BP神经网络的研究及应用
- 格式:pdf
- 大小:167.93 KB
- 文档页数:2
bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。
BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。
它可以用来解决实际问题。
首先,BP神经网络可以用来解决分类问题。
它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。
这种模型可以用来解决工业控制问题、专家系统任务等。
例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。
此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。
通常,计算机视觉技术需要两个步骤,即识别和分析。
在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。
此外,BP神经网络还可以用于机器人技术。
它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。
例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。
最后,BP神经网络还可以用于未来的驾驶辅助系统中。
这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。
综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。
然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。
因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。
BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。
本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。
二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。
将数据集进行标准化处理,以提高神经网络的收敛速度和精度。
2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。
本实验采用Xavier初始化方法。
4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。
5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。
使用梯度下降算法对参数进行优化,减小损失函数的值。
6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。
三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。
经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。
通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。
随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。
因此,选择合适的隐藏层结点个数是模型性能优化的关键。
此外,迭代次数对模型性能也有影响。
随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。
因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。
四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。
多元线性回归与BP神经网络预测模型对比与运用研究一、本文概述本文旨在探讨多元线性回归模型与BP(反向传播)神经网络预测模型在数据分析与预测任务中的对比与运用。
我们将首先概述这两种模型的基本原理和特性,然后分析它们在处理不同数据集时的性能表现。
通过实例研究,我们将详细比较这两种模型在预测准确性、稳健性、模型可解释性以及计算效率等方面的优缺点。
多元线性回归模型是一种基于最小二乘法的统计模型,通过构建自变量与因变量之间的线性关系进行预测。
