武汉理工大学感测技术实验指导书
- 格式:doc
- 大小:1.40 MB
- 文档页数:46
传感器实验指导书This model paper was revised by the Standardization Office on December 10, 2020传感器与检测技术实验指导教师:陈劲松实验一 金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为: SlR ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×mmmm610-)。
若径向应变为rr ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l r r ∆-=∆μ,因为S S ∆=2(r r ∆),则(2)式可以写成:llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。
“传感器与检测技术”实验指导书一、适用专业:测控技术与仪器二、地位、作用和任务《传感器与检测技术》课程属于适用专业大学本科学生的必修专业基础课程。
传感器具有检测某种变量并把检测结果传送出去的功能,它们广泛应用于生产实践和科学研究中,是获取、处理、传送各种信息的基本元件。
特别是现代大规模工业生产,几乎全都依靠各种控制仪表或计算机实现自动控制,为保证自动控制系统的正常运行,必须随时随地把生产过程的各种变量提供给控制仪表或计算机。
要想正确及时地掌握生产过程或科研对象的各种信息,就必须具备传感器与检测技术方面的知识。
本部分旨在以实验和课程设计的形式进一步加强学生对各类传感器与检测技术的原理与应用的深入理解,将理论与实践有机地结合起来,学以致用。
主要任务是:1、通过理论学习和实验操作,掌握各类传感器的基本工作原理;2、了解各类传感器的特性和应用方法;3、掌握基本的误差与测量数据处理方法。
三、教学基本要求通过传感器与检测技术实验的基本训练,使学生在有关传感器与检测技术的实验方法和实验技能方面达到下列要求:(1)能够自行或在教师的指导下正确完成实验和实验报告等主要实验程序;(2)能够掌握常用传感器的性能、调试和使用方法;(3)能够通过实验完整掌握各类传感器的基本工作原理;(4)能够在接受传感器与检测技术基本实验技能的训练后,进行开放性实验,以提高综合实验能力。
四、实验内容实验一金属应变片:单臂、半桥、全桥功能比较(验证)实验二差动变压器特性及应用(综合)实验三差动螺线管电感式传感器特性(设计)*实验四差动变面积式电容传感器特性(验证)*实验五压电加速度传感器特性及应用(验证)*实验六磁电式传感器特性(验证)实验七霍尔式传感器特性(验证)108109实验八 热敏电阻测温特性(设计) 实验九 光纤位移传感器特性及应用(验证) 实验十 汽车防撞报警系统设计(设计)五、实验教材主要教材:《传感器与检测技术学习指导(实验部分)》六、考核方法根据实验操作效果、实验态度、实验报告撰写结果等进行综合评定。
感测技术实验指导书实验目录实验一光敏、气敏、湿敏传感器的特性实验 (1)实验二转速测量实验 (5)实验三电子秤实验 (8)实验四压力测量实验 (13)实验五温度测量实验 (16)实验六数字式传感器的应用实验 (20)附录一实验台使用说明 (22)附录二调节仪使用说明 (24)实验一 光敏、气敏、湿敏传感器的特性实验一、实验目的:1.了解光敏、气敏、湿敏传感器的基本特性; 2.学会光敏、气敏、湿敏传感器的使用。
二、基本原理:1.光敏电阻光敏电阻是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
光敏电阻器的主要参数:1)亮电阻(k Ω):指光敏电阻器受到光照射时的电阻值。
2)暗电阻(M Ω):指光敏电阻器在无光照射(黑暗环境)时的电阻值。
3)亮电流:指光敏电阻器在规定的外加电压下受到光照射时所通过的电流。
4)暗电流(mA):指在无光照射时,光敏电阻器在规定的外加电压下通过的电流。
5)电阻温度系数:指光敏电阻器在环境温度改变1℃时,其电阻值的相对变化。
6)灵敏度:指光敏电阻器在有光照射和无光照射时电阻值的相对变化。
2.热敏电阻热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。
正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。
热敏电阻主要参数1) 标称阻值Rc :一般指环境温度为25℃时热敏电阻器的实际电阻值。
2) 实际阻值RT :在一定的温度条件下所测得的电阻值。
3)电阻温度系数αT :它表示温度变化1℃时的阻值变化率,单位为%/℃。
3.湿敏电阻湿敏电阻是利用湿敏材料吸收空气中的水分而导致本身电阻值发生变化这一原理而制成的。
