北师大版 3_平行线的判定_练习1八年级 八年级数学上册
- 格式:doc
- 大小:64.50 KB
- 文档页数:4
平行线的判定班级:___________姓名:___________得分:__________一.选择题(每小题5分,共35分)1.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠72.在长方体ABCD﹣EFGH中,与面ABCD平行的棱共有()A.1条B.2条C.3条D.4条3.如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90°B.∠B=∠D=90°C.AC=BD D.点A,D到BC的距离相等4.如图,在四边形ABCD中,若∠1=∠2,则AD∥BC,理由是()A.两直线平行,内错角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.同位角相等,两直线平行5.过一点画已知直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条6.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠27.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3二.填空题(每小题5分,共20分)1.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.2.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.3.如图所示,请你填写一个适当的条件:,使AD∥BC.4.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.三.解答题(每小题15分,共45分)1.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.2.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?3.如图,若∠EFD=110°,∠FED=35°,ED平分∠BEF,那么AB与CD平行吗?请说明你的理由.参考答案一.选择题(每小题5分,共35分)1.B【解析】∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B2.D【解析】∵面EFGH与面ABCD平行;∴EF、FG、GH、EH四条棱与面ABCD平行.故选:D.3.D【解析】A、∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,A不可以;B、∠B=∠D=90°,无法得出边平行的情况,B不可以;C、AC=BD,无法得出边平行的情况,C不可以;D、∵点A,D到BC的距离相等,且A、D在直线BC的同侧,∴AD∥BC,D可以.故选D.4.C【解析】∵∠1与∠2是内错角,∴若∠1=∠2,则AD∥BC.故选C.5.D【解答】若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.6.C【解析】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.7.D【解析】A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.二.填空题(每小题5分,共20分)1.3.【解析】(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.2.同位角相等,两直线平行【解析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.3.添加∠FAD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.【解析】∵∠FAD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行)4.80°【解析】如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.三.解答题(每小题15分,共45分)1.答案见解析.【解析】BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).2.答案见解析.【解析】CD∥AB.证明:∵CE⊥CD,∴∠DCE=90°,∵∠ACE=136°,∴∠ACD=360°﹣136°﹣90°=134°,∵∠BAF=46°,∴∠BAC=180°﹣∠BAF=180°﹣46°=134°,∴∠ACD=∠BAC,∴CD∥AB.3.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.【解析】由ED为∠BEF的平分线,根据角平分线的定义可得,∠FED=∠BED=35°,进而得出∠BEF=70°,然后根据同旁内角互补两直线平行,即可AB与CD平行.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.。
7.3 平行线的判定
1.如图,下列说法中,正确的是( ).
A.因为∠A+∠D=180°,所以AD∥BC
B.因为∠C+∠D=180°,所以AB∥CD
C.因为∠A+∠D=180°,所以AB∥CD
D.因为∠A+∠C=180°,所以AB∥CD
2.如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.
3.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).
4.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.
5.如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.
6.工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?。
7.3 平行线的判定一.选择题1.在同一平面内,两条直线可能的位置关系是()A.平行B.相交C.相交或平行D.垂直2.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.13.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线4.如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条5.经过直线外一点,有几条直线和已知直线平行()A.0条B.1条C.2条D.3条6.在平面内,下列四个说法中,正确的是()A.经过一点有且只有一条线段与已知直线垂直B.经过一点有且只有一条线段与已知直线平行C.经过一点有且只有一条直线与已知直线垂直D.经过一点有且只有一条直线与已知直线平行7.三条直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定8.如果l1∥l2,l2∥l3,l3∥l4,那么l1与l4的关系是()A.平行B.相交C.重合D.不能确定9.下列语句:①不相交的两条直线叫平行线②在同一平面内,两条直线的位置关系只有两种:相交和平行③如果线段AB和线段CD不相交,那么直线AB和直线CD平行④如果两条直线都和第三条直线平行,那么这两条直线平行⑤过一点有且只有一条直线与已知直线平行正确的个数是()A.1B.2C.3D.410.如图,直线a,b被直线c所截,∠1=55°,下列条件能推出a∥b的是()A.∠3=55°B.∠2=55°C.∠4=55°D.∠5=55°11.如图,将木条a,b与c钉在一起,∠1=80°,∠2=50°.要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.30°D.50°12.如图,直线a、b被直线c所截,∠1=55°,下列条件中能判定a∥b的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=65°二.