9.1.1 不等式及其解集教案
- 格式:doc
- 大小:50.50 KB
- 文档页数:3
人教版七年级数学下册教学设计 9.1.1 第1课时《不等式及其解集》一. 教材分析人教版七年级数学下册第9.1.1节《不等式及其解集》是初中数学的基础知识,主要介绍了不等式的概念和如何求解不等式的解集。
通过这一节的学习,学生能够理解不等式的含义,掌握求解不等式解集的方法,并为后续的不等式应用打下基础。
二. 学情分析七年级的学生已经掌握了基本的算术运算和代数知识,具备一定的逻辑思维能力。
但是,对于不等式的概念和解集的求解方法可能较为陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念,理解不等式的含义。
2.学会求解简单的不等式的解集。
3.能够运用不等式解决实际问题。
四. 教学重难点1.不等式的概念和含义。
2.求解不等式解集的方法。
五. 教学方法采用问题驱动法和案例教学法,通过实例和练习来引导学生理解和掌握不等式的概念和解集的求解方法。
同时,利用小组讨论和合作学习,提高学生的参与度和积极性。
六. 教学准备1.PPT课件。
2.练习题和案例。
七. 教学过程1.导入(5分钟)通过PPT展示一些实际问题,如判断两边是否相等,不等式的大小关系等,引导学生思考不等式的概念。
2.呈现(15分钟)介绍不等式的概念和含义,解释不等式的表示方法,如“a < b”表示a 小于b,“a ≥ b”表示a大于等于b。
通过实例和练习,让学生理解和掌握不等式的基本性质。
3.操练(15分钟)让学生分组进行练习,求解一些简单的不等式的解集。
教师巡回指导,解答学生的疑问,并给予反馈和评价。
4.巩固(10分钟)通过PPT展示一些不等式的解集案例,让学生判断和解释其解集的含义。
教师引导学生进行思考和讨论,巩固不等式解集的求解方法。
5.拓展(10分钟)引导学生思考不等式在实际问题中的应用,如判断物体的高度是否超过一定值,计算商品的打折价格等。
学生分组讨论,提出解决方案,并进行分享和交流。
6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调不等式和解集的概念和解题方法。
9.1.1不等式及其解集一、教学目标1、知识与技能了解不等式的概念;理解不等式的解集;能正确表示不等式的解集。
2、过程与方法经历由具体实例建立不等模型的过程;经历探究不等式解与解集的不同意义的过程,渗透数形结合思想。
3、情感态度与价值观进一步培养学生的数学思维和参与数学活动的自信心、合作交流的意识。
二、教学重难点教学重点:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确的表示到数轴上。
教学难点:正确理解不等式解集的意义。
三、教学方法和课型教学方法:启发诱导法、实例探究法、讲练结合法课型:新授课四、教具准备彩色粉笔、小黑板五、教学过程(一)、创设情境,导入新课设计说明:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣。
问题1:两个体重相同的孩子正在跷跷板上做游戏。
现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了。
这是什么原因呢?讨论结果:两边的重量不同,跷跷板就会发生倾斜。
教师说明:原来的平衡状态被破坏了,产生了一种不等关系。
问题2:一辆匀速行驶的汽车在11:20距离A 地50千米,要在12:00以前驶过A 地,车速应该满足什么条件?若设车速为每小时x 千米,能用一个式子表示吗?分析:从问题中有关信息可知,汽车行驶50千米(驶过A 地)所用时间,必须在11:20~12:00这40分钟之内,即所用时间要小于32小时。
换言之,32小时要行驶超过50千米的路程。
我们知道相等关系可以用等式来表示,那么,不等关系又怎样表示呢?讨论结果:设车速是x 千米/时。
从时间上看,汽车要在12:00之前驶过A 地,则以这个速度行驶50千米所用时间不到32小时,即x50 < 32 ① 从路程上看,汽车要在12:00之前驶过A 地,则以这个速度行驶32小时的路程要超过50千米,即x 32 > 50 ② 像①、②这样的式子,叫做不等式。
这节课我们来研究不等式的相关知识,由此导入新课。
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。
教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。
