2015届广东高考(文科)复习专题汇编立体几何(2007-2014年试题)精编含解析
- 格式:docx
- 大小:705.52 KB
- 文档页数:13
2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C 【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60o 角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60o 角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A .822+B .1122+C .1422+D .15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为2+2+4+22=8+22, 所以该几何体的表面积为1122+,故选B .【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )错误!未找到引用源。
2015 届高考数学(文科)一轮总复习立体几何第八篇立体几何第 1 讲空间几何体及其表面积与体积基础稳固题组( 建议用时: 40 分钟 )一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,获得一个圆锥和一个圆台.此中正确命题的个数是 ________.分析命题①错,因为这条边假如直角三角形的斜边,则得不到圆锥.命题②题,因这条腰一定是垂直于两底的腰.命题③对.命题④错,一定用平行于圆锥底面的平面截圆锥才行.答案 12 .在正方体上随意选择 4 个极点,它们可能是以下各种几何形体的四个极点,这些几何形体是________( 写出所有正确结论的编号) .①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四周体;④每个面都是等边三角形的四周体;⑤每个面都是直角三角形的四周体.分析①明显可能;②不行能;③取一个极点处的三条棱,连结各棱端点构成的四周体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABcD-A1B1c1D1中,三棱锥 D1-DBc 知足条件.答案①③④⑤3.在三棱锥 S-ABc 中,面 SAB, SBc, SAc 都是以 S 为直角极点的等腰直角三角形,且AB= Bc= cA= 2,则三棱锥S-ABc 的表面积是 ________.分析设侧棱长为a,则 2a=2,a=2,侧面积为 3× 12×a2= 3,底面积为 34× 22= 3,表面积为 3+3.答案 3+34.若圆锥的侧面积为 2π,底面面积为π,则该圆锥的体积为 ________.分析设圆锥的底面圆半径为r ,高为 h,母线长为l ,则π rl =2π,π r2 =π,∴ r = 1,l = 2.∴h= l2 - r2 = 22- 12= 3.∴圆锥的体积V=13π ?12?3= 33π .答案33π5.(2012 ?新课标全国卷改编) 平面α截球o 的球面所得圆的半径为1,球心o 到平面α的距离为2,则此球的体积为________.分析如图,设截面圆的圆心为点,则 oo′= 2, o′= 1,∴ o 径为 3,∴ V=43π (3)3 = 43π .o′,为截面圆上任一22+1= 3,即球的半答案43π6.以下图,已知一个多面体的平面睁开图由一个边长为 1 的正方形和 4 个边长为 1 的正三角形构成,则该多面体的体积是 ________.分析由题知该多面体为正四棱锥,底面边长为 1,侧棱长为1,斜高为 32,连结极点和底面中心即为高,可求得高为 22,所以体积 V= 13×1× 1× 22= 26.答案267.(2013 ?天津卷 ) 已知一个正方体的全部极点在一个球面上,若球的体积为 9π 2,则正方体的棱长为 ________.分析设正方体的棱长为a,外接球的半径为R,由题意知 43π R3=9π 2,∴ R3= 278,而 R= 32.因为 3a2= 4R2,∴ a2= 43R2= 43× 322= 3,∴ a= 3.答案 38.如图,在多面体 ABcDEF中,已知 ABcD是边长为 1 的正方形,且△ ADE,△ BcF 均为正三角形, EF∥ AB,EF=2,则该多面体的体积为 ________.分析如图,分别过点 A,B 作 EF 的垂线,垂足分别为G, H,连结 DG,cH,简单求得 EG= HF= 12, AG= GD= BH=Hc=32,∴ S△ AGD= S△ BHc= 12×22× 1= 24,∴ V=VE-ADG+VF-BHc+ VAGD-BHc= 2VE-ADG+ VAGD-BHc= 13× 24× 12×2+ 24×1= 23.答案23二、解答题9.如图,在三棱锥 P-ABc 中,Ac=Bc= 2,∠ AcB= 90°,AP= BP=AB, Pc⊥Ac.(1)求证: Pc⊥ AB;(2)求点 c 到平面 APB的距离.(1)证明取 AB中点 D,连结 PD, cD.因为 AP=BP,所以 PD⊥ AB,因为 Ac=Bc,所以 cD⊥ AB.因为 PD∩ cD= D,所以 AB⊥平面 PcD.因为 Pc? 平面 PcD,所以 Pc⊥ AB.(2)解设 c 到平面 APB的距离为 h,则由题意,得 AP=PB= AB=Ac2+ Bc2=22,所以 Pc=AP2- Ac2= 2.因为 cD=12AB= 2, PD= 32PB= 6,所以 Pc2+ cD2= PD2,所以 Pc⊥cD.由 (1) 得 AB⊥平面 PcD,于是由 VcAPB= VAPDc+VBPDc,得 13?h?S△ APB=13AB?S△PDc,所以 h=AB?S△ PDcS△ APB=22× 12× 2× 234222= 233.故点 c 到平面 APB的距离为 233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为 r 的铁球,并注入水,使水面与球正好相切,而后将球拿出,求这时容器中水的深度.解以下图,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径Bc 的长为 3r ,则容器内水的体积为V =V 圆锥- V 球= 13π(3r)2 ?3r -43πr3 = 53πr3 ,将球拿出后,设容器中水的深度为h,则水面圆的半径为33h,进而容器内水的体积为V ′= 13π 33h2h= 19πh3,由 V= V′,得 h= 315r.能力提高题组( 建议用时: 25 分钟 )一、填空题1.已知球的直径 Sc= 4, A,B 是该球球面上的两点,AB= 3,∠ASc=∠BSc= 30 °,则棱锥S-ABc 的体积为________.分析由题意知,以下图,在棱锥 S-ABc 中,△ SAc,△SBc 都是有一个角为 30°的直角三角形,此中 AB= 3, Sc=4,所以 SA= SB= 23, Ac= Bc= 2,作 BD⊥ Sc 于 D 点,连结 AD,易证 Sc⊥平面 ABD,所以 VS- ABc=13× 34×(3)2 ×4= 3.答案 32 .(2014 ?南京模拟 ) 如图,在直三棱柱 ABc-A1B1c1 中,AB = 1,Bc= 2, Ac= 5, AA1= 3,为线段 B1B 上的一动点,则当 A+ c1 最小时,△ Ac1 的面积为 ________.分析如图,当 A+ c1 最小时, B= 1,所以 A2= 2,c12 =8, Ac21= 14,于是由余弦定理,得cos ∠ Ac1=A2+ c21-Ac212A?c1 =- 12,所以 sin ∠ Ac1= 32, S△ Ac1= 12× 2×22× 32= 3.答案 33.如图,已知正三棱柱 ABc-A1B1c1 的底面边长为 2c 、高为 5c,则一质点自点 A 出发,沿着三棱柱的侧面绕行两周祥达点A1 的最短路线的长为 ________c.分析依据题意,利用切割法将原三棱柱切割为两个同样的三棱柱,而后将其睁开为以下图的实线部分,则可知所求最短路线的长为 52+ 122=13c.答案13二、解答题4.如图 1,在直角梯形 ABcD中,∠ADc= 90°,cD∥ AB,AB= 4,AD= cD=2,将△ ADc沿 Ac 折起,使平面 ADc⊥平面ABc,获得几何体 D-ABc,如图 2 所示.(1)求证: Bc⊥平面 AcD;(2)求几何体 D-ABc 的体积.(1)证明在图中,可得 Ac= Bc= 22,进而 Ac2+ Bc2=AB2,故 Ac⊥ Bc,又平面 ADc⊥平面 ABc,平面 ADc∩平面 ABc=Ac,Bc ? 平面 ABc,∴Bc⊥平面 AcD.(2)解由 (1) 可知, Bc 为三棱锥 B-AcD 的高, Bc= 22,S△ AcD=2,∴ VB-AcD= 13S△ AcD?Bc= 13× 2×22= 423,由等体积性可知,几何体D-ABc 的体积为423.。
2015广东高考文科数学试题分类汇编:立体几何详细解答一、选择题:1、某几何体的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【解析】:本题考查两个方面的内容:一、三视图;二、立体图形的体积计算; 一、三视图:1、如果三个三视图中有两个三角形,这个立体图形一定是椎体,另一个三视图用来说明其为锥体的那一种;2、如果三个三视图中有两个矩形,这个立体图形一定是柱体,另一个三视图用来说明其为柱体的那一种;3、如果三个三视图中有两个梯形,这个立体图形一定是台体,另一个三视图用来说明其为台体的那一种;二、立体图形的体积计算:1、锥体的体积计算:⨯=31V 底面积⨯高2、柱体的体积计算:=V 底面积⨯高3、台体的体积计算:=V 大椎体体积-小椎体体积解:本题目是由两个立体图形组成的一个组合图形,一般情况下,我们需要分为两个部分各自处理。
上半部分:三视图为三个矩形,说明这个立体图形为四棱柱。
=V 底面积⨯高=16224=⨯⨯下半部分:三视图为两个矩形一个半圆,说明这个立体图形为圆柱的一半。
ππ842212=⨯⨯⨯=V所以:该组合立体图形的体积为π816+。
2、已知正四棱锥1111D C B A ABCD -中,AB AA 21=,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .13【解析】本题考查线与面的夹角计算,线与面的夹角计算有两种方法: 方法一:第一步:线中两个端点一般情况下一个在平面上,一个在平面,由不在平面上的点找到在该平面上的投影点。
(该点和投影点之间的连线垂直于该平面) 第二步:连接线重在平面的端点和投影点,形成一个直角三角形。
第三步:三角形中在平面的边与该直线之间的夹角就是线与面的夹角。
第四步:在直角三角形中利用三角函数求该角的三角函数值。
如图所示:其中'PAP ∠为直线'PP 和平面α的夹角,在'PAP Rt ∆中计算'PAP ∠的三角函数值。
2015全国高考数学试题汇编文科立体几何(试题版)[2015·安徽卷] 一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817 C.48+817 D.80[2015·北京卷] 某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16 2 C.48 D.16+32 2[2015·广东卷] 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.4 3 B.4 C.2 3 D.2[2015·湖南卷] 设图是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18C.92π+12D.92π+18 [2015·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2D. 3[2015·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[2015·陕西卷] 某几何体的三视图如图所示,则它的体积为( )A .8-2π3B .8-π3C .8-2πD.2π3[2015·天津卷] 一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.[2015·浙江卷] 若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )[2015·福建卷] 如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.