目录实验一压阻式压力传感器的特性测试实验 (2)实验二电容传感器的位移特性实验 (5)实验三直流激励线性霍尔传感器的位移特性实验 (9)实验四电涡流传感器材料分拣的应用实验 (12)实验五光纤传感器位移测量实验 (14)实验一压阻式压力传感器的特性测试实验一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和标定方法。
二、实验内容掌握压力传感器的压力计设计。
三、实验仪器传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。
四、实验原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。
一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。
在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。
图13-1为压阻式压力传感器压力测量实验原理图。
+-放大单元主台体上电压表+4V 压阻式压力传感器Vo+VS+Vo-Vs-图1-1 压阻式压力传感器压力测量实验原理五、实验注意事项1、严禁将信号源输出对地短接。
2、实验过程中不要带电拔插导线。
3、严禁电源对地短路。
六、实验步骤1、将引压胶管连接到压力传感器上,其他接线按图1-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。
图1-2 压阻式压力传感器的特性测试实验接线图2、打开气源开关,调节流量计的流量并观察压力表,压力上升到4Kpa左右时,根据计算所选择的第二级电路的反馈电阻值,接好相应的短接帽;再调节调零电位器RW2,使得图1-3中Vx与计算所得的值相符;再调节增益电位器RW1,使电压表显示为0.4V左右。
(进行此步之前,请先仔细阅读:七、实验报告要求)3、再仔细地反复调节流量使压力上升到18KPa左右时,根据计算,电压表将显示1.8V 左右。
《传感器与测试技术》 实验指导书工程与技术系二O一三年二月CSY-2000型传感器与检测技术实验台说 明 书CSY2000型传感器与检测技术实验台是本公司为适应不同类别、不同层次的专业需要,在2000系列传感器与检测技术实验台的基础上,增加了一些光电传感器而最新推出的模块化的新产品。
CSY-2000型传感器与检测技术实验台,主要用于各大专院校、中专及职业技术院校开设的“自动检测技术” “传感器原理与技术” “工业自动化控制” “非电量电测技术”等课程的教学实验。
它是采用最新推出的模块化结构的产品。
实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础。
希望通过实验帮助广大学生加强对书本知识的理解,并在实验的进行过程中通过信号的拾取、转换、分析、掌握作为一个科技工作者应具有的基本的操作技能与动手能力。
一、 实验台的组成CSY-2000型传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验桌等组成。
1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;直流恒流源0.6mA~20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0~20KPa (可调);智能调节仪(器);计算机通信口;主控箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2、振动源:振动台振动频率1Hz~30Hz可调(谐振频率9Hz左右)。
3、转动源:手动控制0~2400转/分;自动控制300~2200转/分。
4、温度源:常温~200℃。
传感器检测技术实训指导前言传感器原理检测技术课程,在高等理工科院校电气与自动化专业、电子信息工程和测控技术与仪器类各专业的教学计划中,是一门重要的专业基础课。
实验是教学的重要环节之一,通过实验巩固和消化课堂所讲授理论内容,掌握常用传感器的工作原理和使用方法,提高学生的动手能力和学习兴趣。
本实验指导书提供了多个实验,可根据各学院相关专业教学实际,进行选做。
该指导书在以往使用的《检测技术实验指导书》基础上,由电气学院赵兰老师、姚志树老师进行了一定的修改和补充。
目录实验一箔式应变片桥路性能比较............ - 2 -实验二电容式传感器的特性................ - 4 -实验三电涡流式传感器的静态标定.......... - 6 -实验四电涡流传感器电机转速测量实验...... - 8 -实验五霍尔式传感器特性实验.............. - 9 -实验六霍耳传感器的应用—电子秤......... - 10 -实验一 箔式应变片桥路性能比较一 、实验目的:1.观察了解箔式应变片结构及粘贴方式。
2.测试应变梁变形的应变输出。
3.比较各桥路间的输出关系。
二、实验原理:应变片是最常用的测力传感元件。
用应变片测试时,应变片要牢固地粘贴在测试体表面。
当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。
