、 解答题(共80分) 15. (本题共13分)已知函数f(x)=sinx+sin ()2x x π+,∈R . (1)求f (x )的最小正周期及f (x )的最大值和最小值; (2)若3()4f α=,求sin 2α的值.16. (本题14分)如图,在四棱锥P ABCD 中,PA AD ⊥,AB CD ∥,CD AD ⊥,22ADCD AB ,E F ,分别为PC CD ,的中点,DE EC . (1)求证:平面ABE ⊥平面BEF (2)设PAa ,若三棱锥BPEDV 的体积满足252151515V ,,求实数a 的取值范围()f n (3)f =()f n =(2)21n-FEDCBAP第14题图: 校区: 考号: 考场: 密封线内不要答题17. (本题共13分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012, PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从自然保护区2012年全年全天的PM2.5监测数据中随机抽取12天的数据作为样本,检测值如茎叶图所示(十位为茎,个位为叶)(1)求数据质量为超标数据的平均数与方差(2)从空气质量为二级的数据中任取两个,求这两个数据的和小于100的概率;18. (本题共13分) 已知函数2()=ln f x ax b x 在点(1(1))f ,处的切线方程为31y x .(1)若()f x 在其定义域内的一个子区间11k k ,内不是单调函数,求实数k 的取值范围. (2)若对任意0x ,,均存在13t,,使得32111ln 2()326c t t ct f x ,求c 的取值范围.4978870372068765432PM2.5日均值(微克/立方米)校区: 考号: 考场: 密封线内不要答题19. (本题14分) 椭圆22221(0)x y abab 的左右焦点分别为1(10)F ,,过1F 做与x 轴不重合的直线l 交椭圆于A B ,两点.(1)若2ABF 为正三角形,求椭圆的离心率 (2)若椭圆的离心率满足510e,O 为坐标原点,求证:222OA OBAB20. (本题13分)已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=; (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值; (2)设123m a =+(3m >且m N ∈),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+;(3)若1a 为正整数,求证:当211log n a >+()n N ∈时,都有0n a =;名: 校区: 考号: 考场: 密封线内不要答题2013年毕业班解决方案高考预测卷数学能力测试答案第一部分(选择题共40分)第二部分 填空题 (共30分)9.5610.3611.-3 12. 1 13.92,4k ⎡⎫∈⎪⎢⎣⎭14.(1)7(3分)(2)221第二部分 解答题 (共80分)15.(1)f (x )=sin x +sin ()2x π+=sin x +cos x =()4x π+,f (x )的最小正周期为221T π==π;f (x )最小值为; (2)因为3()4f α=,即sin α+cos 34α=,所以1+2sin αcos 916α=,即2sin αcos 716α=-,即sin 7216α=-.32[2,2],622x k k k Z πππππ-∈++∈∴5[,],36x k k k Z ππππ∈++∈∴()f x 在5[,],36k k k Z ππππ++∈上单调减.·········13分16.(Ⅰ) ,//CD AB ,AD CD ⊥22===AB CD AD ,F 分别为CD 的中点,ABFD ∴为矩形,BF AB ⊥ ················· 2分 EF DC EC DE ⊥∴=, ,又EF AB CD AB ⊥∴,//⊥∴=AE E EF BF , 面BEF ,⊂AE 面ABE , ∴平面ABE ⊥平面BEF ····················· 4分(Ⅱ) EF DC EC DE ⊥∴=, ,又EF PD //,PD AB CD AB ⊥∴,//又PD AB ⊥,所以⊥AB 面PAD ,PA AB ⊥,⊥PA 面ABCD ·····6分 三棱锥PED B -的体积V =BCD E CED B V V --=22221=⨯⨯=∆BCD S ,到面BCD 的距离2a h = BCD E PED B V V --==]15152,1552[32231∈=⨯⨯a a ··········· 10分可得]5152,552[∈a . ·············12 分17.(1)平均数77798488824x,方差222221(7782)(7982)(8482)(8882)18.54s(2)由茎叶图可知,空气质量为二级的数据有五个:47,50,53,57,68任取两个有十种可能结果4750,,4753,,4757,,4768,,5053,,5057,,5068,,5357,,5368,,5768,两个数据的和小于100的结果只有一种:4750,记两个数据的和小于100的事件为A ,则1()10P A18.(1)'()2b f x axx由'(1)3(1)2f f ,得21a b2()=2ln f x x x ,2141'()4xf x xxx,令'()0f x 得12x所以10112112kkk≥,解得312k(2)设22111()ln 2326c g t t t ct ,根据题意可知min min ()()g t f x 由(1)知min 11()()ln 222f x f2'()(1)(1)()g t t c t c t t c当1c 时,'()0g t ≥,()g t 在13t ,上单调递增,min()(1)ln 22cg t g满足min min ()()g t f x 当13c 时,()g t 在1tc ,时单调递减,在3t c ,时单调递增, 32min111()()ln 2626g t g c c c 由321111ln 2ln 26262c c得3320cc ≥,21(22)0c c c ()此时3c. 当3c ≥时()g t 在13,上单调递减min 314()(3)ln 223c g t g31433141(3)ln 2ln 2ln 223232cg综上c 的取值范围是113,,.19.