它假设数据之间的关系是线性的,并且误差项独立同分布。
这种模型易于理解和解释,但其预测能力受限于线性假设的合理性。
BP神经网络预测模型则是一种基于神经网络的非线性预测模型,它通过模拟人脑神经元的连接方式构建复杂的网络结构,从而能够处理非线性关系。
BP神经网络在数据拟合和预测方面具有强大的能力,但模型的结构和参数设置通常需要更多的经验和调整。
本文将通过实际数据集的应用,展示这两种模型在不同场景下的表现,并探讨如何结合它们各自的优势来提高预测精度和模型的实用性。
我们还将讨论这两种模型在实际应用中可能遇到的挑战,包括数据预处理、模型选择、超参数调整以及模型评估等问题。
通过本文的研究,我们期望为数据分析和预测领域的实践者提供有关多元线性回归和BP神经网络预测模型选择和应用的有益参考。
二、多元线性回归模型多元线性回归模型是一种经典的统计预测方法,它通过构建自变量与因变量之间的线性关系,来预测因变量的取值。
在多元线性回归模型中,自变量通常表示为多个特征,每个特征都对因变量有一定的影响。
多元线性回归模型的基本原理是,通过最小化预测值与真实值之间的误差平方和,来求解模型中的参数。
这些参数代表了各自变量对因变量的影响程度。
在求解过程中,通常使用最小二乘法进行参数估计,这种方法可以确保预测误差的平方和最小。
多元线性回归模型的优点在于其简单易懂,参数估计方法成熟稳定,且易于实现。
多元线性回归还可以提供自变量对因变量的影响方向和大小,具有一定的解释性。
学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。
BP网络的原理与应用1. 简介BP神经网络,即反向传播神经网络(Back Propagation Neural Network),是一种常见的人工神经网络模型,广泛应用于模式识别、分类、预测等领域。
它通过训练数据进行反向传播的方式来调整神经网络的权重和偏置,从而实现对输入数据的学习和预测。
2. 原理BP神经网络由输入层、隐藏层和输出层构成,每层由多个神经元组成。
其中,输入层接收外界输入的数据,隐藏层进行信号的处理和转换,最终输出层给出模型的预测结果。
BP网络的训练过程主要由两个阶段组成:前向传播和反向传播。
2.1 前向传播在前向传播阶段,输入数据经过一次性的计算和传递,从输入层逐层向前,最终记录到输出层的神经元中。
具体步骤如下: 1. 将输入数据传递给输入层神经元,每个神经元计算输入数据与其对应权重和偏置的乘积之和。
2. 将计算结果经过激活函数(如Sigmoid函数)进行处理,得到隐藏层神经元的输出。
3. 重复以上步骤,将隐藏层的输出作为下一层的输入,直到传递到输出层。
2.2 反向传播在反向传播阶段,根据训练数据与实际输出之间的差距,计算输出误差,并根据误差大小调整权重和偏置,以达到提高网络性能的目的。
具体步骤如下: 1. 计算输出层的误差,即实际输出与训练数据的差值。
2. 通过链式法则逐层计算隐藏层的误差,以及权重和偏置的调整值。
3. 更新每个神经元的权重和偏置,通过选择合适的优化算法(如梯度下降法)进行调整。
4. 重复以上步骤,通过多次迭代,不断减小预测误差和损失函数,提高网络的精确度和泛化能力。
3. 应用BP神经网络广泛应用于许多领域,如图像识别、语音识别、文本分类、金融预测等。
下面列举一些常见的应用场景:•图像识别:通过训练大量图像数据,可以实现对不同物体、人脸等的自动识别和分类。
•语音识别:通过训练大量语音数据,可以实现对语音信号的识别和转换,用于语音助手、智能家居等。
•文本分类:通过训练大量文本数据,可以实现对文本内容的分类和情感分析,用于垃圾邮件过滤、情感识别等。
为第k次迭代的神经网络输出误差对个权值或阈值的梯度向量。
负号代表梯度的反方向,即梯度的最速下降方向。
,分别代入式(2.1)中,就可以逐次修正其权值和阈值,并使总的误差向减小的方向变化,最终求出所要求的误差性能。
(2)冲量BP算法(momentum backpropagation,MOBP)因为反向传播算法的应用广泛,所以已经开发出了很多反向传播算法的变体。
其中最常见得事在梯度下降算法的基础上修改公式(2.1)的权值更新法则,即引入冲量因子<1的常数。
更新后的公式为:0≤为学习率,范围在0.001~1之间。
这种方法所加的冲量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,来改善收敛性。
冲量法降低了网络对误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小值。