通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种,单臂,半桥,全桥电路的灵敏度依次增大。
实际使用的应变电桥的性能和原理如下:311234()o R R U E R R R R =-++已知单臂、半桥和全桥电路的∑R 分别为、、。
电桥灵敏度S =∆V / ∆X ,于是对应于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。
三、实验所需部件:CSY 10 型传感器系统实验仪:直流稳压电源、差动放大器、电桥、毫伏表、测微头。
直流稳压电源打到0V 档,毫伏表打到±50mv 档,差动放大器增益旋钮打到最右边。
测试技术实验指导书(必做)三明学院二00九年十二月实验目录实验一转速测量实验 (1)实验二电子秤实验 (4)实验三压力测量实验 (9)实验四温度测量实验 (12)附录一实验台使用说明 (16)附录二调节仪使用说明 (18)实验一 转速测量实验一、实验目的:1.熟悉和掌握霍尔转速传感器、磁电式、光电转速传感器的工作原理。
2.了解转速的测量方法。
二、基本原理:1.利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,圆盘每转一周磁场就变化N 次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
2.基于电磁感应原理,N 匝线圈所在磁场的磁通变化时,线圈中感应电势:dtd Ne φ-=发生变化,因此当转盘上嵌入N 个磁棒时,每转一周线圈感应电势产生N 次的变化,通过放大、整形和计数等电路即可以测量转速。
3.光电式转速传感器有反射型和直射型二种,本实验装置是反射型的,传感器端部有发光管和光电池,发光管发出的光源在转盘上反射后由光电池接受转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉计数处理即可得到转速值。
三、实验所需部件:霍尔转速传感器、磁电传感器、光电转速传感器、直流电源+5V 、转动源2-12V 、数显单元、导线若干。
四、实验步骤:1、 根据图1-1,将霍尔转速传感器装于传感器支架上,探头对准反射面内的磁钢。
图1-1 霍尔、光电、磁电转速传感器安装示意图2、将5V直流源加于霍尔转速传感器的电源端(1号接线端)。
3、将霍尔转速传感器输出端(2号接线端)插入数显单元Fin端,3号接线端接地。
4、将转速源+2V-12V输出旋至最小,接入三源板的转速电源孔中。
5、将数显单元上的开关拨到转速档,合上主控箱电源开关。
6、调节转速电压,可改变电机转速,观察并记录电压每增加1V时数显表转速显示的值,填入表1-1中。
实验三位移测量实验(一)一、实验目的:1. 了解电容式传感器结构及其特点;2. 了解电涡流传感器测量位移的工作原理和性能;3. 了解不同材料的被测体对电涡流传感器性能的影响;4. 了解不同尺寸的被测体对电涡流传感器性能的影响。
二、基本原理:1.电容式传感器a.电容式传感器原理:电容传感器是以各种类型的电容器为传感元件,将被测物理量转换成电容量的变化来实现对非电量的测量。
电容传感器的输出是电容的变化量。
利用电容ε关系式,通过相应的结构和测量电路可以选择在ε、A、d三个参数中,保持二个C=A d参数不变,改变其中一个参数,构成测干燥度(ε变)、测位移(d变)和测液位(A变)等多种电容传感器。
电容传感器极板形状分成平板、圆板形和圆柱(圆筒)形,本实验采用的传感器为圆筒形变面积差动式电容位移传感器(差动式通常优于单组(单边)式),它由二个圆筒和一个圆柱组成,如图3—1所示。
设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R/r)。
图中C1、C2是差动连接,当图中的圆柱产生∆X位移时,电容量的变化量为∆C =C1-C2=ε2π2∆X/ln(R/r),式中ε2π、ln(R/r)为常数,说明∆C与∆X位移成正比,通过测量∆C即可获得位移∆X。
图3—1 实验电容传感器结构b.测量电路(电容变换器):实验模板面板上已画出测量电路,其核心部分是图3—2所示的二极管环路充放电电路,环形充放电电路由D3、D4、D5、D6二极管、C4电容、L1电感和CX1、CX2(实验差动电容位移传感器)组成。
当高频激励电压(f>100kHz)输入到a点,a点由低电平E1跃到高电平E2时,电容CX1和CX2两端电压均由E1充到E2。
充电电荷一路由a点经D3到b点,再对CX1充电到O点(地);另一路由a点经C4到c点,再经D5到d点对CX2充电到O点。
此时,D4和D6由于反偏置而截止。
在t1充电时间内,由a到c点的电荷量为:Q1=CX2(E2-E1) (3—1)实验二位移测量实验图3—2 二极管环形充放电电路当高频激励电压由高电平E2返回到低电平E1时,电容C X1和C X2均放电。