由椭圆的定义知道2121AF AF BF BF∵22AF BF ,∴11AF BF ,即12F F ,为边AB 上的中位线∴12F F AB ⊥在12Rt AF F △中.2cos3043c a 则3c a , (2)设11()A x y ,,22()B x y ,,∵51e,1c ,∴152a①当直线AB 与x 轴垂直时,22211y a b ,22b ya , 2442121222235()31241a b aa OA OBx x y y a a a ,∵2252a ,0OA OB∴AOB ∠恒为钝角,222OAOBAB②当直线AB 不与x 轴垂直时,设直线AB 的方程为:(1)y k x ,代入22221x y ab ①②整理得,222222222220b a k x k a xa k ab ,∴22122222a k x x b a k ,222212222a k ab x x b a k1212OA OBx x y y21212=(1)(1)x x k x x22222242222222()(1)2()=a k a b k a k k b a k b a k2222222222()=k a b a b a b b a k 24222222(31)=k a a a b b a k 令42()31m a a a 由①知()0m a∴AOB ∠恒为钝角,∴222OAOBAB .20.(本题共14分)(1)设12a k =,2a k =,则:322k a k +=,30a =分两种情况: k 是奇数,则2311022a k a --===,1k =,1232,1,0a a a === 若k 是偶数,则23022a ka ===,0k =,1230,0,0a a a === (2)当3m >时,123123423,21,2,2,m m m m a a a a ---=+=+==45122,,2,1,0m m m m n a a a a a ++-======∴1124223n m m m S S +≤=++++=+(3)∵211log n a >+,∴211log n a ->,∴112n a ->由定义可知:1,212,2nnn n n na a a a a a +⎧⎪⎪=≤⎨-⎪⎪⎩是偶数是奇数∴112n n a a +≤∴1211112112n n n n n n a a a a a a a a a ----=⋅⋅⋅≤⋅∴111212n n n a --<⋅= ∵n a N ∈,∴0n a =,综上可知:当211log n a >+()n N ∈时,都有0n a =校区: 考号: 考场: 密封线内不要答题。
2013年高考数学模拟题(文)(二)一、选择题:本大题12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是 A .1 B .3-或1 C .3 或1- D .3-3.下列有关命题的说法正确的是 A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .若q p ∨为真命题,则p 、q 均为真命题; .C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R ,均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.4.设,a b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l a ⊥,l b ⊥”是“l α⊥”的 A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件5.如果不共线向量,a b满足2a b = ,那么向量22a b a b +- 与的夹角为A .6πB .3πC .2πD .23π6.若函数))(12()(a x x xx f -+=为奇函数,则a 的值为A .21B .32 C .43 D .17.若函数321(02)3xy x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是A .4πB .6πC .34π D .56π8.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b,则方程2b x x=有不等实数根的概率为A .14B .12C .34D .259.执行如右图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是A .(42,56]B .(56,72]C .(72,90]D .(42,90)10.若函数21()log ()f x x a x=+-在区间1(,2)2内有零点,则实数a 的取值范围是 A . 25(log ,1]2-- B .25(1,log )2C .25(0,log )2D .25[1,log )211.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M在其准线上的射影为M ',则ABM M '的最大值为A .22 B .23 C .1 D .312.已知函数1)(-=x e x f ,34)(2-+-=x x x g .若有)()(b g a f =,则b 的取值范围为 A .]3,1[ B .]22,22[+- C .)3,1( D .)22,22(+-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. 13.已知α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则x 的值是 .14.一个体积为123的正三棱柱的三视图如右图所示,则该三棱柱的侧视图的面积为 .15.设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a >0,b >0)的一条渐近线的一个公共点, 且AF ⊥x 轴,则双曲线的离心率为 .16.若c b a ,,是A B C ∆三个内角的对边,且1sin sin sin 2a Ab Bc C +=,则圆22:9M x y +=被直线:0l ax by c -+=所截得的弦长为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数23cos sin sin3)(2-+=x x x x f ()R x ∈.(Ⅰ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅱ)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值.18.