(3)学习率可变的BP算法(variable learnling rate backprop-agation,VLBP)标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛慢;反之,则有可能修正的过头,导致振荡甚至发散。
因此可以采用图3所示的自适应方法调整学习率。
图3自适应学习自适应调整学习率的梯度下降算法,在训练的过程中,力求使算法稳定,而同时又使学习的不长尽量地大,学习率则是根据局部误差曲面作出相应的调整。
学习率则是通过乘上一个相应的增量因子来调整学习率的大小。
即公式(2.5)所示:(2.5)其中:为使步长减小的增量因子;(3.1)其中:n为隐含层节点数;m为输入节点数;t为输出节点数;a为1~10之间的常数。
根据本文要预测的数据及输入和输出节点的个数,则取隐含层个数为10。
(4)传输函数BP神经网络中的传输函数通常采用S(sigmoid)型函数:。
神经网络原理及BP网络应用实例摘要:本文主要对神经网络原理进行系统地概述,再列举BP网络在曲线逼近中的应用。
神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
随着计算机的发展,目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
本文将介绍人工神经网络的基本概念、基本原理、BP神经网络、自适应竞争神经网络以及神经网络的应用改进方法。
关键字:神经网络;收敛速度;BP网络;改进方法The principle of neural network and the applicationexamples of BP networkAbstract:Neural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. This paper will introduces the basic concepts, basic principles, BP neural network, adaptive competitive neural network and the application of artificial neural network.Keywords:neural network,convergence speed,BP neural network,improving method1 神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
基于BP神经网络的预测算法在时间序列分析中的应用基于BP(Back Propagation)神经网络的预测算法在时间序列分析中具有广泛的应用。
时间序列分析是一种研究时间上的观测值如何随时间变化而变化的特定技术。
通过对过去的时间序列数据进行分析,可以预测未来的趋势和模式。
BP神经网络是一种机器学习算法,可以通过训练将输入和输出之间的关系学习出来,从而可以用于时间序列预测。
BP神经网络的预测算法在时间序列分析中的应用主要有以下几个方面:1.股票市场预测:BP神经网络可以通过学习历史的股票市场数据,来预测未来股票价格的走势。
通过输入历史的股票价格、成交量等指标,可以训练BP神经网络模型,并使用该模型来预测未来的股票价格。
2.经济数据预测:BP神经网络可以通过学习历史的经济数据,来预测未来的经济趋势。
例如,可以使用过去的GDP、消费指数等数据作为输入,来预测未来的经济增长率或通货膨胀率。
3.交通流量预测:BP神经网络可以通过学习历史的交通流量数据,来预测未来的交通状况。
通过输入历史的交通流量、天气状况等数据,可以训练BP神经网络模型,并使用该模型来预测未来的交通流量,从而可以提前采取交通管理措施。
4.气象预测:BP神经网络可以通过学习历史的天气数据,来预测未来的气象变化。
例如,可以使用过去的温度、湿度、风向等数据作为输入,来预测未来的天气情况,从而为农业、旅游等行业提供预测参考。
5.能源需求预测:BP神经网络可以通过学习历史的能源需求数据,来预测未来的能源需求量。
通过输入历史的经济发展状况、人口增长等数据,可以训练BP神经网络模型,并使用该模型来预测未来的能源需求,从而指导能源生产和供应。
总体而言,基于BP神经网络的预测算法在时间序列分析中具有较强的预测能力。
通过学习历史的数据,BP神经网络可以发现数据中的规律和模式,并将其用于预测未来的趋势和变化。
然而,需要注意的是,BP 神经网络也有一些局限性,例如对于较大规模的数据集,训练时间可能较长。