解答题13.根据要求完成下面的填空:如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.解:根据得∠2=∠3又因为∠1=∠2,所以∠=∠,根据得:∥.14.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?15.对定理“两条直线被第三条直线所截,若同旁内角互补,则这两直线平行”进行说理.已知:直线a,b被直线c所截,∠2+∠3=180°对a∥b说明理由.理由:16.请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD∴∠=∠(_),∵∠1=∠2.(已知)∴∠1=∠()∴AB∥CD()17.已知:如图,直线AB,CD被直线GH所截,∠1=112°,∠2=68°,求证:AB∥CD.完成下面的证明.证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠=112°∵∠2=68°,∴∠2+∠3=,∴∥()(填推理的依据)参考答案一.选择题1.解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,故选:C.2.解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.3.解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.4.解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.5.解:根据平行公理,即过直线外一点,有且只有一条直线和已知直线平行.故选:B.6.解:A.经过一点有且只有一条直线与已知直线垂直,故本选项错误;B.经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;C.经过一点有且只有一条直线与已知直线垂直,故本选项正确;D.经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:C.7.解:∵三条直线a、b、c中,a∥b,b∥c,∴a∥c,故选:B.8.解:∵l1∥l2,l2∥l3,l3∥l4,∴l1∥l4或l1与l4重合.故选:D.9.解:①不相交的两条直线叫平行线,必须是在同一平面内,故错误;②在同一平面内,两条直线的位置关系只有两种:相交和平行,正确③如果线段AB和线段CD不相交,那么直线AB和直线CD平行,错误;④如果两条直线都和第三条直线平行,那么这两条直线平行,正确;⑤过直线外一点有且只有一条直线与已知直线平行,故错误,故选:B.10.解:∵∠1=55°,∠3=55°,∴∠1=∠3,∴a∥b,故选:A.11.解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是80°﹣50°=30°.故选:C.12.解:如图,若∠2=55°,则∠3=55°,∴∠1=∠3,∴a∥b,故选:C.二.解答题13.解:根据对顶角相等,得∠2=∠3,又因为∠1=∠2,所以∠1=∠3,根据同位角相等,两直线平行,得:AB∥CD.故答案为:对顶角相等,1,3,同位角相等,两直线平行,AB,CD14.解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.15.解:理由:∵∠2+∠3=180°(已知),∠5+∠3=180°,∴∠2=∠5(同角的补角相等),∴a∥b(同位角相等,两直线平行).16.证明:∵CE平分∠ACD∴∠2=∠ECD(角平分线的定义),∵∠1=∠2.(已知)∴∠1=∠ECD(等量代换))∴AB∥CD(内错角相等两直线平行).故答案为:2,ECD,角平分线的定义,ECD,等量代换,内错角相等两直线平行.17.证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠3=112°∵∠2=68°,∴∠2+∠3=180°,∴AB∥CD,(同旁内角互补,两直线平行)故答案为:∠3,180°,AB,CD,同旁内角互补,两直线平行.。
2022-2023学年北师大版八年级数学上册《7.3平行线的判定》同步练习题(附答案)一.选择题1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行2.下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.13.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直4.如果a∥b,b∥c,那么a∥c,这个推理的依据是()A.等量代换B.两直线平行,同位角相等C.平行公理D.平行于同一直线的两条直线平行5.下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°8.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条9.如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c10.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°11.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°二.填空题12.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.13.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.14.如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.15.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.16.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.三.解答题17.如图,已知∠1=∠2,CD、EF分别是∠ACB、∠AED的平分线.求证:BC∥DE.18.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.22.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴∥()∴∠3+∠=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴∥()∴∠A=∠F()23.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.24.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.25.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.26.如图,已知∠A=∠EDF,∠C=∠F.求证:BC∥EF.27.如图,已知直线c和a、b分别交于A、B两点,点P在直线c上运动.(1)若P点在AB两点之间运动,试探究:当∠1、∠2和∠3之间满足什么数量关系时,a∥b?(2)若P点在AB两点外侧运动,试探究:当∠1、∠2和∠3之间满足什么数量关系时,a∥b?(直接写出结论即可)28.如图,已知∠1=∠2+∠3,试判断CD是否平行于BE,写出你的理由.参考答案一.选择题1.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.2.解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;故选:D.3.解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选:C.4.解:∵a∥b,b∥c,a、c不重合,∴a∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故选:D.5.