但他们对不等式的概念和解集的表示方法可能还比较陌生。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
三. 教学目标1.了解不等式的概念,理解不等式解集的含义。
2.学会用数轴表示不等式的解集。
3.能够解简单的不等式。
四. 教学重难点1.不等式的概念及其与等式的区别。
2.不等式解集的含义及其表示方法。
3.解简单的不等式。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
3.通过练习题和小组讨论,巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT或黑板。
2.练习题和答案。
3.数轴和标记工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。
例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。
2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。
通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。
3.操练(15分钟)让学生练习解简单的不等式。
给出一些具体的不等式,要求学生将其解集用数轴表示出来。
例如,解不等式3x > 6,将其解集用数轴表示出来。
4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。
9. 1 不等式9. 1.1不等式及其解集学习目标1. 了解不等式及其解的概念;2•理解不等式的解集及解不等式的意义. (重点)3 •学会并准确运用不等式表示数量关系,形成在表达中渗透数形结合的思想. (难点)教学过程一、情境导入现实生活中,数量之间存在着相等与不相等的关系例如,小明的身高为155cm,小聪的身高为156cm,贝U我们可以用不等号“>”或"<” 来表示他们的身高之间的关系•如:156 > 155 或155 < 156.•问题一辆匀速行驶的汽车站11 : 20距离A地50km.要在12 : 00之前驶过A地,车速应满足什么条件?设车速是x km/h从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50km所用的时间不到一,即一一①从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶- 的路程要超过50km,即・②二、合作探究探究点一:不等式的概念像156>155, 155<156,①,②,这样,我们把用符号“ >”或“ <”连接而成的式子叫做不等式.像2这样的式子也叫做不等式.判断下列式子是不是不等式:(1)-3>0; (2) 4x+3y<0;(3) x=3; (4) x2+xy+y2;(5) X M 5; (6) x+2>y+5.解:(1) (2) ( 5) (6)是不等式;(3) ( 4)不是不等式.方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式. 解答此类题的关键是要识别常见不等号:> .如果式子中没有这些不等号,就不是不等式.探究点二:列简单不等式例1用不等式表示下列数量关系:(1)x 的 5 倍大于-7; 5x >-7(2)a与b的和的一半小于-1 ; ()(3)长、宽分别为xcm, ycm的长方形的面积小于边长为acm的正方形的面积.例2已知一支圆珠笔x元,签字笔与圆珠笔相比每支贵y元•小华想要买3支圆珠笔和10支签字笔,若付50元仍找回若干元,则如何用含x, y的不等式来表示小华所需支付的金额与50元之间的关系?解3x+10(x+y)<50例3根据下列数量关系,列出不等式:(1) x与2的和是负数;⑵m与1的相反数的和是非负数;(3) a与一2的差不大于它的3倍;(4) a, b两数的平方和不小于它们的积的两倍.解析:(1)负数即小于0; (2)非负数即大于或等于0; (3)不大于就是小于或等于;(4)不小于就是大于或等于.解:⑴x+ 2<0;(2) m —1 > 0 ;(3) a + 2 < 3a;⑷探究点三:不等式的解与解集我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似,能使不等式成立的未知数的值叫不等式的解•例如:100是x>50的解代入法是检验某个值是否是不等式的解的简单、实用的方法判断下列数中哪些是不等式- 的解:60, 73 , 74.9, 75.1 , 76, 79, 80 , 90.你还能找出这个不等式的其他解吗?