[2015·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交[2015·广东卷] 正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ) A .20B .15C .12D .10[2015·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面[2015·湖北卷] 设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是()A.V1比V2大约多一半B.V1比V2大约多两倍半C.V1比V2大约多一倍D.V1比V2大约多一倍半[2015·辽宁卷] 已知球的直径SC=4,A、B是该球球面上的两点,AB=2,∠ASC=∠BSC =45°,则棱锥S-ABC的体积为()A.33 B.233 C.433 D.533[2015·课标全国卷] 已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.[2015·四川卷] 如图1-3,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________.[2015·全国卷] 已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC 所成角的余弦值为________.[2015·安徽卷] 如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD 上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明直线BC∥EF;(2)求棱锥F-OBED的体积.[2015·北京卷] 如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.[2015·江苏卷] 如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.[2015·课标全国卷] 如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:P A⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.[2015·陕西卷] 如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD 折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD=1,求三棱锥D-ABC的表面积.[江苏卷] 如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.[2015·辽宁卷] 如图,四边形ABCD 为正方形, QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.[2015·湖南卷] 如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点. (1)证明:AC ⊥平面POD ;(2)求直线OC 和平面P AC 所成角的正弦值.[2015·浙江卷] 如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(1)证明:AP⊥BC;(2)已知BC=8,PO=4,AO=3,OD=2,求二面角B-AP-C的大小.[2015·福建卷] 如图,四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.[2015·江西卷] 如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD . (1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .[2015·山东卷] 如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°. (1)证明:AA 1⊥BD ; (2)证明:CC 1∥平面A 1BD .[2015·四川卷] 如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连结AP交棱CC1于点D.(1)求证:PB1∥平面BDA1;(2)求二面角A-A1D-B的平面角的余弦值.[2015·天津卷] 如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD =AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.(1)证明PB∥平面ACM;(2)证明AD⊥平面P AC;(3)求直线AM与平面ABCD所成角的正切值.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.。
2015年高考真题――立体几何1. [新课标卷1]11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )A. 1B. 2C. 4D. 82.[全国课标2]6. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.B. C. D.3.[北京卷]7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A. 1B.C.D. 24. [天津卷]10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 .5. [山东卷]9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.D. 6.[广东卷]6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )81716151111A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7. [重庆卷]5. 某几何体的三视图如图所示,则该几何体的体积为( ) A.123π+ B. 136π C. 73π D. 52π8.[安徽卷]9. 一个四面体的三视图如图所示,则该四面体的表面积是( )A.1B.1+C.2D.9.[江苏卷]9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个. 若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.[浙江卷]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm11.[湖南卷]10.某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.21)πD.21)π221112212.[陕西卷]5. 一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB. 4πC. 2π+4D. 3π+313.[湖北卷]5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件14.[新课标1]18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I)证明:平面AEC ⊥平面BED ;(II)若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -.15.[全国课标2]19.(本小题满分12分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,分别在A 1B 1, D 1C 1上,A 1E= D 1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形. (I)在图中画出这个正方形(不必说明画法和理由) (II)求平面α把该长方体分成的两部分体积的比值.22FD C 1A 1C如图,在三棱锥E-ABC 中,平面EAB ⊥平面ABC ,三角形EAB 为等边三角形,AC ⊥ BC,且AC=BC=,O,M 分别为AB,V A 的中点.(I)求证:VB//平面MOC.(II)求证:平面MOC ⊥平面 V AB (III)求三棱锥V-ABC 的体积.17. [天津卷]17.(满分13分) 如图,已知1AA ⊥平面ABC ,11,BB AA AB=AC=3,1BC AA =,1BB =点E ,F 分别是BC ,1AC 的中点, (I )求证:EF 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB 。
广东文科数学历届立体几何高考题集锦2011年广东文科数学9. 如图 1-3,某几何体的正视图(主视图 ,侧视图(左视图和俯视图分别是等边三角形等腰三角形和菱形,则该几何体体积为A. 4B.4C.32D.218. (本小题 13分如图所示的几何体是将高为 2,底面半径为 1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的 ., , , , ' ', , ' ' A A B B CD CD DE DE ''分别为的中点,' '1122, , , O O O O 分别是, ' ' , , C D C D D ED E的中点 . (1 2:', ', , O A O B 证明四点共面;(2 ' ' '111' ' ', O ' ' G AA AOH H AO =设为的中点,延长到使得 , 证明 :'2' ' . BO HBG ⊥平面2012年广东文科数学7. 某几何体的三视图如图 1所示,它的体积为( A. 72π B. 48π C. 30π D. 24π图 1正视图俯视图侧视图PABCFE图 518. (本小题满分 13分如图 5所示, 在四棱锥 P ABCD -中, AB ⊥平面 PAD , //AB CD , PD AD =, E 是PB 的中点, F 是 CD 上的点且 12DF AB=, PH 为△ PAD 中 AD 边上的高 . (1证明:PH ⊥平面 ABCD ;(2若 1PH =, AD =, 1FC =,求三棱锥 E BCF -的体积;(3证明:EF ⊥平面 PAB .解:(1证明:因为 AB ⊥平面 PAD所以 PH AB ⊥因为 PH 为△ PAD 中 AD 边上的高所以 PH AD ⊥因为 ABAD A =所以 PH ⊥平面 ABCD(2连结 BH ,取 BH 中点 G ,连结 EG 因为 E 是 PB 的中点,所以 //EG PH 因为 PH ⊥平面 ABCD所以 EG ⊥平面 ABCD则 1122EG PH ==111332E BC FB C FV S E G F C A D -∆=⋅=⋅⋅⋅⋅=(3证明:取 PA 中点 M ,连结 MD , ME 因为 E 是 PB 的中点,所以 1//2ME AB =因为 1//2DF AB =所以 //ME DF =所以四边形 MEDF 是平行四边形所以 //EF MD 因为 PD AD = 所以 MD PA ⊥因为 AB ⊥平面 PADPABCEM所以 MD AB ⊥因为 PAAB A =所以 MD ⊥平面 PAB 所以 EF ⊥平面 PAB2013年广东文科数学6. 某三棱锥的三视图如图 2所示,则该三棱锥的体积是(A. 16B. 13C. 23D. 18. 设 l 为直线, , αβ是两个不同的平面,下列命题中正确的是( A. 若//, //l l αβ,则//αβ,则//αβ B. 若, l l αβ⊥⊥,则//αβ C. 若, //l l αβ⊥,则//αβ D. 若, //l αβα⊥,则l β⊥18. (本题满分 14分如图 4,在边长为 1的等边三角形 ABC 中, D,E, 分别为AB,AC 上的点, AD=AE, F 是 BC 的中点, AF 与 DE 交于点 G ,将△ ABF 沿 AF 折起,得到如图 5所示的三棱锥 A-BCF,其中 2BC =。
概率统计(2007年高考广东卷第9小题)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( A ) A.310B.15C.110D.112(2007年高考广东卷第18小题)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 18解: (1) 散点图略 (2)4166.5i ii X Y ==∑4222221345686ii X==+++=∑ 4.5X =3.5Y =∴266.54 4.5 3.566.563ˆ0.7864 4.58681b-⨯⨯-===-⨯- ;ˆˆ 3.50.7 4.50.35aY bX =-=-⨯=所求的回归方程为 0.70.35y x =+ (3) 当100x =时 0.71000.3570.35y =⨯+= 预测生产100吨甲产品的生产能耗比技改前降低9070.3519.65-=(吨) (2008年高考广东卷第11小题)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。