解:A、∠1=∠2,可得∠1=∠2的对顶角,根据同位角相等两直线平行可得AB∥CD,故此选项正确;B、∠1和∠2互补时,可得到AB∥CD,故此选项错误;C、∠1=∠2,根据内错角相等两直线平行可得AC∥BD,故此选项错误;D、∠1=∠2不能判定AB∥CD,故此选项错误.故选:A.6.解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.7.解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.8.解:由题意知,在长方体中,对任意一条棱,与它平行的棱共有3条,故选:C.9.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选:C.10.解:如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.11.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.二.填空题12.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.13.解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.14.解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.15.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.16.解:当∠2=50°时,a∥b;理由如下:如图所示:∵∠1=40°,∴∠3=180°﹣90°﹣40°=50°,当∠2=50°时,∠2=∠3,∴a∥b;故答案为:50.三.解答题17.证明:∵∠1=∠2,∴EF∥CD,∴∠3=∠4,∵CD、EF分别是∠ACB、∠AED的平分线,∴∠ACB=2∠3,∠AED=2∠4,∴∠AED=∠ACB,∴BC∥DE.18.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.19.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.20.证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=180﹣(∠1+∠2)=90°=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.22.解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.23.解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4,理由是:等角的余角相等,∴BE∥DF.理由是:同位角相等,两直线平行.故答案为:90;90;∠1,∠4;等角的余角相等;同位角相等,两直线平行.24.解:解法一:延长MF交CD于点H,∵∠1=90°+∠CHF,∠1=140°,∠2=50°,∴∠CHF=140°﹣90°=50°,∴∠CHF=∠2,∴AB∥CD.解法二:过点F作直线FL∥AB,∵FL∥AB,∴∠MFL=∠2=50°,∵∠MFN=90°,∴∠NFL=40°,∵∠1=140°,∴∠1+∠NFL=140°+40°=180°,∴CD∥FL,∴CD∥AB.25.证明:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠1=∠2,∴∠ABC﹣∠1=∠DCB﹣∠2,∴∠CBE=∠BCF,∴BE∥CF.26.证明:∵∠A=∠EDF(已知),∴AC∥DF(同位角相等,两直线平行),∴∠C=∠CGF(两直线平行,内错角相等).又∵∠C=∠F(已知),∴∠CGF=∠F(等量代换),∴BC∥EF(内错角相等,两直线平行).27.解:(1)∠1+∠3=∠2时,a∥b;过P作MP∥a,∵MP∥a,∴∠1=∠DPM,∵∠1+∠3=∠2,∴∠3=∠MPC,∴MP∥BC,∴a∥b;(2)若P点在A点上部运动时,∠3﹣∠1=∠2时,a∥b;若P点在B点下部运动时,∠1﹣∠3=∠2时,a∥b.28.解:CD∥BE.理由:延长AC交BE于点F,∵∠CFE是△ABF的外角,∴∠CFE=∠2+∠3,∵∠1=∠2+∠3,∴∠1=∠CFE,∴CD∥BE.。
一、选择题1.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误2.下列命题的逆命题是真命题的是( )A .两个全等三角形的对应角相等B .若一个三角形的两个内角分别为30和60︒,则这个三角形是直角三角形C .两个全等三角形的面积相等D .如果一个数是无限不循环小数,那么这个数是无理数3.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .54.下列命题中真命题有( )①周长相等的两个三角形是全等三角形;②一组数据中,出现次数最多的数据为这组数据的众数;③同位角相等;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大. A .1个 B .2个 C .3个 D .4个5.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量6.如图,DE 经过点A ,DE ∥BC ,下列说法错误的是( )A .∠DAB =∠EACB .∠EAC =∠C C .∠EAB+∠B =180°D .∠DAB =∠B7.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒8.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)9.如图,60A ∠=,70B ∠=,将纸片的一角折叠,使点C 落在ABC 外.若218∠=,则1∠的度数为( )A .50B .118C .75D .8010.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒ 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).15.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.17.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.18.命题“若11a b=,则a b =”,这个命题是_____命题.(填“真”或“假”) 19.如图,下列条件:①∠1=∠2;②∠BAD+∠ADC =180°;③∠ABC =∠ADC ;④∠3=∠4;其中能判定AB ∥CD 的是_____(填序号).20.如图,△ABC 中,∠C =50°,AD 是∠CAB 的平分线,BD 是△ABC 的外角平分线,AD 与BD 交于点D ,那么∠D =____°.三、解答题21.推理填空:如图,AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠,可得AD 平分BAC ∠. 理由如下:∵AD BC ⊥于D ,EG BC ⊥于G ,(已知)∴90ADC EGC ∠=∠=︒,(____________________)∴//AD EG ,(____________________)∴1∠=__________,(____________________)3E ∠=∠,(____________________)又∵1E ∠=∠,(____________________)∴3∠=___________,(____________________)∴AD 平分BAC ∠.(____________________)22.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .23.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数24.