这个不等式有多少个解?无数个(1 )你发现了哪些数是这个不等式的解?(2 )你从表格中发现了什么规律?一般的,一个含有未知数的不等式的所有的解,组成这个不等式的解集求不等式的解集的过程叫解不等式.想一想:1. 不等式的解和不等式的解集是一样的吗?2. 不等式的解与解不等式一样吗?练一练下列说法正确的是()A. x=3 是2x+1>5 的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集三、解集的表示方法:第一种:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)来表示.第二种:用数轴,一般标出数轴上某一区间,其中的点对应的数值都是不等式的解.用数轴表示不等式的解集的步骤:第一步:画数轴;第二步:定界点;第三步:定方向.画一画:利用数轴来表示下列不等式的解集(1)x > -1 ;(2)- .J ---------- 6 ------- 1 -------------------- > _>-10 0 -变式:已知x的取值范围在数轴上表示如图,你能写出x的取值范围吗?总结归纳:1. 大于向右画,小于向左画;2. >,<画空心圆.练习:【类型一】对不等式解的理解1.用不等式表示下列数量关系:(1)a是正数;(2)x 比-3 小;(3)两数m与n的差大于5 .2•下列不是不等式5x—3<6的一个解的是(B )A. 1B.2 C—1 D.—2解析:分别把四个选项中的值代入不等式,能使不等式成立的数分别为5X 1 —3 = 2<6, 5X (—1)—3=—8<6, 5X (—2)— 3 = —13<6,而5X 2 —3 = 7>6 不能使不等式成立,故选B.方法总结:判断某个数值是否为不等式的解的方法:可直接将数值代入不等式的左右两边看不等式是否成立•如果成立,则是不等式的解;反之,则不是.【类型二】对不等式解集的理解下列说法中,正确的是()A. x= 2是不等式x+ 3<4的解B. x= 3是不等式3x<7的解C. 不等式3x<7的解集是x= 2D. x= 3是不等式3x>8的解解析:A不正确,因为当x= 2时,x+ 3<4不成立;B不正确,因为不等式3x<7的解集是x<73 , 当x= 3时,不等式3x<7不成立;C不正确,因为不等式3x<7有无数多个解,而x= 2只是其中一个解,因此只能说x= 2是3x<7的解,而不能说不等式3x<7的解集是x= 2; D正确,因为当x = 3时,不等式3x>8成立.故选D.方法总结:不等式的解可以有无数个,一般是某个范围内的所有数.未知数取解集中任何一个值时,不等式都成立;未知数取解集外任何一个值时,不等式都不成立.四、板书设计1.不等式的概念2 .用不等式表示数量关系3 .不等式的解、解集五、小结与作业1.不等式的解与解集的概念2.不等式的解集的表示方法作业:习题9.1 第1 题和第2 题教学反思本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过等,这些关键词中如果含有“不”“非”等文字,一般应包括,这也是学生容易出错的地方。
郭翠岚教案设计一、课题:《9.1.1 不等式及其解集》第一课时(课本第121页——123页相关内容)二、辅助教学手段:多媒体三、教学方法:教师引导学生通过观察、类比、探索、归纳、总结的方法,根据最近教学原理(第8章:方程),引导学生进行知识点的建构三、教学过程(一) 教学目标:1、知识技能:理解不等式的性质.会解简单的一元一次不等式.2、过程与方法:通过类比等式的性质,探索不等式的性质,体会不等式与等式的异同,初步掌握类比的思想方法.3、情感态度:认识到通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性.(二)、重难点分析:重点:能够用不等式表示数量关系,会判断一个数是不是已知不等式的解。
初步了解不等式及不等式的解的意义。
难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
(三)、教学过程1.一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00准时驶过A地,车速应满足什么条件?教学设想:1、通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣.2、引导学生仔细观察并归纳出不等式的概念及意义。
二、生活中还有这样类似的不等关系吗?多媒体展示:(天平、跷跷板、比身高、点炸药、、、)学生举出实例,并要求用数学语言表示出来。