编号:08010042传感器检测技术课程-实训项目实训指导书编写: 校核:审批: 版本:学生实训制度1.实训前必须预习实训指导书,了解实训目的和注意事项。
2.按预约时间进入实训室,不得无故迟到、早退、旷课。
3.进入实训室后应注意安全、卫生、不准喧哗打闹、不准抽烟、不准乱写乱画乱扔纸屑、不准随地吐痰、不准擅自动仪器设备,或实训过程中未按操作规程操作仪器设备,导致损坏仪器设备者要照价赔偿。
4.实训时应严格遵守操作步骤和注意事项。
若遇仪器设备发生故障,应立即向教师报告,及时检查,待排除故障后才能继续实训。
5.实训过程中,同组同学应相互配合,认真纪录;应独立完成实训报告。
6.实训结束后,应将仪器设备、工具擦拭干净,摆放整齐;协助做好实训室清洁卫生。
7.不得将实训室的工具、仪器、材料等物品携带出实训室。
概述使用专业:应用电子专业三年级《传感器检测技术课程》实训分十一次进行,每次实训学时可按推荐学时进行,也可根据具体情况进行适当的调整,但《传感器检测技术课程》实训课的总学时不得少于10学时(备注:该实训课时不应少于该门课程教学计划规定的实践课课时)。
每次实训的内容级推荐学时如下:实训的目的是加强对基本理论的理解,培养和提高实际动手能力,其中包括:1、熟练掌握传感器的工作原理、特性以及其分类;2、掌握传感器的用途和用法,了解常见的几种传感器的工作原理、性能指标与应用方法以及其他传感器的相关知识。
目录实训项目一金属箔式应变片性能—单臂电桥 (5)实训项目二金属箔式应变片:单臂、半桥、全桥的比较 (7)实训项目三金属箔式应变片——交流全桥 (9)实训项目四差动变压器(互感式)的应用——振动测量 (11)实训项目五差动变面积式电容传感器的静态及动态特性 (12)实训项目六霍尔式传感器的特性——交流激励 (13)实训项目七磁电式传感器的性能 (14)实训项目八压电传感器的动态响应实验 (16)实训项目九相敏检波器实验 (17)实训项目十移相器实验 (20)实训项目十一热电偶原理及现象的观测 (22)实训项目一金属箔式应变片性能—单臂电桥1、实训目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
《测试技术》实验指导书蒋平南京工程学院二○一二年一月目录实验1 测试装置的特性实验 (1)实验1—1 指针式电表的静、动态特性 (1)实验1—2 电阻应变仪的静、动态特性 (4)实验2 电桥和差特性实验 (7)实验3 信号分析实验 (11)实验3—1 基于信号分析工具箱的信号分析实验 (12)实验3—2 基于虚拟仪器的信号分析实验 (15)实验4 三向振动台的计算机辅助测试实验 (17)实验报告 (1)实验1 测试装置的特性实验 (1)实验2 电桥和差特性实验 (3)实验3 信号分析实验 (5)实验4 三向振动台的计算机辅助测试实验 (6)实验1 测试装置的特性实验 实验1—1 指针式电表的静、动态特性一、实验目的1、熟悉测试装置静态特性(灵敏度、线性度、滞后度)和动态特性(幅频特性、相频特性);2、掌握测试装置特性的简易测定方法。
二、仪器1. 指针式直流电压表(或具有直流电压测试档的指针式万用表);2. 函数信号发生器;3. 可调直流电源;4. 一号电池及连接导线等。
三、实验原理指针式直流电压表(或指针式万用表用直流电压测试档)是一种电压测试指示装置,指针在指示标盘的不同位置(即指针的不同转角)反映了被测量(输入电压或经传感器转换成电压的其它非电物理量)的大小及其变化情况。
它的静态特性:灵敏度S 即为输入电压与指针在标盘指示值(指针转角)的比值S=△L/△V=L/V(格/伏)。
线性度L 计算的参考直线(用两点法)即为全量程输入时指针指示值在输入——输出(指针示值)曲线图上的斜率线。
找出此斜率线与输入——输出曲线间的最大偏差值Δmax ,即可求得该指针式电压表的线性度δL ,%100minmax max⨯-∆=Y Y L δYmax 和Ymin 为输出的最大值和最小值。
滞后度H δ可通过输入递增至全量程后再递减两过程中指针示值所示两输入——输出曲线间最大差值'max ∆。
求得。
%100minmax 'max⨯-∆=Y Y H δ其幅频特性可用指针示值随不同频率(输入电压)变化关系曲线来描述。
《传感器技术》实验指导书(07级微电子专业)刘海浪编桂林电子科技大学二OO九年五月目录实验一应变式传感器特性测试 2 实验二电感式传感器特性测试7 实验三霍尔传感器应用实验13 实验四传感器应用的计算机仿真16实验一应变式传感器特性测试一、实验目的1、掌握金属箔式应变片的应变效应,单臂电桥工作原理和性能;2、了解学习全桥测量电路的构成及其特点、优点;3、比较单臂电桥与全桥的不同性能、了解其特点。
二、实验用器件与设备1、应变式传感器实验台;2、传感器实验箱;3、砝码;4、跳线;5、万用表等。
三、实验原理直流电桥原理:在进行金属箔式应变片单臂、半桥、全桥性能实验之前,我们有必要先来介绍一下直流电桥的相关知识。
电桥电路有直流电桥和交流电桥两种。
电桥电路的主要指标是桥路灵敏度、非线性和负载特性。
下面具体讨论有关直流电路和与之相关的这几项指标。