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.25.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等)DCA CDE ∴∠==∠(等量代换),//CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).26.如图,已知,,,12DG BC AC BC EF AB ⊥⊥⊥∠=∠.试说明//EF CD 的理由,请把空填写完整.解:∵,DG BC AC BC ⊥⊥(已知)∴DGB ∠=∠_____90=︒(垂直的定义)∴//DG _____(同位角相等,两直线平行)∴2DCA ∠=∠( )∵12∠=∠( )∴1∠=∠________( )∴//EF ______( )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由EF ⊥AB ,CD ⊥AB ,知CD ∥EF ,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF ⊥AB ,CD ⊥AB ,∴CD ∥EF ,若∠CDG=∠BFE ,∵∠BCD=∠BFE ,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.2.D解析:D【分析】根据原命题分别写出逆命题,然后再判断真假即可.【详解】A、两个全等三角形的对应角相等,逆命题是:对应角相等的两个三角形全等,是假命题;B、若一个三角形的两个内角分别为 30°和 60°,则这个三角形是直角三角形,逆命题是:如果一个三角形是直角三角形,那么它的两个内角分别为 30°和 60°,是假命题;C、两个全等三角形的面积相等,逆命题是:面积相等的两个三角形全等,是假命题;D、如果一个数是无限不循环小数,那么这个数是无理数,逆命题是:如果一个数是无理数,那么这个数是无限不循环小数,是真命题.故选:D【点睛】本题考查了命题与定理,解决本题的关键是掌握真命题.3.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.4.A解析:A【分析】根据题意对四个命题作出判断即可求解.【详解】解:①周长相等的两个三角形是全等三角形,是假命题;②一组数据中,出现次数最多的数据为这组数据的众数,是真命题;③同位角相等,是假命题;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大,是假命题.真命题有1个.故选:A【点睛】本题考查全等三角形的判定,众数,方差等知识,熟知相关知识是解题关键. 5.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 6.A解析:A【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【详解】解:∵DE ∥BC ,∴∠DAB =∠ABC (两直线平行,内错角相等),A 选项错误、D 选项正确;∠EAC =∠C (两直线平行,内错角相等),B 选项正确;∠EAB+∠B =180°(两直线平行,同旁内角互补),C 选项正确;故选A .【点睛】本题考查平行线的性质,解题关键是掌握两直线平行,内错角相等、同旁内角互补. 7.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.8.D解析:D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.9.B解析:B【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-60°-70°=50°;再根据折叠的性质得到∠C′=∠C=50°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,即可得到∠3+∠4=62°,然后利用平角的定义即可求出∠1.【详解】∵∠A=60°,∠B=70°,∴∠C=180°-∠A-∠B=180°-60°-70°=50°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=50°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,∠2=18°,∴∠3+18°+∠4+50°+50°=180°,∴∠3+∠4=62°,∴∠1=180°-62°=118°.故选:B .【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.明确各个角之间的等量关系,是解决本题的关键.10.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.14°【分析】根据∠A =52°可求∠B 由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB =90°∠A =52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A =52°∠A′DB解析:14°【分析】根据∠A =52°,可求∠B ,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB =90°,∠A =52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A =52°,∠A′DB=∠D A′C -∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.15.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.16.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.18.真【分析】根据题意判断正误即可确定是真假命题【详解】解:命题若则a=b 这个命题是真命题故答案为:真【点睛】本题考查了命题与定理的知识解题的关键是当判断一个命题为假命题时可以举出反例难度不大解析:真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若11a b,则a=b”,这个命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.19.①②【分析】根据平行线的判定定理逐一判断即可得答案【详解】∵∠1=∠2∴AB∥CD;故①符合题意∵∠BAD+∠ADC=180°∴AB∥CD;故②符合题意∠ABC=∠ADC不能判定AB∥CD故③不符合解析:①②.【分析】根据平行线的判定定理逐一判断即可得答案.【详解】∵∠1=∠2,∴AB∥CD;故①符合题意,∵∠BAD+∠ADC=180°,∴AB∥CD;故②符合题意,∠ABC=∠ADC,不能判定AB∥CD,故③不符合题意,∵∠3=∠4,∴AD∥BC;不能判定AB∥CD,故④不符合题意,故答案为:①②【点睛】本题考查平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;熟练掌握平行线的判定定理是解题关键.20.25°【分析】根据角平分线的定义得到∠DBE=∠CBE∠DAE=∠CAE根据三角形的外角的性质计算即可【详解】解:∵AD是∠CAB的平分线BD是△ABC的外角平分线∴∠DBE=∠CBE∠DAE=∠C解析:25°【分析】根据角平分线的定义得到∠DBE=12∠CBE,∠DAE=12∠CAE,根据三角形的外角的性质计算即可.【详解】解:∵AD 是∠CAB 的平分线,BD 是△ABC 的外角平分线,∴∠DBE=12∠CBE ,∠DAE=12∠CAE , ∴∠D=∠DBE-∠DAE=12(∠CBE-∠CAE )=12∠C=25°, 故答案为:25°.【点睛】本题考查的是三角形的外角的性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题21.垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【分析】根据证明的前后联系填写理由或结论即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC =∠EGC =90°,(垂直的定义)∴AD ∥EG ,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E =∠3,(两直线平行,同位角相等)又∵∠E =∠1(已知)∴∠3=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角,明确每步说理的原因是正确答题的关键.22.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF平分AED∠,∴AEF DEF∠=∠.∵EBG A∠=∠,DEF EBG∠=∠,∴A DEF∠=∠.又∵DEF AEF∠=∠,∴A AEF∠=∠,∴//AB EF.【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键.23.∠P=25°.【分析】延长ED,BC相交于点G.由四边形内角和可求∠G=50°,由三角形外角性质可求∠P度数.【详解】解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°-(∠A+∠B+∠E)=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.24.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC∠,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,所以∠A+∠C=2∠P,即可得解.解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.25.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.26.见解析由垂直定义得∠DGB=∠ACB=90°,由平行线的判定定理得DG∥AC,由平行线的性质得∠2=∠ACD,由等量代换得∠1=∠ACD,由平行线的判定定理得EF∥CD.【详解】解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直的定义).∴DG∥AC(同位角相等,两直线平行).∴∠2=∠DCA.(两直线平行,内错角相等)∵∠1=∠2(已知),∴∠1=∠ACD(等量代换).∴EF∥CD(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质等知识;熟练掌握平行线的判定与性质是解题的关键.。
7.3平行线的判定一、选择题1.如图,直线b a ,都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a ∥b 的条件是( )A .①③B .②④C .③④D .①②③④2.如图,直线CD AB ,被直线l 所截,若︒≠∠=∠9031,则( )A .32∠=∠B .42∠=∠C .41∠=∠D .43∠=∠二、填空题1.如图,直线CD AB ,被第三条直线EF 所截,则1∠和2∠是_________;如果21∠=∠,那么________∥_______,其理由是___________.2.如图,已知:︒=∠︒=∠︒=∠︒=∠1024,783,782,781,填空:(1)︒=∠=∠7821 ,∴//_______AB ( ).(2)︒=∠=∠7832 ,∴//_______AB ( ).(3)︒=︒+︒=∠+∠1801027842 ,∴_____________//_( ).3.填空括号中的空白:如图,已知直线AB 与EF 相交于O ,OC 平分OD AOE ,∠平分BOF ∠. 求证:(1)41∠=∠;(2)COD 为一条直线.证明:AB 与EF 相交于O ( ),∴AOE ∠与BOF ∠为对顶角( ).∴BOF AOE ∠=∠( ). ∴BOF AOE ∠=∠2121( ). 又OC 平分AOE ∠( ), ∴AOE ∠=∠211( ). 同理BOF ∠=∠214. ∴41∠=∠( ).EOF 为一条直线( ), ∴EOF ∠为平角( ).即︒=∠+∠+∠=∠180432EOF .又41∠=∠ ( ),∴︒=∠+∠+∠180321( ).即COD ∠为平角.∴COD 为一条直线( ).三、解答题1.如图,已知直线a 、b ,任意画一条直线c ,使它与a 、b 都相交,量得︒=∠︒=∠462,461,那么a 与b 平行吗?为什么?2.如图,直线AB 、CD 被直线EF 所截.(1)量得︒=∠︒=∠802,801,就可以判定CD AB //,它的根据是什么?(2)量得︒=∠︒=∠1004,1003,也可以判定CD AB //,它的根据是什么?3.如图,BE 是AB 的延长线,量得C A CBE ∠=∠=∠.(1)从A CBE ∠=∠,可以判下哪两条直线平行?它的根据是什么?(2)从C CBE ∠=∠,可以判定哪两条直线平行,它的根据是什么?4.如图,已知BOD D COA C ∠=∠∠=∠,.求证:DB AC //.5.如图,已知︒=∠︒=∠=∠603,11821.求:4∠的度数.6.如图,已知D C B A ,,,四点共线,且CD AB =,又DF CE BF AE ==,. 求证:BF AE //.参考答案一、选择题1.D 2.B二、填空题1.同位角;CDAB//,同位角相等,两直线平行.2.(1)CD,同位角相等,两直线平地(2)CD,内错角相等两直线平行(3)CDAB,,同旁内角互补,两直线平行.3.已知;对顶角定义;对顶角相等;等量的同分量相等;已知;角平分线定义;等量代换;已知;平角定义;已证;等量代换;平角定义三、解答题1.ba//,同位角相等,两直线平行.2.(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.3.(1)BCAB//,内错角相等,AD//,同位角相等,两直线平行.(2)CD两直线平行.4.先证DAC//即可.∠,再根据内错角相等,两直线平行证明DBC∠=5.先由︒1证b2a//,再根据两直线平行,同旁内角互补求出=∠=∠1184.∠120︒=6.CDAC=.,∴BDAB=又DF,∴ACE=,AE=BFCE∆≌BDF∆.∴FBDAE//.∠.∴BFA∠=。
目录第一章勾股定理 ................................. A3-A9 1.1 探索勾股定理....................................... A3-A4 1.2 一定是直角三角形吗................................. A5-A6 1.3 勾股定理的应用..................................... A7-A9 第二章实数 ................................... A10-A20 2.1 认识无理数....................................... A10-A11 2.2 平方根........................................... A12-A13 2.3 立方根........................................... A14-A15 2.4 估算2.5 用计算器开方......................................... A16 2.6 实数................................................. A17 2.7 二次根式......................................... A18-A20 第三章位置与坐标............................. A21-A243.1 确定位置............................................. A21 3.2 平面直角坐标系3.3 