BP神经网络以及径向基网络的研究RBF毕业论文BP神经网络(Backpropagation Neural Network)和径向基网络(Radial Basis Function Network)是常用的神经网络模型,在许多领域都有广泛的研究和应用。
本文将从两个方面分别介绍BP神经网络和径向基网络的研究,并讨论它们的优缺点。
首先是BP神经网络的研究。
BP神经网络是一种前馈式神经网络,具有多层结构,其中包含输入层、隐藏层和输出层。
BP神经网络通过反向传播算法来训练模型,根据输入数据和期望输出之间的误差来调整网络的权重和阈值,使得模型能够逐步优化。
BP神经网络具有灵活的拟合能力和较强的普适性,可以用于解决分类、回归和预测等问题。
在BP神经网络的研究中,一些学者提出了改进的算法和结构来提升其性能。
例如,对于训练速度较慢的问题,可以使用改进的优化算法,如共轭梯度法、遗传算法等,来加速权重和阈值的更新过程。
另外,为了防止过拟合现象,可以使用正则化方法或交叉验证等技术来选择最佳的模型参数。
此外,还可以通过调整隐藏层的节点数和层数等来改进模型的表达能力和泛化能力。
接下来是径向基网络的研究。
径向基网络是一种基于径向基函数的神经网络,通常包括输入层、隐藏层和输出层。
其中隐藏层使用径向基函数作为激活函数,将输入数据映射到高维特征空间中,然后通过线性函数进行分类或回归。
径向基函数具有局部性质和非线性拟合能力,适用于解决非线性问题。
在径向基网络的研究中,一些学者提出了不同的径向基函数和网络结构来适应不同的问题。
例如,高斯函数、多项式函数和多小波函数等都被用作径向基函数的选择。
此外,也有学者研究了递归径向基网络和自适应径向基网络等改进的算法和结构。
这些方法在模型的表达能力和泛化能力方面具有一定的优势。
综上所述,BP神经网络和径向基网络是两种常见的神经网络模型,在研究和应用中具有广泛的应用。
它们分别具有灵活的拟合能力和非线性拟合能力,可以用于解决各种问题。
BP神经网络算法的改进及其在PID控制中的应用研究共3篇BP神经网络算法的改进及其在PID控制中的应用研究1随着工业自动化的不断推进和智能化的不断发展,控制理论和算法变得越来越重要。
PID控制算法已成为现代控制中最常用的算法之一。
然而,传统的PID控制算法在某些情况下会出现一些问题,这些问题需要新的解决方案。
因此,本文将探讨BP神经网络算法的改进及其在PID控制中的应用研究。
BP神经网络是一种前向反馈神经网络,它通过反复迭代调整参数来学习训练数据,从而实现分类和回归等任务。
BP神经网络作为一种非线性动态系统,具有自适应性、非线性和强泛化能力等特点。
在控制系统中,BP神经网络可以用于模型预测、模型识别和模型控制等方面。
在控制系统中,PID控制是一种常规的线性控制技术。
然而,传统的PID控制算法存在一些问题,如难以解决非线性系统、难以控制多变量系统等。
为了解决这些问题,人们开始探索将BP神经网络用于控制系统。
BP神经网络可以通过学习训练数据来逼近未知非线性系统,从而实现对系统的控制。
在使用BP神经网络控制系统时,需要进行参数调整来保证网络的准确性和控制效果。
对于传统的BP神经网络,训练过程需要耗费大量的计算时间和计算资源。
因此,人们提出了一些改进的BP神经网络算法,如逆传播算法、快速BP算法和LM算法等。
逆传播算法是一种基于梯度下降的BP神经网络算法,该算法通过不断地调整权重和偏置来实现网络的训练。
快速BP算法是一种改进的逆传播算法,它增加了一些优化步骤,使训练过程更快速和高效。
LM算法是一种基于牛顿法的BP神经网络算法,在训练过程中可以自动调整学习率,从而提高训练的速度和准确性。
在控制系统中,BP神经网络可以用于模型预测、模型识别和模型控制等。
例如,在模型控制方面,可以使用BP神经网络来进行预测,并根据预测结果来调整控制参数,从而实现对系统的更加有效的控制。
此外,在模型识别方面,人们也可以使用BP神经网络精确地识别复杂的非线性系统,实现对系统的更加准确的控制。
开题报告:基于BP神经网络的技术创新一、研究背景随着人工智能和大数据技术的迅猛发展,BP神经网络逐渐成为人工智能领域中非常重要的一个分支。
BP神经网络是一种有监督学习神经网络,主要应用于分类和回归问题,优化算法主要是通过反向传播来实现的。
BP神经网络不仅能够应用于传统的图像识别和语音识别等领域,也能应用于更广泛和复杂的领域,如自然语言处理、数据挖掘、金融分析等等。
因此探究BP 神经网络技术的创新是非常有意义的研究方向。
二、研究目的与意义本次研究的目的是通过分析BP神经网络的优缺点,探究如何在该算法的基础上进行技术创新,并运用其在一些实际应用中,以解决一些实际问题。
本研究的意义在于:1.为人工智能领域的发展提供参考和思路。