(本小题满分12分)在等差数列{}n a 中,满足8553a a =,n S 是数列{}n a 的前n 项和. (Ⅰ)若01>a ,当n S 取得最大值时,求n 的值; (Ⅱ)若461-=a ,记na Sb nn n -=,求n b 的最小值.19.(本小题满分12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样. (Ⅰ)若第1组抽出的号码为2,写出所有被抽出职工的号码;(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(Ⅲ)在(Ⅱ)的条件下,从体重不轻于73公斤(≥73公斤)的职工中抽取2人,求体重为76公斤的职工被抽取到的概率. 20.(本题满分12分)如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABC D .四边形ABC D 为正方形,且P 为AD的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证://PQ 平面SCD ;(Ⅲ)若SA SD =,M 为B C 中点,在棱S C 上是否存在点N,使得平面D M N ⊥平面A B C D ,并证明你的结论.21.(本小题满分12分)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立, 求实数b 的取值范围. 22.(本小题满分14分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by ax C :和曲线都过点A )1,0(-,且曲线1C 所在的圆锥曲线的离心率为23.(Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为 直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点? 若过定点,求出定点坐标;若不过定点,请说明理由.MSD CA P Q·2013年高考数学模拟题(文)(二)参考答案及评分标准一、选择题(每小题5分,共60分) BADCC ACBBD AD二、填空题(每小题4分,共16分) 13.3-14.6 3 1516.三、解答题:17. 解:(Ⅰ)2)2cos 1(3)(x x f -=+232sin 21-xx x 2cos 232sin 21-=)32sin(π-=x . ……………3分 20π<<x , 32323πππ<-<-∴x .∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1. …………6分(Ⅱ) )32sin()(π-=x x f ,若x 是三角形的内角,则π<<x 0,∴35323π<π-<π-x .令21)(=x f ,得21)32sin(=π-x ,∴632π=π-x 或6532π=π-x ,解得4π=x 或127π=x . ……………8分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f ,∴4π=A ,127π=B ,∴6π=--π=B A C . ……………10分 又由正弦定理,得221226sin4sin sin sin ==ππ==CA ABBC . ……………12分18.解:(Ⅰ)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d -=223a 1.…………2分∴S n =na 1+n (n -1)2×(-223a 1) -=123a 1n 2+2423a 1n -=123a 1(n -12)2+14423a 1.…………4分∵a 1>0,∴当n =12时,S n 取得最大值.……………………6分 (Ⅱ)由(Ⅰ)及a 1=-46,得d =-223-46)=4, ∴a n =-46+(n -1)×4=4n -50, S n =-46n +n (n -1)2×4=2n 2-48n .……………8分 ∴b n =S n -a n n =2n 2-52n +50n =2n +50n-52≥22n ×50n-52-=32,……………10分当且仅当2n =50n,即n =5时,等号成立. 故b n 的最小值为32-.……………………………………12分19.(本小题满分12分)解:(Ⅰ)抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.……4分 (Ⅱ)因为10名职工的平均体重为=x 110(81+70+73+76+78+79+62+65+67+59)=71, ……………6分 所以样本方差为:=2S110(102+12+22+52+72+82+92+62+42+122)=52.…8分 (Ⅲ)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).…………10分 故所求概率为P (A )=410=25.……12分20.证明:(Ⅰ)因为四边形A B C D 为正方形,则CDAD⊥. …………………1分又平面SAD⊥平面ABC D ,且面SA D 面ABCD AD=,所以CD⊥平面SAD . …………………3分(Ⅱ)取SC 的中点R ,连QR, DR .由题意知:PD ∥BC 且PD =12BC .……………4分MSDCAPQ· R (N ) O在SBC ∆中,Q 为SB 的中点,R 为SC 的中点, 所以QR ∥BC 且QR =12BC . 所以QR ∥PD 且QR=PD ,则四边形PDRQ 为平行四边形. ……………………………7分所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD . ………………………………………9分(Ⅲ)存在点N 为S C 中点,使得平面D M N ⊥平面A B C D . ……………10分连接P C D M 、交于点O ,连接PM 、SP , 因为//P D C M ,并且P D C M =,所以四边形P M C D 为平行四边形,所以P O C O =. 又因为N 为S C 中点,所以//N O SP .……………………………………………11分因为平面S A D ⊥平面A B C D ,平面S A D 平面A B C D =A D ,并且SP A D ⊥, 可得SP ⊥平面A B C D ,所以N O ⊥平面A B C D .又因为⊂NO 平面OMN ,所以平面D M N ⊥平面A B C D .……………………12分 21.