轴对称与坐标变化................................. A22-A24 第四章一次函数 ............................... A25-A334.1 函数................................................. A25 4.2 一次函数与正比例函数............................. A26-A27 4.3 一次函数的图象................................... A28-A29 4.4 确定一次函数的表达式............................. A30-A31 4.5 一次函数的应用................................... A32-A33第五章二元一次方程组.......................... A34-A395.1 认识二元一次方程组................................... A345.2 解二元一次方程组..................................... A35 5.3 应用二元一次方程组--鸡兔同笼............................................. A36 5.4 应用二元一次方程组--增收节支............................................. A37 5.5 应用二元一次方程组--里程碑上的数......................................... A38 5.6 二元一次方程组与一次函数 ............................. A39第六章数据的分析............................. A40-A45 6.1 平均数............................................... A40 6.2 中位数与众数..................................... A41-A42 6.3 从统计图分析数据的集中趋势 ........................... A43 6.4 数据的离散程度................................... A44-A45第七章平行线的证明........................... A46-A51 7.1 为什么要证明......................................... A46 7.2 定义与命题........................................... A47 7.3 平行线的判定7.4 平行线的性质..................................... A48-A49 7.5 三角形内角和定理................................. A50-A51第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为 3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是__________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.4.△ABC中,三边长分别为a=6 cm,b=33cm, c=3 cm,则△ABC中最小的角为______度.5.如图,AB⊥BC,且AB=3,BC=2,CD=5, AD=42,则∠ACD=__________,图形ABCD 的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2, DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另 一直角边长为6 cm ,则它的斜边长( ). A.4 cm B.8 cm C.10 cm D.12 cm 11.如图,△ABC 中,∠C=90°,AB 垂直平分 线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D , CD=2,则BC 等于( ).A.210B.6C.8D.5 13.ABC 中,∠C=90°,∠A=30°,斜边长为2, 斜边上的高为( ). A.1 B.3 C.23 D.4314.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ).A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b=3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的 三角形都是直角三角形,其中最大的正方 形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
北师大版数学八年级上册3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是北师大版数学八年级上册第三章的内容。
本节课主要通过探究同位角、内错角、同旁内角的概念,引导学生理解平行线的判定方法。
教材通过生活中的实例引入平行线的概念,让学生感受数学与生活的联系,激发学习兴趣。
本节课的内容是学生进一步学习直线、平面几何等知识的基础,对于学生形成几何直观、培养逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线的基本概念,具备了一定的观察、操作、推理能力。
但部分学生对于实际生活中的平行线现象可能缺乏直观感知,对于平行线的判定方法的理解和应用尚有困难。
因此,在教学过程中,教师需要关注学生的认知基础,通过丰富的教学活动,帮助学生建立正确的平行线概念,提高推理和应用能力。
三. 教学目标1.理解同位角、内错角、同旁内角的定义,掌握平行线的判定方法。
2.能够运用平行线的判定方法解决实际问题,提高解决问题的能力。
3.培养学生的观察、操作、推理能力,提高学生对几何图形的认识。
4.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.教学重点:同位角、内错角、同旁内角的定义,平行线的判定方法。
2.教学难点:平行线的判定方法的运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受平行线的实际意义,激发学习兴趣。
2.活动教学法:通过观察、操作、讨论等活动,让学生在实践中掌握平行线的判定方法。
3.推理教学法:引导学生运用已知知识,推理出平行线的判定方法,培养学生的推理能力。
六. 教学准备1.教学课件:制作课件,展示平行线的判定方法及相关实例。
2.教学素材:准备一些实际生活中的平行线图片,用于引导学生观察和讨论。
3.学具:为学生准备一些直线、射线等学具,用于实践活动。
七. 教学过程1.导入(5分钟)教师通过展示一些实际生活中的平行线图片,引导学生观察并说出平行线的特点。