2.推动BP神经网络技术在实际应用中的广泛普及和进一步发展。
3.实现一些实际问题的解决。
三、研究内容本研究计划分成以下三个部分:1.BP神经网络算法的基本原理和流程。
2.探究BP神经网络算法的优缺点,并进行技术创新。
3.将BP神经网络算法应用于一些实际问题中,以展示其在实际应用中的价值和优势。
四、研究方法本研究主要采用以下两种方法:1.理论分析法:通过文献查阅和分析,了解BP神经网络的相关原理和流程,研究其优缺点,并探究如何进行技术创新。
2.实例分析法:选择一些实际数据和问题,将BP神经网络算法应用于其中,并研究优化算法的效果和实际应用的价值。
五、研究计划本研究计划分成以下三个阶段:1.研究BP神经网络算法的基本原理和流程,分析其优缺点。
–时间安排:2周。
–完成任务:理论分析报告。
2.探究BP神经网络算法的优缺点,并进行技术创新。
–时间安排:4周。
–完成任务:技术创新实验报告。
3.将BP神经网络算法应用于一些实际问题中,以展示其在实际应用中的价值和优势。
–时间安排:4周。
–完成任务:实例分析报告。
六、预期成果通过本次研究,预期能够达到以下成果:1.综合了解BP神经网络的优缺点。
2.探究BP神经网络在技术创新方面的前景。
基于BP神经网络的预测模型在金融市场的应用随着信息技术的不断进步和发展,越来越多的金融机构开始应用人工智能技术来提高金融预测的准确性和效率。
其中,BP神经网络是现今应用最广泛的一种人工神经网络,常被用于金融市场预测模型中。
本文将重点探讨基于BP神经网络的预测模型在金融市场的应用。
一、 BP神经网络简介BP神经网络,即“反向传播神经网络”,是一种多层前馈神经网络。
它由输入层、输出层和中间的若干个隐层组成。
其中,隐层的神经元经过训练可以体现出某些特征或规律,从而实现数据的非线性映射。
该算法通过计算输出与实际值之间的误差来调整各层之间的连接权重,从而不断优化网络的预测能力,达到最终的目标。
二、 BP神经网络在金融市场预测中的应用BP神经网络以其在非线性映射中的优越性,在金融市场的预测中得到广泛应用。
传统的金融预测模型往往只能考虑几个因素,而BP神经网络可以同时考虑多种因素,并将它们融合在一起预测未来趋势,更加符合实际的复杂情况。
以下是BP神经网络在金融市场预测中的几个案例。
1. 股价预测股票价格是金融市场中最重要的衡量标准之一。
利用BP神经网络模型可以预测股票价格动态变化趋势。
该模型将多个变量作为输入,如股票前一天的价格、交易量、公司财务状况等,通过模型对这些变量建立复杂的非线性关系,预测未来的股价变化。
2. 汇率预测汇率预测是预测国际金融市场中最重要的方面之一。
传统的汇率预测方法主要基于经济统计数据和人为预测。
而BP神经网络则可以通过对历史汇率走势的学习,预测未来汇率的涨落趋势。
3. 贷款风险评估贷款风险评估是金融机构中一项重要的任务,传统的评估方法主要借鉴于物理和经济等方面的数据,忽略了许多非经济因素,而BP神经网络则可以综合考虑许多因素,如借款人的年龄、性别、收入、信用评级等,从而更准确地预测贷款的违约率风险。
三、 BP神经网络模型的局限性虽然BP神经网络模型在金融预测方面取得了广泛的应用,但是它同样存在一些局限性。
bp神经网络的应用综述近年来,随着人工智能(AI)发展的飞速发展,神经网络技术也在迅速发展。
BP神经网络是一种能够将输入大量信息并有效学习并做出正确决策的广泛应用的深度学习算法。
它的强大的学习能力令人印象深刻,从很多方面来看都是一种具有潜在潜力的技术。
在科学和工程方面,BP神经网络的应用非常广泛。
它可以用于模式识别,数据挖掘,图像处理,语音识别,机器翻译,自然语言处理和知识发现等等。
当可用的数据量很大时,BP神经网络可以有效地自动分析和提取有用的信息,从而有效地解决问题。
例如,在图像处理领域,BP神经网络可以用于图像分类、目标检测和图像语义分析。
它能够以准确的速度检测目标图像,包括人脸、行人、汽车等等,这在过去难以实现。
在机器翻译等技术中,BP神经网络可以用于语义分析,以确定机器翻译的正确语义。
此外,BP神经网络还可以用于人工智能的自动控制,例如机器人与机器人感知、模式识别、语音识别和控制系统。
除此之外,BP神经网络还可以用作在计算机游戏和科学研究中的决策支持系统,以便帮助决策者做出正确的决策。
总而言之,BP神经网络是一种具有广泛应用的深度学习算法,它能够自动处理大量复杂的信息,并能够做出正确的决策。
它可以用于各种科学和工程任务,如模式识别、机器翻译、图像处理、语音识别、机器人感知及自动控制等领域。
此外,它还可以用于决策支持系统,以便帮助决策者做出正确的决策。