产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是__13_____。
(2008年高考广东卷第19小题)某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19。
数 学G 单元 立体几何G1 空间几何体的结构19.G1[2015·全国卷Ⅱ] 如图18,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.图1819.解:(1)交线围成的正方形EHGF 如图.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH ==6,AH =10,HB =6.EH 2-EM 2因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为也正确.977918.G1,G4,G5[2015·北京卷] 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =,O ,M 分别为AB ,VA 的中点.2(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB ;(3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB .又因为VB ⊄平面MOC ,OM ⊂平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,平面VAB ∩平面ABC =AB ,且OC ⊂平面ABC ,所以OC ⊥平面VAB .又因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB .(3)在等腰直角三角形ACB 中,AC =BC =,2所以AB =2,OC =1.所以等边三角形VAB 的面积S △VAB =.3又因为OC ⊥平面VAB ,所以三棱锥C VAB 的体积等于OC ·S △VAB =.1333又因为三棱锥V ABC 的体积与三棱锥C VAB 的体积相等,所以三棱锥V ABC 的体积为.3318.G1、G5[2015·湖南卷] 如图14,直三棱柱ABC A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F AEC 的体积.18.解:(1)证明:如图,因为三棱柱ABC A 1B 1C 1是直三棱柱,所以AE ⊥BB 1.又E 是正三角形ABC 的边BC 的中点,所以AE ⊥BC .因此AE ⊥平面B 1BCC 1.而AE ⊂平面AEF ,所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角.由题设,∠CA 1D =45°,所以A 1D =CD =AB =.323在Rt △AA 1D 中,AA 1===,所以FC =AA 1=.A 1D 2-AD 23-121222故三棱锥F AEC 的体积V =S △AEC ·FC =××=.131********9.G1[2015·山东卷] 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.22π342π3C .2πD .4π229.B [解析] 由条件知该直角三角形的斜边长为2,斜边上的高为,故围成的几22何体的体积为2××π×()2×=.132242π318.G1,G4,G5[2015·四川卷] 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论;(3)证明:直线DF图1218.解:(1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH .证明如下:因为ABCD EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH .同理BG ∥平面ACH .又BE ∩BG =B ,所以平面BEG ∥平面ACH .(3)证明:连接FH .因为ABCD EFGH 为正方体,所以DH ⊥平面EFGH .因为EG ⊂平面EFGH ,所以DH ⊥EG ,又EG ⊥FH ,EG ∩FH =O ,所以EG ⊥平面BFHD .又DF ⊂平面BFHD ,所以DF ⊥EG .同理DF ⊥BG .又EG ∩BG =G ,所以DF ⊥平面BEG .10.G1、G2[2015·天津卷] 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.π [解析] 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π83×12×2+2××π×12×1=π(m 3).1383G2 空间几何体的三视图和直观图9.G2[2015·安徽卷] 一个四面体的三视图如图12所示,则该四面体的表面积是( )A .1+B .1+232C .2+D .2329.C [解析] 四面体的直观图如图所示,设O 是AC 的中点,则OP =OB =1,因此PB=,于是S △PAB =S △PBC =×()2=,S △PAC =S △ABC =×2×1=1,故四面体的表面积23423212S =2×1+2×=2+.32311.G2[2015·全国卷Ⅰ] 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图14所示.若该几何体的表面积为16+20π,则r =( )图14A .1B .2C .4D .811.B [解析] 由三视图可知,此组合体的前半部分是一个底面半径为r ,高为2r 的半圆柱(水平放置),后半部分是一个半径为r 的半球,其中半圆柱的一个底面与半球的半个圆面重合,所以此几何体的表面积为2r ·2r +πr 2+πr 2+πr ·2r +2πr 2=4r 2+5πr 2=16+121220π,解得r =2.6.G2[2015·全国卷Ⅱ] 一个正方体被一个平面截去一部分后,剩余部分的三视图如图12,则截去部分体积与剩余部分体积的比值为( )图12A. B.1817C. D.16156.D [解析] 由剩余部分的三视图可知,正方体被截去一个三棱锥,剩余部分如图所示,设正方体的棱长为a ,则被截去的三棱锥的体积为×a 2×a =a 3,而正方体的体积为131216a 3,所以截去部分体积与剩余部分体积的比值为.157.G2[2015·北京卷] 某四棱锥的三视图如图12所示,该四棱锥最长棱的棱长为( )图12A .1 B. C. D .2237.C [解析] 根据三视图可得,此四棱锥是底面是正方形,有一条侧棱和底面垂直的四棱锥,如图所示,所以最长棱的棱长为PC ==,故选C.12+12+1239.G2[2015·福建卷] ( )图13A .8+2B .11+2 22C .14+2D .1529.B [解析] 由三视图可知,该几何体是底面为直角梯形的直四棱柱,其表面积S =(1+1+2+)×2+×(1+2)×1×2=11+2 .212210.G2、G7、K3[2015·湖南卷] 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )新工件的体积原工件的体积图13A.B.89π827πC. D.24(2-1)3π8(2-1)3π10.A [解析] 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x ,借助轴截面,由三角形相似可得,=,得x =x 32-121-22x 1,故V 正=x 3=,又V 圆锥=π×12×=,故利用率为=,选223162271332-1222π316227223π89πA.5.G2[2015·陕西卷]12所示,则该几何体的表面积为( )图12A .3πB .4πC .2π+4D .3π+45.D [解析] 该几何体是底面半径为1、高为2的圆柱被其轴截面截开的半个圆柱,其表面积为×2π×1×2+2××π×12+2×2=3π+4.121214.G2,G7[2015·四川卷] 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14. [解析] 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高124为1且该棱柱为直三棱柱,其底面积为,三棱锥A 1PMN 的底面积是××1,高为,故12121212三棱锥P A 1MN 的体积为××=.13121412410.G1、G2[2015·天津卷] 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.π [解析] 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π×8312×2+2××π×12×1=π(m 3).13832.G2[2015·浙江卷] 某几何体的三视图如图11所示(单位:cm),则该几何体的体积是( )图11A .8 cm 3B .12 cm 3C. cm 3D. cm 33234032.C [解析] 该几何体为一个正方体和一个四棱锥的组合体,故所求体积为23+×2×132×2=.323G3 平面的基本性质、空间两条直线6.G3[2015·广东卷] 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交6.D [解析] 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则l 至少与l 1,l 2中的一条相交,故选D.5.A2、G3[2015·湖北卷] l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D.p既不是q的充分条件,也不是q的必要条件5.A [解析] 由l1,l2是异面直线,可得l1,l2不相交,所以p⇒q;由l1,l2不相交,可得l1,l2是异面直线或l1∥l2,所以q⇒/ p.所以p是q的充分条件,但不是q的必要条件.故选A.G4 空间中的平行关系18.G4,G5,G11[2015·广东卷] 如图13,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.图1318.G1,G4,G5[2015·北京卷] 如图15,在三棱锥VABC中,平面VAB⊥平面ABC,2△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.2(3)在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB=.3又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于OC ·S △VAB =.1333又因为三棱锥V ABC 的体积与三棱锥C VAB 的体积相等,所以三棱锥V ABC 的体积为.3318.G4、G5[2015·山东卷] 如图13,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .18.证明:(1)证法一:如图,连接DG ,CD ,设CD ∩GF =M ,连接MH .在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形,则M 为CD 的中点.又H 为BC 的中点,所以HM ∥BD .又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .证法二:在三棱台DEF ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形HBEF 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB .又GH ∩HF =H ,AB ∩BE =B ,所以平面FGH ∥平面ABED .因为BD ⊂平面ABED ,所以BD ∥平面FGH .(2)如图,连接HE ,GE .因为G ,H 分别为AC ,BC 的中点,所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC ,又H 为BC 的中点,所以EF ∥HC ,EF =HC ,因此四边形EFCH 是平行四边形,所以CF ∥HE .又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.18.G1,G4,G5[2015·四川卷] 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.17.G4、G5、G11[2015·天津卷] 如图14,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC =2,AA 1=,BB 1=2,点E 和F 分别为BC 和A 1C 中点.577(1)求证:EF ∥平面A 1B 1BA ;(2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.17.