第七章平行线的证明3平行线的判定1.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠C=∠ABC D.∠A=∠ABE第1题图第2题图2.如图,请你填写一个适当的条件:________________________ ________________,使AD∥BC.3.[2018春·大田县期中]如图,已知∠B+∠BCD=180°,∠B =∠D.求证:AD∥BE.证明:∵∠B+∠BCD=180°,(已知)∴AB∥CD,(_______________________________)∴∠B=__∠DCE__,(__________________)又∠B=∠D,(已知)∴∠________=∠____,(等量代换)∴AD∥BE.(_________________________)第3题图第4题图4.[2017秋·沈丘县期末]如图,∠A=∠1,∠1=∠2,试说明AC∥DE.请完善证明过程,并在括号内填上相应的理论依据.证明:∵∠A=∠1,(__________)∴_______∥________.(_________________________)∴∠2=∠____.(______________________)∵∠1=∠2,(已知)∴∠1=∠______,(等量代换)∴AC∥DE.(______________________)5.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,那么DC∥AB吗?说出你的理由.6.如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相平行的直线有____对.7.(1)如图1,AB,CD,EF是三条公路,且AB⊥EF,CD⊥EF.试判断AB与CD的位置关系,并说明理由;(2)如图2所示,在(1)的条件下,若小路OM平分∠EOB.通往加油站N的岔道O′N平分∠CO′F,试判断OM与O′N的位置关系.图1图28.如图,EF⊥AC于点F,DB⊥AC于点M,∠1=∠2,∠3=∠C.求证:AB∥MN.参考答案1.D2.∠F AD =∠FBC 或∠ADB =∠DBC 或∠DAB +∠ABC =180°3.同旁内角互补,两直线平行 ∠DCE两直线平行,同位角相等 DCE D 内错角相等,两直线平行4.已知 AD BE 同位角相等,两直线平行 E 两直线平行,同位角相等 内错角相等,两直线平行5.解:DC ∥AB .理由:∵BF ,DE 分别是∠ABC ,∠ADC 的角平分线,∴∠ADE =∠3=12∠ADC ,∠2=∠CBF =12∠ABC .∵∠ABC =∠ADC ,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3,∴DC ∥AB .6. 2 【解析】 ∵EF ⊥AB ,CD ⊥AB ,∴EF ∥CD ,∴∠1=∠EDC .∵∠1=∠2,∴∠EDC =∠2,∴DE ∥BC .故图中互相平行的直线有2对.7.解:(1)AB ∥CD .理由:∵AB ⊥EF ,CD ⊥EF ,∴AB ∥CD .(同一平面内,垂直于同一直线的两条直线互相平行)(2)如答图,延长NO ′交AB 于点P .答图∵OM平分∠EOB,O′N平分∠CO′F,∴∠EOM=∠FO′N=45°.∵∠FO′N=∠EO′P,∴∠EOM=∠EO′P=45°,∴OM∥O′N(同位角相等,两直线平行).8.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM.∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN.∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.。
《7.3 平行线的判定》一、选择题(共9小题,每小题3分,满分27分)1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等第1题第2题第3题第4题2.如图,∠1=∠2,则下列结论正确的是()A.AD∥BC B.AB∥CD C.AD∥EF D.EF∥BC3.如图,以下条件能判定GE∥CH的是()A.∠FEB=∠ECD B.∠AEG=∠DCHC.∠GEC=∠HCF D.∠HCE=∠AEG4.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.一个弯形管道ABCD的弯角∠ABC=130°,∠BCD=50°,则管道AB与CD的位置关系是()A.平行B.垂直C.相交但不垂直D.无法确定第5题第7题6.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40° D.先向左转50°,再向左转40°7.如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD8.对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°第8题第9题9.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB、AC、AE、ED、EC中,相互平行的线段有()A.4组B.3组C.2组D.1组二、填空题(共5小题,每小题6分,满分27分)10.如图是一条街道的两个拐角,∠ABC与∠BCD均为140°,则街道AB与CD的关系是______,这是因为______.11.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件______.(填“合格”或“不合格”)12.如图,直线AB、CD与直线EF相交于E、F,∠1=105°,当∠2=______时,能使AB∥CD.13.如图,BC平分∠DBA,∠1=∠2,填空:因为BC平分∠DBA,所以∠1=______,所以∠2=______,所以AB∥______.14.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是______(不允许添加任何辅助线).三、解答题(共5小题,满分46分)15.如图,已知CD⊥AD,DA⊥AB,∠1=∠2.则DF与AE平行吗?为什么?16.如图,∠2+∠D=180°,∠1=∠B,那么AB∥EF吗?为什么?17.如图,已知:△ABC,E为AB上一点,D,F分别为AC上的点,∠AED=60°,∠2=30°,EF平分∠AED,求证:EF∥BD.18.如图,E,F分别是AB,CD上的一点,∠2=∠D,∠1与∠C互余,EC⊥AF,求证:AB∥CD.19.我们知道,光线从空气射入水中会发生折射现象,光线从水中射入空气中,同样会发生折射现象.如图,是光线从空气中射入水中,再从水中射入空气中的示意图.由于折射率相同,因此已知∠1=∠4,∠2=∠3.请你用所学知识来判断c与d是否平行?并说明理由.。
北师大版数学八年级上册3《平行线的判定》教案1一. 教材分析《平行线的判定》是北师大版数学八年级上册第三章的内容。
本节课主要让学生掌握平行线的判定方法,理解平行线的性质,并能运用这些方法解决实际问题。
教材通过丰富的图片和实例,引导学生探索和发现平行线的判定规律,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并了解了直线的性质。
但是,对于平行线的判定,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等活动,逐步掌握平行线的判定方法。
三. 教学目标1.知识与技能:让学生掌握平行线的判定方法,能运用平行线的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:平行线的判定方法。
2.难点:平行线性质的理解和运用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提出问题,引导学生独立思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作课件,展示平行线的判定方法和实例。
2.教学素材:准备一些图片和实例,用于引导学生观察和思考。
3.学具:为学生准备一些直线、射线、线段等模型,便于学生操作和理解。
七. 教学过程1.导入(5分钟)教师通过展示一些图片,如铁路、操场等,引导学生观察平行线的实例,激发学生的学习兴趣。
同时,教师提出问题:“你们认为平行线有哪些特点?”让学生思考。
2.呈现(10分钟)教师通过课件展示平行线的判定方法,并结合实例进行讲解。
同时,教师引导学生观察和思考,让学生初步理解平行线的判定规律。
3平行线的判定
知能提升训练
1.如图所示,过点P画直线a的平行线b的作法的依据是().
A.两直线平行,同位角相等
B.同位角相等,两直线平行
C.两直线平行,内错角相等
D.内错角相等,两直线平行
2.下列选项中,哪个不可以得到l1∥l2?().
A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°
3.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().