BP神经网络在许多领域都具有巨大的潜力,希望以后能得到更多的研究和应用。
因为随着计算机技术的发展,BP神经网络在未来有望发挥更大的作用,帮助人们实现和科学研究的突破。
BP神经网络的潜力巨大,尽管它的应用前景十分广阔,但许多研究仍然存在挑战。
因此,有必要开展更多的研究,并利用其强大的特性,尽可能多地发掘它的潜力,以便最大限度地利用它的优势。
我们期待着BP神经网络会给人类的发展带来更多的惊喜。
⼈⼯智能实验报告-BP神经⽹络算法的简单实现⼈⼯神经⽹络是⼀种模仿⼈脑结构及其功能的信息处理系统,能提⾼⼈们对信息处理的智能化⽔平。
它是⼀门新兴的边缘和交叉学科,它在理论、模型、算法等⽅⾯⽐起以前有了较⼤的发展,但⾄今⽆根本性的突破,还有很多空⽩点需要努⼒探索和研究。
1⼈⼯神经⽹络研究背景神经⽹络的研究包括神经⽹络基本理论、⽹络学习算法、⽹络模型以及⽹络应⽤等⽅⾯。
其中⽐较热门的⼀个课题就是神经⽹络学习算法的研究。
近年来⼰研究出许多与神经⽹络模型相对应的神经⽹络学习算法,这些算法⼤致可以分为三类:有监督学习、⽆监督学习和增强学习。
在理论上和实际应⽤中都⽐较成熟的算法有以下三种:(1) 误差反向传播算法(Back Propagation,简称BP 算法);(2) 模拟退⽕算法;(3) 竞争学习算法。
⽬前为⽌,在训练多层前向神经⽹络的算法中,BP 算法是最有影响的算法之⼀。
但这种算法存在不少缺点,诸如收敛速度⽐较慢,或者只求得了局部极⼩点等等。
因此,近年来,国外许多专家对⽹络算法进⾏深⼊研究,提出了许多改进的⽅法。
主要有:(1) 增加动量法:在⽹络权值的调整公式中增加⼀动量项,该动量项对某⼀时刻的调整起阻尼作⽤。
它可以在误差曲⾯出现骤然起伏时,减⼩振荡的趋势,提⾼⽹络训练速度;(2) ⾃适应调节学习率:在训练中⾃适应地改变学习率,使其该⼤时增⼤,该⼩时减⼩。
使⽤动态学习率,从⽽加快算法的收敛速度;(3) 引⼊陡度因⼦:为了提⾼BP 算法的收敛速度,在权值调整进⼊误差曲⾯的平坦区时,引⼊陡度因⼦,设法压缩神经元的净输⼊,使权值调整脱离平坦区。
此外,很多国内的学者也做了不少有关⽹络算法改进⽅⾯的研究,并把改进的算法运⽤到实际中,取得了⼀定的成果:(1) 王晓敏等提出了⼀种基于改进的差分进化算法,利⽤差分进化算法的全局寻优能⼒,能够快速地得到BP 神经⽹络的权值,提⾼算法的速度;(2) 董国君等提出了⼀种基于随机退⽕机制的竞争层神经⽹络学习算法,该算法将竞争层神经⽹络的串⾏迭代模式改为随机优化模式,通过采⽤退⽕技术避免⽹络收敛到能量函数的局部极⼩点,从⽽得到全局最优值;(3) 赵青提出⼀种分层遗传算法与BP 算法相结合的前馈神经⽹络学习算法。
为第k次迭代的神经网络输出误差对个权值或阈值的梯度向量。
负号代表梯度的反方向,即梯度的最速下降方向。
,分别代入式(2.1)中,就可以逐次修正其权值和阈值,并使总的误差向减小的方向变化,最终求出所要求的误差性能。
(2)冲量BP算法(momentum backpropagation,MOBP)
因为反向传播算法的应用广泛,所以已经开发出了很多反向传播算法的变体。
其中最常见得事在梯度下降算法的基础上修改公式(2.1)的权值更新法则,即引入冲量因子
<1的常数。
更新后的公式为:
0≤为学习率,范围
在0.001~1之间。
这种方法所加的冲量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,来改善收敛性。
冲量法降低了网络对误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小值。
(3)学习率可变的BP算法(variable learnling rate backprop-agation,VLBP)
标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛慢;反之,则有可能修正的过头,导致振荡甚至发散。
因此可以采用图3所示的自适应方法调整学习率。
图3自适应学习
自适应调整学习率的梯度下降算法,在训练的过程中,力求使算法稳定,而同时又使学习的不长尽量地大,学习率则是根据局部误差曲面作出相应的调整。
学习率则是通过乘上一个相应的增量因子来调整学习率的大小。
即公式(2.5)所示:
(2.5)
其中:为使步长减小的增量因子;
(3.1)
其中:n为隐含层节点数;m为输入节点数;t为输出节点数;a为1~10之间的常数。
根据本文要预测的数据及输入和输出节点的个数,则取隐含层个数为10。
(4)传输函数
BP神经网络中的传输函数通常采用S(sigmoid)型函数:。