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A A 1B 1BA .(2)证明:因为AB =AC ,E 为BC BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC的中点,所以NE ∥B 1B ,NE =B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =12AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1.在Rt △A 1MB 1中,可得A 1B 1==4.B 1M 2+A 1M 2在Rt △A 1NB 1中,sin ∠A 1B 1N ==,因此∠A 1B 1N =30°,A 1N A 1B 112所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5[2015·浙江卷] 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A .若l ⊥β,则α⊥βB .若α⊥β,则l ⊥mC .若l ∥β,则α∥βD .若α∥β,则l ∥m4.A [解析] 由两平面垂直的判定定理知,A 正确;对于B ,直线l ,m 相交、平行、异面都有可能,故不正确;对于C ,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D ,l ,m 平行和异面都有可能,故不正确.16.G4、G5[2015·江苏卷] 如图12,在直三棱柱ABC A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.图1216.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为三棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.G5 空间中的垂直关系18.G4,G5,G11[2015·广东卷] 如图13,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.图1320.G5、G12[2015·湖北卷] 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图14所示的阳马P ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求的值.V 1V2图1420.解:(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC .由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D ,所以BC ⊥平面PCD .又DE ⊂平面PCD ,所以BC ⊥DE .又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB .(2)由已知,PD 是阳马P ABCD 的高,所以V 1=S 长方形ABCD ·PD =BC ·CD ·PD ;1313由(1)知,DE 是鳖臑D BCE 的高,BC ⊥CE ,所以V 2=S △BCE ·DE =BC ·CE ·DE .1316在Rt △PDC 中,因为PD =CD ,点E 是PC 的中点,所以DE =CE =CD .22于是===4.V 1V 213BC ·CD ·PD 16BC ·CE ·DE 2CD ·PD CE ·DE18.G5[2015·全国卷Ⅰ] 如图15,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC, 三棱锥E ACD 的体积为,求该三棱锥的侧面积.63图1518.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =x ,GB =GD =.32x2因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =x .32由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =x .22由已知得,三棱锥E ACD 的体积V E ACD =×AC ·GD ·BE =x 3=,131262463故x =2.从而可得AE =EC =ED =,6所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为.5故三棱锥E ACD 的侧面积为3+2.518.G1,G4,G5[2015·北京卷] 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =,O ,M 分别为AB ,VA 的中点.2(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB ;(3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB .又因为VB ⊄平面MOC ,OM ⊂平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,平面VAB ∩平面ABC =AB ,且OC ⊂平面ABC ,所以OC ⊥平面VAB .又因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB .(3)在等腰直角三角形ACB 中,AC =BC =,2所以AB =2,OC =1.所以等边三角形VAB 的面积S △VAB =.3又因为OC ⊥平面VAB ,所以三棱锥C VAB 的体积等于OC ·S △VAB =.1333又因为三棱锥V ABC 的体积与三棱锥C VAB 的体积相等,所以三棱锥V ABC 的体积为.3320.G5、G12[2015·福建卷] 如图15,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(2)求三棱锥P ABC 体积的最大值;(3)若BC =,点E 在线段PB 上,求CE +OE 的最小值.2图1520.解:方法一:(1)证明:在△AOC 中,因为OA =OC ,D 为AC 的中点,所以AC ⊥DO .又PO 垂直于圆O 所在的平面,所以PO ⊥AC .因为DO ∩PO =O ,DO ⊂平面PDO ,PO ⊂平面PDO ,所以AC ⊥平面PDO .(2)因为点C 在圆O 上,所以当CO ⊥AB 时,C 到AB 的距离最大,且最大值为1.又AB =2,所以△ABC 面积的最大值为×2×1=1.12又因为三棱锥P ABC 的高PO =1,故三棱锥P ABC 体积的最大值为×1×1=.1313(3)在△POB 中,PO =OB =1,∠POB =90°,所以PB ==.12+122同理PC =,所以PB =PC =BC .2在三棱锥P ABC 中,将侧面BCP 绕PB 旋转至平面BC ′P, 使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.又因为OP =OB ,C ′P =C ′B ,所以OC ′垂直平分PB ,即E 为PB 中点.从而OC ′=OE +EC ′=+=,22622+62亦即CE +OE 的最小值为.2+62方法二:(1)(2)同方法一.(3)在△POB 中,PO =OB =1,∠POB =90°,所以∠OPB =45°,PB ==.12+122同理PC =.2所以PB =PC =BC ,所以∠CPB =60°.在三棱锥P ABC 中,将侧面BCP 绕PB 旋转至平面BC ′P ,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.所以在△OC ′P 中,由余弦定理得,OC ′2=1+2-2×1××cos(45°+60°)=1+2-2 ××-×=2+.22221222323从而OC ′==.2+32+62所以CE +OE 的最小值为+.226218.G1、G5[2015·湖南卷] 如图14,直三棱柱ABC A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F AEC 的体积.18.解:(1)证明:如图,因为三棱柱ABC A 1B 1C 1是直三棱柱,所以AE ⊥BB 1.又E 是正三角形ABC 的边BC 的中点,所以AE ⊥BC .因此AE ⊥平面B 1BCC 1.而AE ⊂平面AEF ,所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角.由题设,∠CA 1D =45°,所以A 1D =CD =AB =.323在Rt △AA 1D 中,AA 1===,所以FC =AA 1=.A 1D 2-AD 23-121222故三棱锥F AEC 的体积V =S △AEC ·FC =××=.1313322261218.G4、G5[2015·山东卷] 如图13,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .18.证明:(1)证法一:如图,连接DG ,CD ,设CD ∩GF =M ,连接MH .在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形,则M 为CD 的中点.又H 为BC 的中点,所以HM ∥BD .又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .证法二:在三棱台DEF ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形HBEF 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB .又GH ∩HF =H ,AB ∩BE =B ,所以平面FGH ∥平面ABED .因为BD ⊂平面ABED ,所以BD ∥平面FGH .(2)如图,连接HE ,GE .因为G ,H 分别为AC ,BC 的中点,所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC ,又H 为BC 的中点,所以EF ∥HC ,EF =HC ,因此四边形EFCH 是平行四边形,所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .18.G5[2015·陕西卷] 如图15(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =π2BC =AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE12的位置,得到四棱锥A 1 BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1 BCDE 的体积为36,求a 的值.2图1518.解:(1)证明:在图(1)中,因为AB =BC =AD =a ,E 是AD 的中点,12∠BAD =,所以BE ⊥AC ,π2即在图(2)中,BE ⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,且平面A 1BE ∩平面BCDE =BE ,又由(1)知,A 1O ⊥BE ,所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1 BCDE 的高.由图(1)知,A 1O =AB =a ,平行四边形BCDE 的面积S =BC ·AB =a 2.2222从而四棱锥A 1 BCDE 的体积V =×S ×A 1O =×a 2×a =a 3.13132226由a 3=36,得a =6.26218.G1,G4,G5[2015·四川卷] 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论;(3)证明:直线DF图1218.解:(1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH .证明如下:因为ABCD EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH .同理BG ∥平面ACH .又BE ∩BG =B ,所以平面BEG ∥平面ACH .(3)证明:连接FH .因为ABCD EFGH 为正方体,所以DH ⊥平面EFGH .因为EG ⊂平面EFGH ,所以DH ⊥EG ,又EG ⊥FH ,EG ∩FH =O ,所以EG ⊥平面BFHD .