(3<5,a>b, x≠0 )1.不等式的概念:用,或表示关系的式子,叫做不等式.2. 列不等式:①a是正数;②a是负数;③a与5的和小于7 ④a与2的差大于-1⑤a的4倍大于8 ⑥a的一半小于3;⑦x的平方不小于5;⑧m与n的和的平方不小于m与n的和;⑨a与3的差是非负数?还有其他的不等符号吗?“≥”大等于或不小于,“≤”小等于或不大于?观察1-6题,有共同之处吗?余下的7-9中,还有类似的吗?教学设想:1、在列不等式的过程中,加深对不等式意义的理解,引出一元一次不等式概念.、2、培养学生主动参与、合作交流的意识,同时体会到在现实生活中,不等关系要比相等关系多得多.“补充说明”是为了让学生能完整地理解不等式的定义.三、一元一次不等式的定义:(1)含有,并且未知数的的不等式,叫做一元一次不等式.。
9.1.1不等式及其解集教案9.1.1不等式及其解集教学目标1. 知识与技能:了解不等式概念,理解不等式的解集,能正确的用数轴表示不等式的解集; 2. 过程与方法:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化能力,培养学生的数感,通过用数轴鄙视不等式的解集渗透数形结合的思想; 3.情感、态度与价值观:进一步培养学生的数学思维和参与数学活动的自信心、合作交流意识,教学重难点重点:不等式的解集的表示。
难点:不等式的求解及解集的表示。
教学过程一、课题引入1.看一看,比一比(展示图片)①姚明和李连杰②小孩与冬瓜③公路上的限时标记从上面的图片中让我们感受到生活中的问题:如身高、体重、速度等需要将对象具体数量化,才能进行交流和判断,不但要学习研究等量关系,还需学习和研究不等关系.设计意图:从生活中抽出实例让学生体验到数学是源于生活的。
2.请观察下列式子是等式的有哪些?(1)?2?5(2)x?3?2x(3)4x?2y?0(4)a?2b?0.5(5)x?2x?1?3.5 (6)a?2?a(7)5m?3?8(8)x??4(9)2168x?2(10)?16 7x5设计意图:通过对等式的回忆,让学生在脑海中有个比较,形成初步概念。
二、讲授新课1.什么是不等式观察下面两个式子,他们之间有何区别8x8x?16?1655“ <” 读作小于、“>”读作大于、“≠”读作不等于、“≤”读作小于或等于、“≥”读作大于或等于,都是不等号。
设计意图:通过与等式的比较,加深对不等式的理解。
练习:根据题意,列出关系式,并判断是不是不等式题目关系式判断(1)?3小于2 ?3?2 是不等式(2)用字母y表示一个数,若y有倒数, y?0 是不等式则y需满足什么条件?(3)数a与b的差为1 a?b?1 不是不等式(4)如图,天平左盘放3个小球,右盘放5g砝码,天平倾斜。
设每个小球的质量为x(g), 3x?5 是不等式怎样表示x与5之间的关系?用不等号号连接用等号连接像这样用等号连接表示相等关系的式子叫等式。
第九章不等式与不等式组9.1不等式9.1.1不等式及其解集教学设计【知识与技能】i•掌握不等式的概念;2. 理解不等式的解、解集;会在数轴上表示不等式的解集;3. 掌握一元一次不等式的概念;4. 会列出简单实际问题中的不等式.【过程与方法】从实例出发,引出不等式的概念,类比于方程的解理解不等式的解•进而理解不等式的解集,并学会在数轴上表示不等式的解集,类比于一元一次方程的概念理解一元一次不等式的概念.【情感态度】不等式是现实世界中普遍存在的关系,体验数学来源于实际生活又反过来服务于实际生活,提高同学们学习兴趣•【教学重点】不等式的概念,不等式的解、解集的概念,在数轴上表示不等式的解集【教学难点】理解不等式的解集及在数轴上表示不等式的解集•一、情境导入,初步认识看一看:你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就不等关系:在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一些简单机械,并把它们用到了生活实践当中•由此可见, 不相等”处处可见。