1、平衡条件直流电桥的基本形式如图1-1所示。
R1,R2,R3,R4为电桥的桥臂电阻,RL为其负载(可以是测量仪表内阻或其他负载)。
当RL ∞时,电桥的输出电压V应为V 0=E(433211R R R R R R +-+)当电桥平衡时,V0=0,由上式可得到R 1R 4=R 2R 3,或4321R R R R =(1-1)图1-1 直流电桥的基本形式式(1-1)秤为电桥平衡条件。
平衡电桥就是桥路中相邻两桥臂阻值之比应相等,桥路相邻两臂阻值之比相等方可使流过负载电阻的电流为零。
2、 平衡状态 单臂直流电桥:所谓单臂就是电桥中一桥臂为电阻式传感器,且其电阻变化为△R ,其它桥臂为阻值固定不变,这时电桥输出电压V 0≠0(此时仍视电桥为开路状态),则不平衡电桥输出电压V 0为V 0=E R R R R R R R R R R ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+∆+⎪⎪⎭⎫⎝⎛∆⎪⎭⎫ ⎝⎛341211114113 (1-2)设桥臂比n=12R R ,由于△R 1《R 1,分母中11R R ∆可忽略,输出电压便为V"0= E R R R R R R R R ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛∆⎪⎭⎫ ⎝⎛3412114113这是理想情况,式(1-2)为实际输出电压,由此可求出电桥非线性误差。
《感测技术》实验指导书信息与电子工程学院2008年1月CSY-998C系列传感器实验台主要技术参数、性能及说明<一>传感器安装台部分:双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器VO可做静态或动态测量。
应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。
传感器:1、应变式传感器箔式应变片阻值:350Ω,应变系数:2。
2、热电偶(热电式)直流电阻:10Ω左右,由两个铜一康铜热电偶串接而成,分度号为T冷端温度为环境温度。
3、差动变压器量程:≥5mm,直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体。
4、电涡流位移传感器量程:3mm,直流电阻:1Ω-2Ω,多股漆包线绕制的扁平线圈与金属涡流片组成。
5、霍尔式传感器日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。
量程:±1mm。
6、磁电式传感器直流电阻:30Ω-40Ω,由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s。
7、压电加速度传感器PZT-5双压电晶片和铜质量块构成。
谐振频率:>-10KHz。
8、电容式传感器量程:+5mm,由两组定片和一组动片组成的差动变面积式电容传感器。
9、压阻式压力传感器量程:15Kpa,供电:≤4V,美国摩托罗拉公司生产的MPX型压阻式压力传感器,具有温度自补偿功能。
10、光纤传感器由多模光纤、发射、接收电路组成的导光型传感器,线性范围1mm。
红外线发射、接收,2×60股丫形、半圆分布。
11、PN结温度传感器利用半导体P-N结良好的线性温度电压特性制成的测温传感器。
灵敏度:-2mV/℃12、热敏电阻由半导体热敏电阻NTC:温度系数为负,25℃时为10KΩ。
13、气敏传感器MQ3:酒精:测量范围:50-2000ppm.CH414、湿敏电阻高分子薄膜电阻型:RH:几兆Ω-几KΩ,响应时间:吸湿、脱湿小于10秒。
加速度传感器振动测量实验指导书一. 实验目的1. 通过本实验了解并掌握机械振动信号测量的基本方法。
二. 实验原理1. 振动测量原理机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。
机械振动在大多数情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。
机械振动还伴随着同频率的噪声,恶化环境,危害健康。
另一方面,振动也被利用来完成有益的工作,如运输、夯实、清洗、粉碎、脱水等。
这时必须正确选择振动参数,充分发挥振动机械的性能。
在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。
为了提高机械结构的抗振性能,有必要进行机械结构的振动分析和振动设计。
这些都离不开振动测试。
振动测试包括两种方式:一是测量机械或结构在工作状态下的振动,如振动位移、速度、加速度、频率和相位等,了解被测对象的振动状态,评定等级和寻找振源,对设备进行监测、分析、诊断和预测。
二是对机械设备或结构施加某种激励,测量其受迫振动,以便求得被测对象的振动力学参量或动态性能,如固有频率、阻尼、刚度、频率响应和模态等。
振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。
幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。
相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。
对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。
在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。
实验一电阻应变片传感器在电桥中的接法、性能检测及应用——电子秤设计——本实验为综合性实验,学时数:4本综合实验涉及的基本内容是金属箔式应变片传感器的基本原理,结构、性能及如何通过金属箔式应变片传感器测量力、压力、位移、应变、加速度等非电量参数等知识。
重点是金属电阻应变效应,金属应变片的主要特性;半导体材料的压阻效应。
压力传感器的应用及测量处理与转换电路,温度误差产生的原因及补偿。
要求实验者除应具备传感器基本知识外,还必须具备模拟电子技术,数字电子技术的基本知识,同时要求将所学知识灵活、综合地应用。
一、实验目的:1. 初步掌握传感器综合实验仪的结构及操作方法;2. 学习掌握应变片在电桥中的接法及直流电桥与交流电桥的工作原理及特点;3. 了解金属箔式应变片、单臂电桥、半桥及全桥的工作原理和工作情况;4. 验证直流、交流单臂、半桥、全桥的性能;5.通过电子秤设计实验,更好地理解电阻应变式传感器的实际应用;6.本次设计实验,使同学们在动手能力得到锻炼的同时充分发挥自己的创新潜能,充分调动学习主动性,培养创新能力;二、实验所需单元及部件:应变式传感器、应变式传感器实验模板、砝码、托盘、音频振荡器、数显表、±15V电源、±4V电源。
三、实验原理与说明3.1电阻应变式传感器的工作原理电阻应变式传感器是一种利用电阻材料的应变效应,将工程结构件的内部形变转换为电阻变化的传感器,此类传感器主要是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将形变转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。
可用于能转化成形变的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
其主要特点是:①结构简单,使用方便,性能稳定、可靠;②灵敏度高,频率响应特性好,适合于静态、动态测量③环境适应性好,应用领域广泛。
实验一应变式传感器与检测系统实验一、实验目的1.熟悉金属箔式应变片的应变效应和测量电桥(全桥)的组成、工作原理和性能;利用应变片制作的称重实验台进行物品称重,并掌握称重实验台的定标和测量误差修正方法;2.结合称重实验系统的构建,熟悉典型的自动检测系统的硬件结构和工作原理;掌握检测技术软件(数据采集和处理软件DRVI)的基本功能和使用方法。
二、实验原理本实验所用的DRCZ-A型称重台由应变式力传感器、底座、支架和托盘构成。
其中,力传感器由测力环和4个应变片构成的全桥电路组成。
当物料加到载物台后,4个应变片会发生变形,通过电桥放大后产生电压输出。
图1称重实验台结构示意图电阻应变片是利用物体线性长度发生变形时其阻值会发生改变的原理制成的,其电阻丝一般用康铜材料,它具有高稳定性及良好的温度补偿性能。
测量电路普遍采用惠斯通电桥(如图1-2所示),利用的是欧姆定律,输出量是电压差。
图2 电阻应变片惠斯通电桥测量电路为提高测量精度,称重实验台使用前可用标准砝码对其进行标定,得到物料重量与输出电压的关系曲线,实际使用时将测量电压按该曲线反求出实际重量就。
关系曲线用y=k x+b拟合,方法有:①理论拟合;②端点连线平移拟合;③端点连线拟合;④过零旋转拟合;⑤最小二乘拟合等。
本实验用两个砝码进行标定,通过计算直线的方法(端点连线拟合)进行标定。
测量误差修正除前述的标定外,还可通过数据处理的方法来实现,如:平均值处理等。
三、实验仪器设备和器材1.计算机1台2.检测软件DRVI 1套3.称重实验台(DRCZ-A)1个4.砝码1套5.USB数据采集器1台四、实验要求1.预习要求:阅读、理解实验指导书的实验原理,并思考回答以下问题:a) 为什么称重实验台能用应变片来称重?采用全桥电路有什么优点?b) 为什么称重实验台使用前要用标准砝码进行标定?c) 如何分析称重实验台称重时所产生的误差?2. 实验内容:用DRDAQ-USB型数据采集仪和DRCZ-A型称重台称一色块的重量,并计算静态误差与该系统测量的非线性误差。
实验一电阻应变片传感器在电桥中的接法、性能检测及应用——电子秤设计——本实验为综合性实验,学时数:4本综合实验涉及的基本内容是金属箔式应变片传感器的基本原理,结构、性能及如何通过金属箔式应变片传感器测量力、压力、位移、应变、加速度等非电量参数等知识。
重点是金属电阻应变效应,金属应变片的主要特性;半导体材料的压阻效应。
压力传感器的应用及测量处理与转换电路,温度误差产生的原因及补偿。
要求实验者除应具备传感器基本知识外,还必须具备模拟电子技术,数字电子技术的基本知识,同时要求将所学知识灵活、综合地应用。