又DF ⊂平面BFHD ,所以DF ⊥EG .同理DF ⊥BG .又EG ∩BG =G ,所以DF ⊥平面BEG .17.G4、G5、G11[2015·天津卷] 如图14,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =2,AA 1=,BB 1=2,点E 和F 分别为BC 和A 1C 中点.577(1)求证:EF ∥平面A 1B 1BA ;(2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.17.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A A 1B 1BA .(2)证明:因为AB =AC ,E 为BC BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC的中点,所以NE ∥B 1B ,NE =B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =12AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1.在Rt △A 1MB 1中,可得A 1B 1==4.B 1M 2+A 1M 2在Rt △A 1NB 1中,sin ∠A 1B 1N ==,因此∠A 1B 1N =30°,A 1N A 1B 112所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5[2015·浙江卷] 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A .若l ⊥β,则α⊥βB .若α⊥β,则l ⊥mC .若l ∥β,则α∥βD .若α∥β,则l ∥m4.A [解析] 由两平面垂直的判定定理知,A 正确;对于B ,直线l ,m 相交、平行、异面都有可能,故不正确;对于C ,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D ,l ,m 平行和异面都有可能,故不正确.18.G5,G11[2015·浙江卷] 如图14,在三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求直线A 1B 和平面BB 1C 1C 所成的角的正弦值.图1418.解:(1)证明:设E 为BC 的中点,连接DE .由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE .因为AB =AC ,所以AE ⊥BC .故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以四边形AA 1DE 为平行四边形.于是A 1D ∥AE .又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)作A 1F ⊥DE ,垂足为F ,连接BF .因为A 1E ⊥平面ABC ,所以BC ⊥A 1E .因为BC ⊥AE ,所以BC ⊥平面AA 1DE .所以BC ⊥A 1F ,所以A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角.由AB =AC =2,∠CAB =90°,得EA =EB =.2由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =.14由DE =BB 1=4,DA 1=EA =,∠DA 1E =90°,得A 1F =.272所以sin ∠A 1BF ==.A 1F A 1B 7820.G5、G7[2015·重庆卷] 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且π2EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC .又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =,EF ∥BC ,故AB ⊥EF .π2从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE .(2)设BC =x ,则在直角三角形ABC 中,AB ==,AC 2-BC 236-x 2从而S △ABC =AB ·BC =x .121236-x 2由EF ∥BC 知,==,△AFE ∽△ABC ,故=2=,即S △AFE =S △ABC .AF AB AE AC 23S △AFE S △ABC 234949由AD =AE ,得S △AFD =S △AFE =×S △ABC =S △ABC =x ,12121249291936-x 2从而四边形DFBC 的面积为S 四边形DFBC =S △ABC -S △AFD =x -x =x1236-x 21936-x 2718.36-x 2由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高.在直角三角形PEC 中,PE ===2.PC 2-EC 242-223所以V 四棱锥P DFBC =·S 四边形DFBC ·PE =×x ·2=7,131371836-x 23故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3.3所以BC =3或BC =3.3G6 多面体与球G7 棱柱与棱锥10.G2、G7、K3[2015·湖南卷] 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )新工件的体积原工件的体积图13A.B.89π827πC.D.24(2-1)3π8(2-1)3π10.A [解析] 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x ,借助轴截面,由三角形相似可得,=,得x =x 32-121-22x1,故V 正=x 3=,又V 圆锥=π×12×=,故利用率为=,选223162271332-1222π316227223π89πA.14.G2,G7[2015·四川卷] 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14. [解析] 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高124为1且该棱柱为直三棱柱,其底面积为,三棱锥A 1PMN 的底面积是××1,高为,故12121212三棱锥P A1MN 的体积为××=.1312141245.G2、G7、G8[2015·重庆卷] 某几何体的三视图如图12所示,则该几何体的体积为( )图12A.+2πB.1313π6C. D.7π35π25.B [解析] 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =××π×131212×1+π×12×2=.13π620.G5、G7[2015·重庆卷] 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且π2EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC .又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =,EF ∥BC ,故AB ⊥EF .π2从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE .(2)设BC =x ,则在直角三角形ABC 中,AB ==,AC 2-BC 236-x 2从而S △ABC =AB ·BC =x .121236-x 2由EF ∥BC 知,==,△AFE ∽△ABC ,故=2=,即S △AFE =S △ABC .AF AB AE AC 23S △AFE S △ABC 234949由AD =AE ,得S △AFD =S △AFE =×S △ABC =S △ABC =x ,12121249291936-x 2从而四边形DFBC 的面积为S 四边形DFBC =S △ABC -S △AFD =x -x =x1236-x 21936-x 2718.36-x 2由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高.在直角三角形PEC 中,PE ===2.PC 2-EC 242-223所以V 四棱锥P DFBC =·S 四边形DFBC ·PE =×x ·2=7,131371836-x 23故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3.3所以BC =3或BC =3.39.G7[2015·江苏卷] 现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.9. [解析] 设新的底面半径为r ,则π×52×4+π×22×8=πr 2×4+πr 2×8 ,71313即πr 2=π+32π,解得r =.28310037G8 多面体与球5.G2、G7、G8[2015·重庆卷] 某几何体的三视图如图12所示,则该几何体的体积为( )图12A.+2πB.1313π6C.D.7π35π25.B [解析] 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =××π×131212×1+π×12×2=.13π610.G8[2015·全国卷Ⅱ] 已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.C [解析] 因为V 三棱锥O ABC =V 三棱锥C OAB ,所以三棱锥O ABC 体积的最大值即三棱锥C OAB 体积的最大值,所以当C 到平面OAB 的距离最大时,即CO ⊥平面OAB 时,体积最大,设球的半径为r ,则V 三棱锥O ABC =V 三棱锥C OAB =r 3=36,所以r =6,则球O16的表面积S =4πr 2=144π.图12A.+2πB.1313π6C.D.7π35π2G9 空间向量及运算G10 空间向量解决线面位置关系G11 空间角与距离的求法17.G4、G5、G11[2015·天津卷] 如图14,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =2,AA 1=,BB 1=2,点E 和F 分别为BC 和A 1C 中点.577(1)求证:EF ∥平面A 1B 1BA ;(2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 117.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A A 1B 1BA .(2)证明:因为AB =AC ,E 为BC BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC的中点,所以NE ∥B 1B ,NE =B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =12AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1.在Rt △A 1MB 1中,可得A 1B 1==4.B 1M 2+A 1M 2在Rt △A 1NB 1中,sin ∠A 1B 1N ==,因此∠A 1B 1N =30°,A 1N A 1B 112所以直线A 1B 1与平面BCB 1所成的角为30°.18.G5,G11[2015·浙江卷] 如图14,在三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求直线A 1B 和平面BB 1C 1C 所成的角的正弦值.图1418.解:(1)证明:设E 为BC 的中点,连接DE .由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE .因为AB =AC ,所以AE ⊥BC .故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以四边形AA 1DE 为平行四边形.于是A 1D ∥AE .又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)作A 1F ⊥DE ,垂足为F ,连接BF .因为A 1E ⊥平面ABC ,所以BC ⊥A 1E .因为BC ⊥AE ,所以BC ⊥平面AA 1DE .所以BC ⊥A 1F ,所以A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角.由AB =AC =2,∠CAB =90°,得EA =EB =.2由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =.14由DE =BB 1=4,DA 1=EA =,∠DA 1E =90°,得A 1F =.272所以sin ∠A 1BF ==.A 1F A 1B 7818.G4,G5,G11[2015·广东卷] 如图13,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.图13图1422.G11、G12[2015·江苏卷] 如图16,在四棱锥P ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =,PA =AD =2,AB =BC =1.π2(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.图1622.解:以{,,}为正交基底建立如图所示的空间直角坐标系A xyz ,则各点的AB → AD → AP →坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以是平面PAB 的一个法向量,=(0,2,0).AD → AD →因为=(1,1,-2),=(0,2,-2),PC → PD →设平面PCD 的一个法向量为m =(x ,y ,z ),所以m ·=0,m ·=0,PC → PD →即令y =1,解得z =1,x =1,{x +y -2z =0,2y -2z =0.)所以m =(1,1,1)是平面PCD 的一个法向量.。