A.如图①,展开后测得∠1=∠2
B.如图②,展开后测得∠1=∠2且∠3=∠4
C.如图③,测得∠1=∠2
D.如图④,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
4.如图,下列能判定AB∥EF的条件有().
①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
A.1个
B.2个
C.3个
D.4个
5.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD 绕点O按逆时针方向至少旋转度.
6.(2021兰州)将一副三角板如图摆放,则BC∥,理由是.
7.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.
8.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?。
7.3 平行线的判断专题平行线的判断的实质应用1.如图,台球运动中,假如母球 P 击中边点再次反弹.那么母球 P 经过的路线 BC与A,经桌边反弹后击中相邻的另一桌边的点 PA 必定平行.请说明原由.B,2.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如下图的部件,要求AB∥ CD,∠BAE=35°,∠AED=90°.小明发现工人师傅不过量出∠BAE=35°,∠AED=90°后,又量了∠ EDC=55°,于是他就说AB与 CD必定是平行的,你知道什么原由吗?3.如图,某湖上景色区有两个观看点A,C和两个度假村B,D.度假村 D 在 C 的正西方向,度假村 B 在 C 的南偏东30°方向,度假村 B 到两个观看点的距离都等于2km.(1)求道路 CD与 CB的夹角;(2)假如度假村 D到 C 是直公路,长为 1km,D 到 A 是环湖路,度假村 B 到两个观看点的总行程等于度假村 D 到两个观看点的总行程.求出环湖路的长;(3)依据题目中的条件,能够判断 DC∥ AB吗?若能,请写出判断过程;若不可以,请你加上一个条件,判断 DC∥ AB.答案:1.解:∵∠ PAD=∠ BAE,∠ PAB=180° - ∠PAD-∠ BAE,∴∠ PAB=180° -2 ∠ BAE.同理,∠ ABC=180° -2 ∠ ABE.∵∠ BAE+∠ABE=90°,∴∠ PAB+∠ABC=360° -2 (∠ BAE+∠ABE)=180°.∴BC∥PA.2.解: AB 与 CD平行.原由是:延伸AE交 DC于 M,∵∠ AED=90°,∠ EDC=55°,∴∠ AMD=∠ AED-∠EDC=35°,∵∠ BAE=35°,∴∠ BAE=∠ AMD,∴AB∥DC.3.解:( 1)如下图,过C作 CM⊥ CD交 AB与 M,则∠ DCM=90°,∠ MCB=30°,∴CD与 CB的夹角为 90°+30°=120°;( 2)环湖路的长 =AB+BC-CD=3km;( 3)不可以判断 DC∥ AB.加上的条件能够是: CA均分∠DCB.证明:∵ AB=AC,∴∠ CAB=∠ ACB,∵ CA均分∠ DCB,∴∠ DCA=∠ ACB,∴∠ DCA=∠ CAB,∴DC∥AB.。
《第七章3 平行线的判定》讲解与例题
1.平行线的判定公理
(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.
如图,推理符号表示为:
∵∠1=∠2,
∴AB∥CD.
谈重点同位角相等,两直线平行
①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.
(2)平行公理的推论:
①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;
②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.
【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?
解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.
答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.
2.平行线的判定定理
(1)判定定理1
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单记为:同旁内角互补,两直线平行.
符号表示:如下图,∵∠2+∠3=180°,
∴AB∥CD.
谈重点同旁内角互补,两直线平行
①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.
(2)判定定理2
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单记为:内错角相等,两直线平行.
符号表示:如上图,
∵∠2=∠4,∴AB∥CD.
【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.
解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等
【例2-2】如图,下列说法中,正确的是( ).
A.因为∠A+∠D=180°,所以AD∥BC
B.因为∠C+∠D=180°,所以AB∥CD
C.因为∠A+∠D=180°,所以AB∥CD
错解:A或B或D
错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C
正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D=180°,所以AB∥CD.
3.平行线的判断方法
平行线的判定方法主要有以下六种:
(1)平行线的定义(一般很少用).
(2)同位角相等,两直线平行.
(3)同旁内角互补,两直线平行.
(4)内错角相等,两直线平行.
(5)同一平面内,垂直于同一条直线的两条直线相互平行.
(6)如果两条直线都和第三条直线平行,那么这两条直线平行.
析规律如何选择判定两直线平行的方法
①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;
②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.
【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.
解析:本题主要是考查平行线的三种判定方法.
若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;
若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;
若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;
从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.
答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…
4.平行线判定的应用
(1)平行线的生活应用
数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……
对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.
(2)平行线在数学中的运用
平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.
释疑点判定平行的关键
判定两直线平行,关键是确定角的位置关系及大小关系.
【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).
解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD =60°,
∴∠ABC+∠BCD=120°+60°=180°.
∴AB∥CD.
∴这个零件合格.
答案:合格
【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.
分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.
解:AD与BC的位置关系是平行.
理由:∵四边形ABCD的内角和是360°,
∴∠A+∠B+∠C+∠D=360°.
∵∠A=∠D,∠B=∠C,
∴∠A+∠B=180°.
∴AD∥BC(同旁内角互补,两直线平行).
点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。