你能举出身边的不等关系的例子吗?从今天起,我们开始学习一类新的数学知识:不等式.问题:一辆匀速行驶的汽车在11:20距离A 地50km,要在12:00之前驶过A 地, 车速满足什么条件?解:设车速是x 千米/时,本题可从两个方面来表示这个关系:(1) 从时间上看,汽车要在12: 00之前驶过A 地,则以这个速度行驶5050 2一 < —x 312: 00之前驶过A 地,则以这个速度行驶2/3 2x 503、思考探究,获取新知思考1什么叫不等式?什么叫不等式的解、 解集?什么叫解不等式?什么 叫一元一次不等式?思考2怎样在数轴上表示不等式的解集? 【归纳结论】1.定义:用“V”或“〉”或“工”表示大小关系的式子,叫做不等式•不等式的解集:一般地,一个含有未知数的不等式的所有的解, 组成这个不 等式的解集•解不等式:求不等式的解集的过程叫做解不等式•一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元 一次不等式•2. 在数轴上表示不等式的解集有下列四种情形:千米所用的时间不到2/3小时,即: (2)从路程上看,汽车要在小时的路程要超过50千米,即: (3 J.Y < a注意:不含等号的用空心的小圆圈,含等号的用实心小圆点,切记三、运用新知,深化理解1. 用不等式表示:(1)x与1的和是正数;(2)a的1/2与b的1/3的差是负数;(3)y的2倍与1的和大于3;(4)x的一半与8的差小于x.2. 下列说法错误的是( )A. x v 2的负整数解有无数个B. x v 2的整数解有无数个C. x< 2的正整数解是1和2D. x v 2的正整数解只有113. 在-2, -1, 0, 1/3 , 1- , 2 中.2(1)x取哪些数值能使不等式X-1V 0成立?(2)满足不等式X-1V 0的x有什么特点?4. 在数轴上表示下列不等式的解集.(1) x>3; (2) x< 3; (3) x v3; (4) x> 3.5. 比较下列各题中两个式子的大小.(1) a4与-a2-2 ;(2) 2a2-2b2+4 与3a2+6b2+8 (提示:若A-B>0,则A> B,若A-B v0,则A v B,若A-B= 0,则A= B).【教学说明】题1、4可让学生自主探究,写出答案,画出解集,教师对出错的同学帮助其分析错误的原因,再加以改正,加深印象.题2、3、5,师生共同探讨,题5教师应事先给予提示,然后引导学生得出正确答案.【答案】1. 解: (1) x+1>0;1 1(2) — a--b v 0;2 3(3) 2y+1> 3;2x-8< x.2. C解析:不等式的解是使不等式成立的未知数的值,它可能有无数个解,可能只有有限个解,也可能无解•本题中,x v2的正整数解不包含2,只有1,故选项C说法错误,选C.3. 解: (1)当x取-2, -1,0,1/3 时,不等式x-1v 0 成立;(2)满足不等式x-1v 0的x的特点为均小于1.r4.解:(1)5. 解:(1)由于a4-(-a2-2)=a4+a2+2 >0,故a2>-a2-2;(2)由于(2a2-2b2+4) -(3a2+6b2+8)=2a2-2b2+4-3a2-6b2-8=-a2-8b2-4=-(a2+8b2+4)v0故2a2-2b2+4v 3a2+6b2+8.四、师生互动,课堂小结1•不等式、不等式的解及解集、解不等式、一元一次不等式的概念•2•常见的基本语言及含义.(1)不大于、不高于、不超过的意义都是“w”.(2)不小于、不低于的意义都是.;汽谍后作业1. 布置作业:从教材“习题9.1”中选取.2. 完成练习册中本课时的练习.数字反展等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.。
人教版数学七年级下册教案9.1.1《不等式及其解集》一. 教材分析《不等式及其解集》是人教版数学七年级下册的教学内容,这部分内容是学生继学习算术运算后,进一步理解代数表达式的性质,认识不等式的概念及其应用。
通过学习不等式,学生能更好地理解数学中的限制条件,并能运用不等式解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了算术运算的基本规则,对代数表达式有一定的理解。
但他们对不等式的概念和性质可能比较陌生,因此需要通过实例和练习来逐步建立不等式的基本概念,并理解不等式的解集。
三. 教学目标1.了解不等式的概念,理解不等式的基本性质。
2.学会解一元一次不等式,并能求出其解集。
3.能够应用不等式解决实际问题。
四. 教学重难点1.教学重点:不等式的概念,不等式的基本性质,一元一次不等式的解法。
2.教学难点:不等式的解集的表示方法,不等式的应用。
五. 教学方法采用问题驱动法,通过实例引入不等式的概念,引导学生探究不等式的性质,再通过练习和应用来巩固所学知识。
六. 教学准备1.教学PPT,包含不等式的定义,不等式的性质,一元一次不等式的解法等内容。
2.练习题,包括简单的不等式题目和实际应用题目。
七. 教学过程导入(5分钟)通过一个实际问题引入不等式的概念:某班级有40人,男生和女生的人数之和为40,男生比女生多3人,请问男生和女生各有多少人?让学生尝试用数学表达式来表示这个问题,并引入不等式的概念。
呈现(10分钟)通过PPT呈现不等式的定义和基本性质,让学生直观地理解不等式的形式和意义。