(本小题满分12分)解:(Ⅰ)xax x a x f 11)(-=-=',…………1分当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减, ∴)(x f 在),0(+∞上没有极值点;……………2分 当0>a 时,()0f x '<得10x a<<,()0f x '>得1x a>,∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值.………4分∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.………………5分(Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a , ∴bxx xbx x f ≥-+⇔-≥ln 112)(,………………6分令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,…………10分 ∴22min 11)()(ee g x g -==,即211b e≤-.………………12分22.(本小题满分14分) 解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分所以曲线1C 的方程为2214xy +=(0x ≥). ……3分 曲线2C 的方程为221x y +=(0x ≥). ……4分 (Ⅱ)将11y k x =-代入2214x y +=,得()22111480k xk x +-=.……5分设()11,A x y ,()22,B x y ,则10x =,1221841k x k =+,212122141141k y k x k -=-=+.所以2112211841,4141k k B k k ⎛⎫- ⎪++⎝⎭. ……7分 将21y k x =-代入221x y +=,得()2222120k x k x +-=. 设()33,C x y ,则232221k x k =+,2232322111k y k x k -=-=+,所以)11,12(2222222+-+kk kk C . ……8分因为214k k =,所以21122118161,161161k k C k k ⎛⎫- ⎪++⎝⎭, ……9分 则直线B C 的斜率2211221111122111614116141188416141BC k k k k k k k k k k ---++==--++, ……11分所以直线B C 的方程为:21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,即1114y x k =-+.…13分 故B C 过定点()0,1. ……14分。
2013年高考模拟系列试卷(二)数学试题【新课标版】(文科)注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.作答时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1、设集合{}243,M x x xx =-≥∈R,{}21,02N y y x x ==-+≤≤,则()RM N ⋂等于( ) A .R B .{}|1x x R x ∈≠且 C .{}1 D .∅ 2、在复平面内,复数2013i i 1iz =+-表示的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3、若sin 601233,log cos 60,log tan 30a b c ===,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设{}na 是等差数列,13512a a a ++=,则这个数列的前5和等于( ) A .12 B .20 C .36 D .485、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否定为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤-7、设a b <,函数()()2y x a x b =--的图象可能是( )8、程序框图如下:如果上述程序运行的结果S 的值比2013小,若使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,则此几何体的体积是( )A .1533πB .233πC .33πD .433π10、下列命题正确的是( )A 。
2013高考密破仿真----预测卷(八)
考试时间:120分钟满分:150分
注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致务必在答题卡背面规定的地方填写姓名和座位号后两位
2.答第1卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号
3.答第Ⅱ卷时,必须使用0 5毫米的黑色墨水签字笔在答题卡上书写
......,要求字体工整、笔迹清晰作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0 5毫米的黑色墨水
签字笔描清楚必须在题号所指示的答题区域作答,超出答题区域书写的
.........答案
..无效,在试
.....
题卷、草稿纸上答题无效.
............
4.考试结束,务必将试题卷和答题卡一并上交
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.设P ={y|y=-x2+1,x∈R},Q ={y| y=2x,x∈R },则
A.P⊆ Q
B. Q⊆ P
C. C
R P⊆ Q D. Q⊆ C
R
P
2. 设a是实数,且复数
()
13
a i
Z
i
+-
=在复平面内对应的点在第三象限,则a的取值范围为
()
A.{}3
a a> B.{}3
a a< C.{}3
a a≥- D.{}3
a a<-
坐标都小于零,即a-3<0,a<3,选B
3.函数()()2log 1f x x =+的定义域是( )
A .()1,+∞
B .()1,-+∞
C .[1,)+∞
D .[1,)-+∞
4. 某校1 000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.规定
∙
∙
∙
于低不90分为优秀等级,则该校学生优秀等级的人数是
( )
A. 300
B. 150
C. 30
D. 15
5.设变量x ,y 满足:34,2y x x y x ≥⎧⎪
+≤⎨⎪≥-⎩
则z=|x-3y|的最大值为
A .8
B .3
C .