一、实验目的:1. 初步掌握传感器综合实验仪的结构及操作方法;2. 学习掌握应变片在电桥中的接法及直流电桥与交流电桥的工作原理及特点;3. 了解金属箔式应变片、单臂电桥、半桥及全桥的工作原理和工作情况;4. 验证直流、交流单臂、半桥、全桥的性能;5.通过电子秤设计实验,更好地理解电阻应变式传感器的实际应用;6.本次设计实验,使同学们在动手能力得到锻炼的同时充分发挥自己的创新潜能,充分调动学习主动性,培养创新能力;二、实验所需单元及部件:应变式传感器、应变式传感器实验模板、砝码、托盘、音频振荡器、数显表、±15V电源、±4V电源。
三、实验原理与说明3.1电阻应变式传感器的工作原理电阻应变式传感器是一种利用电阻材料的应变效应,将工程结构件的内部形变转换为电阻变化的传感器,此类传感器主要是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将形变转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。
可用于能转化成形变的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。
其主要特点是:①结构简单,使用方便,性能稳定、可靠;②灵敏度高,频率响应特性好,适合于静态、动态测量③环境适应性好,应用领域广泛。
3.2 金属箔应变片的基本结构金属箔应变片的敏感栅是用0.001~0.01mm厚的金属箔通过光刻技术制作成,可以很方便地制作成各种形状的应变片,常称其为应变花。
如图1-1所示。
图1-1箔式应变片结构图1-2 应变片结构箔式应变片横栅较宽,因而横向效应较丝式应变片小;由于箔栅的厚度远比丝栅小,因而有较好的散热性能,允许通过较大的工作电流;同时因栅薄,也便于粘贴到弯曲的弹性元件表面上;且蠕变和机械滞后较小,应力传递性能好。
实际应用的电阻应变式传感器主要有四个部分组成,如图1-2所示:1:引出线,作为连接测量导线用,对测量精度至关重要。
2:电阻丝也叫敏感栅,是应变片的转换元件,是这类传感器的核心构件;3:粘结剂,它的作用是将电阻丝与基底粘贴在一起;4 :基底,基底是将传感器弹性体的应变传送到敏感栅上的中间介质,并起到在电阻丝和弹性体之间的绝缘作用和保护作用;5 :面胶或叫覆盖层,是一层薄膜,起到保护敏感栅的作用;3.3 .测量电路电阻应变片把机械应变信号转换成ΔR/R后,由于应变量及其应变电阻变化一般都很微小,既难以直接精确测量,又不便直接处理。
因此,必须采用转换电路或仪器,把应变片的ΔR/R变化转换成电压或电流变化。
通常采用电桥电路实现这种转换的测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。
根据电源的不同,电桥分直流电桥和交流电桥。
如图1-3所示。
图1-3 直流、交流电桥电路图直流电桥的优点:高稳定度的直流电源易于获得,电桥调节平衡电路简单,传感器至测量仪表的连线导线的分布参数影响小等。
但是后续要采用直流放大器,容易产生零点漂移,线路也比较复杂。
因此应变电桥现在多采用交流电桥。
电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小,双臂输出是单臂的两倍,全桥工作时的输出是单臂时的四倍。
因此,为了得到较大的输出电压或电流信号一般都采用双臂或全桥工作。
当电桥平衡时,即R1*R3=R2*R4,电桥输出为零。
在桥臂R1、R2、R3、R4中,电阻的相对变化分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4,桥路的输出Uo与电桥四个臂的电阻的相对变化的代数和即:ΣR=ΔR1/R1-ΔR2/R2-ΔR3/R3+ΔR4/R4成正比。
当使用一片应变片时,ΣR=ΔR/R;当使用二片应变片时,ΣR=ΔR1/R1-ΔR2/R2。
如二片应变片工作于差动状态,且R1=R2=R,则有ΣR=2ΔR/R。
用四片应变片组成二个差动对工作,且R1=R2=R3=R4=R,于是有ΣR1/R1=-ΔR2/R2=-ΔR3/R3=ΔR4/R4,因此有ΔR=4ΔR/R。
由此可知,单臂、半桥、全桥电路的灵敏度依次增大。
根据戴维南定理可以得到电桥的输出电压Uo近似等于1/4*E*ΣR。
电桥的灵敏度:So=Uo / (ΔR/R),于是,对应于单臂、半桥和全桥的灵敏度分别为(1/4)E,(1/2)E、E。
四、实验内容与步骤:1.金属箔式应变片输出性能标定—直流单臂电桥①首先熟悉实验所需单元和部件在《综合传感器实验仪》与《应变片传感器实验模块》面板上的位置及结构。
金属箔应变片的构成如图1-4所示:图1-4应变式传感器示意图应变式传感器实验模板的布局及单臂电桥、测量电路如图1-5所示。
图1-5应变片单臂电桥性能实验安装、接线示意图图中,实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
②根据图1-5安装接线。