平面几何与圆锥曲线(2007年高考广东卷第11小题)在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点(24)P ,,则该抛物线的方程是28y x =.(2007年高考广东卷第19小题)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为C 与直线y x =相切于坐标原点O ,椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 19解:(1) 设圆C 的圆心为 (m , n )(m <0,n >0)依题意可得1n m ⎧=-⎪= 解得22m n =-⎧⎨=⎩∴所求的圆的方程为 22(2)(2)8x y ++-=(2) 由已知可得 210a = ∴ 5a = ∴ 椭圆的方程为221259x y += , 右焦点为 F( 4, 0);设00(,)Q x y ,依题意22002200(2)(2)8(4)16x y x y ⎧++-=⎪⎨-+=⎪⎩ 解得00412,55x y ==或000,0x y ==(舍去) ∴存在点412(,)55Q (2008年高考广东卷第6小题)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A. x + y + 1 = 0B. x + y - 1 = 0C. x - y + 1 = 0D. x - y - 1 = 0(2008年高考广东卷第20小题)设b >0,椭圆方程为222212x y b b+=,抛物线方程为28()x y b =-。
如图所示,过点F (0,b + 2)作x 轴的平行线,与抛物线在第一象限的交点为G 。
已知抛物线在点G 的切线经过椭圆的右焦点F 1。
(1)求满足条件的椭圆方程和抛物线方程; (2)设A 、B 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得△ABP 为直角三角形? 若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)。
2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.若集合{1,1}M =-,{2,1,0}N =-,则M N ⋂=A.{0,1}-B.{1}C.{0}D.{1,1}-【答案】B【解析】}1{=⋂N M 2.已知i 是虚数单位,则复数2(1)i +=A.2iB.2i -C.2D.2-【答案】A 【解析】()()i i i i 221122=++=+3. 下列函数中,既不是奇函数,也不是偶函数的是A.sin 2y x x =+2B.cos y x x =- 1C.22x x y =+ 2D.sin y x x =+【答案】D 【解析】A 为奇函数,B 和C 为偶函数,D 为非奇非偶函数4. 若变量,x y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为A.2B.5C.8D.10【答案】B【解析】由题意可做出如图所示阴影部分可行域,则目标函数 23z x y =+过点(4,-1)时z 取得最大值为max 243(1)5z =⨯+⨯-=5. 设ABC ∆的内角A,B,C 的对边分别为a,b,c,若=b c <,则b =A.3B. C.2 D.【答案】C 【解析】由余弦定理得,23344122cos 2222=-+=-+=bb bc a c b A ,化简得0862=+-b b ,解得42或=b ,因为b c <,2b =所以,6. 若直线1l 与2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是12A.,l l l 与都不相交 12B.,l l l 与都相交12C.,l l l 至多与中的一条相交12D.,l l l 至少与中的一条相交 【答案】D7. 已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.8D.1【答案】B 【解析】设5件产品中2件次品分别标记为A ,B ,剩余的3件合格品分别设为a ,b ,c. 则从5件产品中任取2件,共有10种情况,分别为(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c )、(a ,b )、(a ,c )、(b ,c )、(A ,B )其中,恰有一件次品的情况有6种,分别是(A ,a )、(A ,b)、(A ,c )、(B ,a )、(B ,b )、(B ,c ),则其概率为0.6106= 8. 已知椭圆2221025x y m m +=>()的左焦点为1-F (4,0),则=m A.2B.3C.4D.9【答案】B【解析】因为椭圆的左焦点为(-4,0),则有4=c ,且椭圆的焦点在x 轴上,所以有916252522=-=-=c m ,因为,0>m 所以3=m9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD 则AD ACA.5B.4C.3D.2【答案】A【解析】因为四边形ABCD 是平行四边形,所以)1,3()1,2()2,1(-=+-=+=AD AB AC ,则5)1(132=-⨯+⨯=⋅AC AD10. 若集合{}(,,,)|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,{}(,,,)|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=A.200B.150C.100D.50 【答案】A【解析】当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种;当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种;当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种;当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=.当0t =时,u 取1,2,3,4中的一个,有4种;当1t =时,u 取2,3,4中的一个,有3种;当2t =时,u 取3,4中的一个,有2种;当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=所以()()card card F 100100200E +=+=二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11. 不等式2340x x --+>的解集为 .(用区间表示)【答案】(-4,1)【解析】解不等式2340x x --+> 得14<<-x ,所以不等式的解集为(-4,1)12. 已知样本数据12,,,n x x x 的均值5x =,则样本1221,21,,21n x x x +++的均值为 .【答案】10【解析】由题意知,当样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =时,样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=13. 若三个正数a,b,c 成等比例,其中526,526a c =+=-,则b = .【答案】1【解析】由等比中项性质可得,1)62(5)625)(625(222=-=-+==ac b ,由于b 为正数,所以b=1(二)选做题(14-15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程(cos sin )2ρθθ+=-,曲线2C 的参数方程为222x t y t⎧=⎪⎨=⎪⎩(t 为参数). 则1C 与2C 交点的直角坐标为 .【答案】(2,-4)【解析】曲线1C 的直角坐标系方程为2-=+y x ,曲线2C 的直角坐标方程为x y 82=.联立方程⎩⎨⎧=-=+x y y x 822,解得⎩⎨⎧-==42y x ,所以1C 与2C 交点的直角坐标为(2,-4) 15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 延长线上一点,过点E 作圆O 的切线,切点为C 过点A 作直线EC 的垂线,垂足为D ,若4,23AB CE ==,则AD = .【答案】3【解析】由切割线定理得:2CE =BE AE ,所以,BE BE (+4)=12解得:BE=2BE 或=-6(舍去)连结OC ,则OC DE AD DE OC//AD ∴⊥,⊥,OC OE 26=,3AD AE 4OC AE AD OE ⨯∴∴===图1三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知tan 2.(1)求tan()4的值; (2)求2sin 2sin sin cos cos21的值. 【解析】(1) tan tan 4tan()41tan tan 4tan 11tan παπαπααα++=-+=-∵ tan 2α= ∴21tan()34121πα++==-- (2) 222222222sin sin cos cos21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin22sin cos ααα= ∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式 17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240的用户中应抽取多少户?【解析】(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x =(2)众数:230中位数:取频率直方图的面积平分线0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+= (3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯=[260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户∴[220,240)抽取:2511555⨯=户 18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD=PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.【解析】(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CDPE ⊂面PCD ,PE ⊥CD∴ PE ⊥面ABCD而BC ⊂面ABCD∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E∴ BC ⊥面PCDPD ⊂面PCD∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯ 在等腰三角形PCD 中,PE=7,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯= ∴P-ADC 1V 79373=⨯⨯= 设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯ 而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯= ∴13763h =⨯⨯∴h =,即:点C 到平面PDA19.