134
D .
92
则对于目标函数z=x-3y,当直线经过A(-2,2)时,z=|x-3y|,取到最大值,Z max=8.故选:A.
6.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为 ( )
A.483 C.3 D.3
7、如图所示程序图运行的结果是( )
序输出的结果为10.
8.在△ABC 中,AB AC =1,B =30°,则△ABC 的面积等于( )
A.
2
B. 4
C. 2
D. 2
或4
9、直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则∆EOF (O 是原点)的面积为 A 、
2
3 B 、
4
3 C 、52 D 、
5
56
10.已知抛物线22y px =的焦点F 与双曲线2
2
13
y
x -
=的右焦点重合,抛物线的准线与x 轴
的交点为K ,点A 在抛物线上且|||AK AF =,则AFK ∆的面积为( )
A .4
B .8
C .16
D .32
11.函数
)1
0(1
|
|
log
)
(<
<
+
=a
x
x
f
a的图象大致为()
12. 过双曲线
22
22
1(0,0)
x y
a b
a b
-=>>的左焦点)0
)(
0,
(>
-c
c
F,作圆:
2
22
4
a
x y
+=的切
线,切点为E,延长FE交双曲线右支于点P,若
1
()
2
O E O F O P
=+
,则双曲线的离心率为
10 210
5
102
第Ⅱ卷
二.填空题:本大题共4小题,每小题4分。
13.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为 .
14.曲线y=x 3
在点(1,1)切线方程为___________________.
15.在A B C ∆中,0AB AC ⋅= .若P 是A B C ∆所在平面上一点,且||2,AP C AP =∠
为锐
角,22AP AC AP AB ⋅=⋅= ,求||A B A C A P ++
的最小值 .
16. 已知点)lg ,(),lg ,(221x x B x x A 是函数x x f lg )(=的图象上任意不同两点,依据图象可知,段段AB 总是位于A,B 两点之间函数图象的下方,因此有结论
)2
lg(
2
lg lg 2
12
1x x x x +<+成
立。
运用类比思想方法可知,若点)2,(1
1x x A ,)2,(2
2x x B 是函数x
x g 2)(=的图象上的不同两点,则类似地有成立 。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点1)P -. (Ⅰ)求sin 2tan αα-的值;
(Ⅱ)若函数()sin 2cos cos 2sin f x x x αα=⋅+⋅,求函数()f x 在2π03
⎡
⎤
⎢⎥⎣
⎦
,上的单调递增区
间.
18、(本小题满分12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据
分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,
请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间
少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
19.(本小题满分12分)如图,已知空间四边形A B C D 中,,BC AC AD BD ==,E 是A B 的中点.
求证:(1)⊥AB 平面CDE ;
(2)平面C D E ⊥平面ABC .
(3)若G 为A D C ∆的重心,试在线段AE 上确定一点F, 使得GF//平面CDE .
20、(本题满分12分)
设{}n a 为等差数列,n S 是等差数列的前n 项和,已知262=+a a ,7515=S . (1)求数列的通项公式n a ; (2)n T 为数列⎭
⎬⎫
⎩⎨
⎧n S n 的前n 项和,求n T . 【答案】解:(1)设d n a a n )1(1-+=,由题意可得
21. (本小题满分12分)已知函数32
1(),,3
f x x ax bx a b R =
++∈
(1)曲线C: ()y f x =经过点P(1,2),且曲线C在点P处的切线平行于直线21y x =+,求,a b 的值。
(2)已知()f x 在区间(1,2)内存在两个极值点,求证:02a b <+<
22.(本题满分14分)抛物线()y g x =经过点(0,0)O 、(,0)A m 与(1,1)P m m ++, 其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值.
(1)用,m x 表示()y g x =;
(2) 比较n m b a ,,,的大小(要求按从小到大排列);
(3)若22≤+n m ,且过原点存在两条互相垂直的直线与曲线)(x f y =均相切,求)(x f y =的解析式.。