应变式传感器已装于应变传感器模板上。
传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。
(传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4)。
当传感器托盘支点受压时,R1、R3阻值增加(为正应变),R2、R4阻值减小为负应变),可用四位半数显万用进行测量判别。
常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。
③放大器调零处理:方法是将图1-5实验模板上放大器(IC1、IC2)的两输入端口引线暂时脱开,再用导线将两输入端短接后接地,使输入为零(Vi=0);调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈半);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。
④应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图2接线图)。
调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。
记下实验结果填入表1-1中,关闭电源。
表1-1直流单臂X(克) V(mv)直流半桥X(克) V(mv)直流全桥X(克) V(mv)交流全桥X(克) V(mv)⑤根据表1-1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δf1=Δm/yF..S ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·S满量程输出平均值,此处为200g(或500g)。
2.金属箔式应变片输出性能标定—直流半桥此时有两个相邻桥臂接应变片,且一个正应变、一个负应变,即接R3的桥臂为拉应变,接R2的桥臂为压应变。
实验电路连接如图1-6所示图1-6 应变式传感器半桥接线图①保持以上差动放大器增益不变。
按图1-6形成半桥。
②调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g (或500 g)砝码加完。
记下实验结果填入表1-1中,关闭电源。
③根据实验测量结果,计算出半桥灵敏度S,并作出V—X关系曲线。
3.金属箔式应变片输出性能标定—直流全桥全桥:应变片全桥是指四个桥臂都接有应变片,此时相邻桥臂所接的应变片承受相反应变,相对桥臂所接的应变片承受相同应变。
即R1=R2=R3=R4=RΔR1=ΔR3=ΔRΔR2=ΔR4=-ΔR实验电路连接如图1-7 所示:图1-7 全桥性能实验接线图①保持以上差动放大器增益不变。
按图1-7形成全桥。
②调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g (或500 g)砝码加完。
记下实验结果填入表1-1中,关闭电源。
③根据实验测量结果,计算出全桥灵敏度S,并作出V—X关系曲线。
4.金属箔式应变片输出性能标定—交流全桥交流电桥一般采用音频交流作为供桥电压,在特殊情况下也有采用脉冲供电方式的。
交流电路远比直流复杂,特别是在高频时,需要考虑分布电容和分布电感的影响。
在实际测量中,电桥的桥臂都是由应变计或固定无感式精密电阻组成,但由于两邻近导体、导体与机壳以及应变计连接导线间存在着分布电容,所以应变计桥臂实际是由工作片(或电阻)和电容并联而成(分布电感的影响很小,图1-8交流电桥可以不予考虑),如图1-8所示:由于供桥电压的频率在测量过程中不变,故可认为分布电容引起的容抗不随工作片的变形而改变其数值。
当电桥平衡时,Z1Z4=Z2Z3,电桥输出为零。
若桥臂阻抗的变化率分别为ΔZ1/Z1、ΔZ2/Z2、ΔZ3/Z3、ΔZ4/Z4,则电桥的输出与桥臂阻抗变化率的代数和成正比,交流电桥输出的信号,经差动放大器放大后,由相敏检波器检波,低通滤波器滤波,最后由电压表指示出来。
金属箔式应变片输出性能标定—交流全桥的测量系统组成电路如图1-9所示图1-9交流全桥性能实验接线图①首先熟悉公共电路模块(移相器、相敏检波器和低通滤波器)的位置及结构。
②按图1-9,接好实验测量系统电路。
模块中,R8、Rw1、C、Rw2为交流电桥调平衡网络。
检查接线无误后,合上主控箱电源开关,将音频振荡器的频率调节到5KHz左右,幅度调节到10Vp-p。
(频率可用数显表Fin监测,幅度可用示波器监测),电桥激励必须从LV 插口输出。
③将V/F表打到V±2V(或V±200mV)档,差动放大器增益旋钮RW3打到最大(顺时针到底),而后,将差动放大器调零(RW4)。
调零完毕后再关闭总电源。
④将示波器接入相敏检波的输出端,观察示波器的波形,,调节Rw1、Rw2、使示波器显示的波形基本为一条直线,同时观察数字电压表,使指示为零。
⑤用手按压应变片托盘,产生一个较大的位移,调节移相器与相敏检波器旋纽,使示波器显示全波整流的波形。