(本小题满分14分) 设数列n a 的前n 项和为*,n S n N ,已知123351,,,24a a a 且当2n 时,211458n n n n S S S S . (1)求4a 的值;(2)证明:112n n a a 为等比数列;(3)求数列n a 的通项公式. 【解析】 (1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=12-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列 (3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列 111411()()22{}2,411()22=2+41()2121()()221n n n nn nn n n n n a a a a a n n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20.(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B. (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L yk x 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1) 2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kxx y x x k x x k x x x x k k ky y k x k ky k x yx x x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即2229535(,3]13530(,3]3x k x x y x ∴=∈+∴-+=∈轨迹方程:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时: 21.(本小题满分14分)设a 为实数,函数2()()(1)f x x a x a a a .(1)若(0)1f ,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a 时,讨论4()f x x 在区间0,内的零点个数.【解析】(1) 222(0)||(1)||||f a a a a a a a a a a=+--=+-+=+10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述:(2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+> ∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-.①当2a =时,-22()(m in==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点.当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x 综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与a a g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >,所以当),(+∞∈a x 时,)()(x g x f 与有一个交点;故当2>a 时,()y f x =与x x g 4)(-=有两个交点. 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。
二、解答题: 1.(2007年高考)已知某几何体的俯视图是如图1所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S .【解析】由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V A B C D -;(1) ()1864643V =⨯⨯⨯=(2) 该四棱锥有两个侧面V A D 、V B C 是全等的等腰三角形, 且B C边上的高为1h ==另两个侧面V A B 、V C D 也是全等的等腰三角形, AB 边上的高为25h ==因此112(685)4022S =⨯⨯⨯⨯=+图12.(2008年高考)如图所示,四棱锥P A B C D -的底面A B C D 是半径为R 的圆的内接四边形,其中B D 是圆的直径,60ABD ∠= ,45BDC ∠= ,AD P ∆∽BAD ∆. (1)求线段P D 的长;(2)若PC =,求三棱锥P A B C -的体积.【解析】(1)∵B D 是圆的直径,∴90BAD ∠= , 又 A D P ∆∽BAD ∆,∴A D D P B AA D=,()()22234sin 60431sin 3022R BD ADD P R BABD R ⨯====⨯; (2 ) 在R t B C D中,cos 45CD BD ==∵ 2222229211PD CD R R R PC +=+==,∴PD C D ⊥, 又90PDA ∠=,∴PD AD ⊥,∵CD AD D = , ∴P D ⊥底面A B C D .211sin(6045)2222224ABC S AB BC R ∆=⋅+=⋅+=.三棱锥P A B C -的体积为231133344P ABC ABC V S PD R -=⋅⋅=⋅=.3.(2009年高考)某高速公路收费站入口处的安全标识墩如图4所示.墩的上半部分是正四棱锥P E F G H -,下半部分是长方体A B C D E F G H -.图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积; (3)证明:直线B D ⊥平面PEG .【解析】(1)侧视图同正视图,如下图所示.(2)该安全标识墩的体积为:P EFG H ABC D EFG H V V V --== 221406040203200032000640003=⨯⨯+⨯=+=()2cm .(3)如图,连结E G ,H F 及 B D ,E G 与H F 相交于O ,连结P O . 由正四棱锥的性质可知,P O ⊥平面E F G H , ∴P O H F ⊥, 又EG H F ⊥, ∴H F ⊥平面PEG , 又BD HF P , ∴B D ⊥平面PEG .4.(2010年高考)如图, AEC 是半径为a 的半圆,AC 为直径,点E 为 A C 的中点,点B 和 点C 为线段AD 的三等分点,平面AEC 外一点F 满足⊥FC 平面BED ,a FB 5=.(1)证明:FD EB ⊥;(2)求点B 到平面FED 的距离.证明:(1)∵⊥FC 平面BED ,EB ⊂平面BED ,∴⊥FC E B .∵AC 为直径,点E 为A C 的中点,∴A C ⊥EB . ∵AC F C C =,∴EB ⊥平面A C F , ∵FD ⊂平面A C F ,∴FD EB ⊥. (2)设点B 到平面FED 的距离为h .∵AEC 是半径为a 的半圆,∴BC C D a ==,∴ED =,FE =,∵a FB 5=,∴FD =,2FC a =,∴2222cos 25ED DF EFEDF ED DF+-∠==⋅,∴sin 5ED F ∠=,∴B FED F BED V V --=, ∴1133F E D B E D S h S F C ⋅=⋅,∴11sin 22D E D F D EF h BE BD FC ⋅∠⋅=⋅⋅,225h a a a ⋅=⋅⋅,∴21h a =,∴点B 到平面FED 的距离为21a .C C'图5C C'5.(2011年高考)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为 C D , C D '', D E , D E ''的中点,1122,,,O O O O ''分别为C D ,C D '', D E ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为A A '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.【解析】(1)证明:连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心, ∴,,,CD C D DE D E ''''是圆柱底面圆的直径,∵,,A B B ''分别为 CD '', DE , D E ''的中点, ∴1290A O D B O D ''''''∠=∠=,∴1A O ''∥2B O ',∵B B '//22O O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2B O ',∴1A O ''∥2BO , ∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '', ∵11O H A O ''''=,∴1O H ''2B '',四边形12O O B H ''''是平行四边形, ∴12O O ''∥H B '',∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''.∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '', ∴2BO H B '''⊥.易知四边形A A H H ''是正方形,且边长2AA '=, ∵11tan 2H H H O H O H '''∠=='',1tan 2A G A H G A H '''∠=='',∴1tan tan 1H O H A H G ''''∠⋅∠=,∴190H O H A H G ''''∠+∠=,∴1HO H G ''⊥.易知12O O ''//H B ,四边形12O O BH ''是平行四边形, ∴2B O '∥1H O ',∴2BO H G ''⊥,H G H B H ''''= , ∴2BO '⊥平面H B G ''.6.(2012年高考)如图所示,在四棱锥P A B C D-中,AB⊥平面PAD,A B∥C D,PD AD=,E是P B中点,F是D C上的点,且12D F A B=,P H为PAD∆中A D边上的高.(1)证明:PH⊥平面A B C D;。
2015届广东高考复习专题汇编 (2007-2014年试题)平面向量(2007年高考广东卷第4小题)1.若向量a b ,满足1a b ==,a 与b 的夹角为60°,则a a a b +=··( )A.12B.32C.1+D.2(2008年高考广东卷第3小题)2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a + 3b =( ) A. (-5,-10) B. (-4,-8) C. (-3,-6) D. (-2,-4)(2009年高考广东卷第3小题)3.已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( ) A 平行于x 轴 B.平行于第一、三象限的角平分线 C.平行于y 轴 D.平行于第二、四象限的角平分线(2010年高考广东卷第5小题)4.若向量a =(1,1),b =(2,5),c =(3,x )满足条件 (8a -b )·c =30,则x = ( )A .6B .5C .4D .35.已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则 ( ) A .14 B.12C.1D. 2(2012年高考广东卷第3小题)6.若向量(1,2),(3,4)AB BC ==,则AC =( )A . (4,6)B . (4,6)--C . (2,2)--D . (2,2)(2012年高考广东卷第10小题)7.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ和βα都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =( )A . 52B . 32C . 1D . 12(2013年高考广东卷第10小题).8设a r 是已知的平面向量且0a ≠r r ,关于向量a r的分解,有如下四个命题:① 给定向量b r ,总存在向量c r ,使a b c =+r r r;② 给定向量b r 和c r ,总存在实数λ和μ,使a b c λμ=+r r r;③ 给定单位向量b r 和正数μ,总存在单位向量c r 和实数λ,使a b c λμ=+r r r; ④ 给定正数λ和μ,总存在单位向量b r 和单位向量c r ,使a b c λμ=+r r r.上述命题中的向量b r ,c r 和a r在同一平面内且两两不共线,则真命题的个数是( )A. 1B. 2C. 3D. 49.已知向量()1,2a =,()3,1b =,则b a -=( )A.()2,1-B.()2,1-C.()2,0D.()4,3答案: 1. B 2. B3 . C 【解析】+a b 2(0,1)x =+,由210x +≠及向量的性质可知,C 正确.4. C5. B6. A7. D 8.C 9. B。