同时,通过例题来展示不等式的解法和解集的表示方法。
操练(15分钟)让学生独立完成一些简单的不等式题目,如解一元一次不等式,求解集等。
教师在旁边巡回指导,解答学生的疑问。
巩固(10分钟)通过一些实际应用题目,让学生运用不等式来解决问题。
如购物问题,时间安排问题等,让学生感受不等式在实际生活中的应用。
拓展(10分钟)让学生尝试解决一些复杂的不等式问题,如多变量的不等式,不等式的组合等。
课题名称9. 1. 1不等式及其课时共1课时授课时间45分钟第1课时教学重点不等式、一元一次不等式、不等式的解、解集的概念。
教学难点不等式解集的理解与表示。
课前准备多媒体课件导学案教案学习目标:lo 了解不等式和一元一次不等式的概念。
2。
理解不等式的解和解集,能正确表示不等式的解集。
3。
体会不等式在生活中的应用。
课堂教学:一、情景导入(投影)一辆匀速行驶的汽车在11: 20时距离A地50千米,要在12: 00 以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?那是什么关系呢?教师在学生思考后提问或引导:从时间上看,汽车要在12: 00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。
从路程上看,汽车要在12: 00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50 千米。
这些是不等关系。
二、学习过程1、自主学习。
学生自学课本相关内容。
(投影)若设车速为每小时X千米,你能用一个式子表示上面的关系吗?2、合作、探究、展示(教师适时引导,配合投影):设汽车的速度为X千米/时从时间上看50/x<2/3 (1)从路程上看2x/3>50 (2)式子(1)、(2)从不同角度表示了车速应满足的条件。
用“<”、">”、“尹”、“2”、表示不等关系的式子叫做不等式。
思考1:下列式子中哪些是不等式?(投影)(1) a+b=b+a (2)—3>—5 (3) xNl(4) x 十3>6 (5) 2m< n (6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的目标认定:(1分钟)看学案学习目标部分,有了明确的学习目标才能激发起学生的学习热情,才能充分调动学生学习的积极性。
一、情景导入(4分钟)学生已初步体会到生活中的量与量之间的关系,有相等与不等的情形,就是有大小之分......在此之前,学生己学习了等式基础上,这为过渡到本节的学习起着铺垫作用。
《9.1.1 不等式及其解集》教学设计课程名称《 9.1.1 不等式及其解集》授课人甘瑞山学校名称兴业县卖酒镇第二初级中学教学对象七年级科目数学课时安排1课时一、教材分析本节课是学生在学习了一元一次方程和二元一次方程组的概念、解法及其应用后面临的一个新问题,不等式从某种程度上讲是等式的延伸,而在此之后,我们所要学的很多知识,比如,不等式的性质,一元一次不等式组,二次函数及方案设计等问题都要用到本节课的内容。
因此,本节课的内容在整个中学数学起着承前启后的作用,通过本节课的学习可以使学生思维变得更开阔,也为后续数学的学习及其它学科知识有很大的帮助。
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)教学目标:知识与技能:(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
方法和过程:(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
情感态度与价值观(1)理解不等式的意义,不等式解的意义,并能判断出不等式的解。
(2)理解不等式的解集,并能在数轴上表示出不等式的解集,认识一元一次不等式。
教学重点:(1)正确理解不等式,不等式的解与解集的意义。
(2)把不等式的解集正确的表示到数轴上。
教学难点:正解理解不等式解集的概念及表示。
三、教学策略选择与设计学情分析与学法:学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。
学生已经初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能力,也初步具备了探究和比较的能力。
按照新课标的精神,把学习的主动权还给学生,提倡积极主动,勇于探索的学习方式,体现学生在教学活动中的主体地位,在本节课上,学生通过举例,分组交流,归纳出不等式的解和解集的概念,采用了自主探索与合作交流的学习方式。