2015届广东高考复习专题汇编 (2007-2014年试题)立体几何(2007年高考广东卷第6小题)1.若,,l m n 是互不相同的空间直线,αβ,是不重合的平面,则下列命题中为真命题的是( ) A.若l n αβαβ⊂⊂,,∥,则l n ∥B.若l αβα⊥⊂,,则l β⊥C.若l n m n ⊥⊥,,则l m ∥D.若l l αβ⊥,∥,则αβ⊥(2007年高考广东卷第17小题)2.已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S图53.将正三棱柱截去三个角(如图1所示A、B、C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()(2008年高考广东卷第18小题)4.如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP∽△BAD。
(1)求线段PD的长;(2)若PC = ,求三棱锥P-ABC的体积。
5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④(2009年高考广东卷第17小题)6.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积(3)证明:直线BD 平面PEG7。
如图1, ABC ∆为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是(2010年高考广东卷第18小题)8.如图4,弧AEC 是半径为a 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.9.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线条数共有 ( ) A .20 B.15 C.12 D. 10 (2011年高考广东卷第9小题)10.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为 ( ) A .43 B.4 C.23 D. 2(2011年高考广东卷第18小题)11.下图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一般沿切面向右水平平移得到的。
,,,,,,A ABB CDCD DE DE ''''''分别为的中点,1122,,,O O O O ''分别为,,CD C D '',DE D E ''的中点。
(1)证明:12,,,O A O B ''四点共面; (2)设G 为AA '的中点,延长1112A O H O H A O BO H B G ''''''''''=⊥到,使得,证明:平面。
俯视图侧视图正视图C '12.某几何体的三视图如图1所示,它的体积为( ) A . 72π B . 48π C . 30π D . 24π(2012年高考广东卷第18小题)(本小题满分13分)13.如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=21AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积; (3) 证明:EF ⊥平面PAB .14.某三棱锥的三视图如图2所示,则该三棱锥的体积是( )A. 16B. 13C. 23D. 1(2013年高考广东卷第8小题)15.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A. 若//,//l l αβ,则//αβB. 若,l l αβ⊥⊥,则//αβC. 若,//l l αβ⊥,则αβ//D. 若,l αβα⊥//,则l β⊥ (2013年高考广东卷第18小题)(本小题满分14分)16.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G . 将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =.(1) 证明:DE BCF //平面; (2) 证明:CF ABF ⊥平面; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -17.若空间中四条直线两两不同的直线1l 、2l 、3l 、4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A.14l l ⊥B.14//l lC.1l 、4l 既不平行也不垂直D.1l 、4l 的位置关系不确定 (2014年高考广东卷第18小题)(本小题满分13分)18.如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==,作如图3折叠,折痕//EF DC .其中点E 、F 分别在线段PD 、PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF CF ⊥.(1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.图3图2MFEPDCBA PDCB A答案: 1.D2解: 由已知可得该几何体是一个底面边长为8和6的矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD ;(1) ()1864643V =⨯⨯⨯= (2) 该四棱锥有两个侧面VAD 、VBC 是全等的等腰三角形,且BC 边上的高为1h == 另两个侧面VAB 、VCD 也是全等的等腰三角形,AB边上的高为25h == 因此112(685)4022S =⨯⨯⨯⨯=+3.A4.【解析】(1)BD 是圆的直径 ∴ 90BAD ∠= 又~A D P B A D ,∴AD DP BA AD =,()()22234sin 60431sin 3022R BD AD DP R BA BD R ⨯====⨯ ; (2 ) 在Rt BCD 中,cos452CD BD R ==2222229211P D C D R R R P C +=+== ∴P D C D ⊥ 又90PDA ∠=∴PD ⊥底面ABCD ()21132121s i n 604522222ABCSAB BC R R R ⎛=+=+= ⎝⎭三棱锥P ABC -的体积为23113131333P ABC ABCV S PD R R R -++=== . 5.【答案】D【解析】①错, ②正确, ③错, ④正确.故选D 6.【解析】(1)侧视图同正视图,如下图所示.(2)该安全标识墩的体积为:P EFGH ABCD EFGH V V V --== 221406040203200032000640003=⨯⨯+⨯=+= ()2cm(3)如图,连结EG,HF 及 BD ,EG 与HF 相交于O,连结PO. 由正四棱锥的性质可知,PO ⊥平面EFGH , PO HF ∴⊥又EG HF ⊥ HF ∴⊥平面PEG 又BD HF P BD ∴⊥平面PEG ; 8.法一:(1)证明:∵点B 和点C 为线段AD 的三等分点, ∴点B 为圆的圆心 又∵E 是弧AC 的中点,AC 为直径,∴EB BC ⊥即EB BD ⊥ ∵⊥FC 平面BDE ,⊂EB 平面BDE , ∴EB FC ⊥ 又⊂BD 平面FBD ,⊂FC 平面FBD 且C FC BD = ∴⊥EB 平面FBD 又∵⊂FD 平面FBD , ∴FD EB ⊥(2)解:设点B 到平面FED 的距离(即三棱锥B FED -的高)为h . ∵⊥FC 平面BDE , ∴FC 是三棱锥F-BDE 的高,且三角形FBC 为直角三角形 由已知可得a BC =,又 ∴aa a FC 2)5(22=-=在BDE Rt ∆中,a BE a BD ==,2,故2221a a a S BDE =⨯⨯=∆, ∴323223131a a a FC S V BDE BDE F =⨯⨯=⋅=∆-, 又∵⊥EB 平面FBD ,故三角形EFB 和三角形BDE 为直角三角形, ∴a DE a EF 5,6==,在FCD Rt ∆中,a FD 5=,∴=∆FED S 2221a , ∵FED B BDE F V V --=即323222131a h a =⋅⋅, 故a h 21214=, 即点B 到平面FED 的距离为a h 21214=. a FB 5=// 9.D 10.C 、11.证明:(1),,A A CD C D '''分别为中点,11//O A O A ''∴连接BO 2直线BO 2是由直线AO 1平移得到12//AO BO ∴12//O A BO ''∴ 12,,,O A O B ''∴共面。
(2)将AO 1延长至H 使得O 1H=O 1A ,连接1,,HO HB H H ''∴由平移性质得12O O ''=HB 21//BO HO ''∴ 11,,2A G H O H H A H O H H GA H π''''''''''==∠=∠=1GA H O H H ''''∴∆≅∆ 12H O H G H A π'''∴∠+=1O H H G ''∴⊥ 2B O H G ''∴⊥12212222222,,O O B O O O O O B O O O O '''''''''''⊥⊥⋂=1222O O B BO O ''''∴⊥平面 122O O B O '''∴⊥ 2B O H B '''∴⊥ H B H G H ''''⋂= 2.BO H B G '''∴⊥平面12.C13.解:(1):P A DAB P A D P A D P H A BC DP H P H A D P H P H A B A B A D A ∆∴⊥⊥⊂∴⊥⋂=⊥Q 为中的高 又面, 平面所以平面(2):过B 点做BG G CD BG ,垂足为⊥; 连接HB,取HB 中点M ,连接EM ,则EM 是BPH ∆的中位线 (1)ABCDABCD BCFPH EM ⊥∴⊥∴⊥由知:平面平面EM平面即EM 为三棱锥BCF -E 底面上的高(3):取AB 中点N ,PA 中点Q ,连接EN ,FN ,EQ ,DQ14. B 15. B16. 解:(1)在等边三角形ABC 中,AD AE = AD AE DB EC∴=,在折叠后的三棱锥A BCF -中也成立, //DE BC ∴ ,DE ⊄平面BCF , BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==. 在三棱锥A BCF -中,BC =,222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111113232333F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅= ⎝⎭17.DBCF 11221S 2111332212E BCF BCF PH FC BG V S EM ∆-==∙=∙∙=⨯=EM=//,PAD AB PAD PAD EN PAB EN //1DF AB 2NADF AB FN EN FN N AB NEF EF NEF EF AB NADF AB NF NF NE N AB NEF AB CD CD PA AB PAPA AB EN⊥∴⊥⊂∴⊥∆∴∴⊥=∴∴⊥⋂=∴⊥⊂∴⊥∴∴⊥⋂=∴⊥平面平面, 平面又是的中位线 又四边形是距形 平面又平面四边形是距形 平面Q Q Q18【答案】(1)详见解析;(2)16. 【解析】(1)证明:PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD , 而平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥, MD ∴⊥平面PCD ,CF ⊥平面PCD ,CF MD ∴⊥,又CF MF ⊥,MD 、MF ⊂平面MDF ,且MD MF M =, CF ∴⊥平面MDF ;(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知60PCD ∠=,30CDF ∴∠=,从而1122CF CD ==, //EF DC ,DE CE DP CP ∴=122=,DE ∴=,PE ∴=,128CDE S CD DE ∆∴=⋅=,MD ===,1133M CDE CDE V S MD -∆∴=⋅==.。