三角恒等变量专题
- 格式:doc
- 大小:1.99 MB
- 文档页数:47
三角恒等变换【知识分析】1、本章网络结构2、要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。
(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。
(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。
(4)求值的类型:①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。
②“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。
③“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。
(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。
(6)合一变形(辅助角公式)把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的形式。
,其中.(7)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。
(8)三角恒等变换方法观察(角、名、式)→三变(变角、变名、变式)① “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=(α+β)-β=(α-β)+β, 2α=(α+β)+ (α-β), 2α=(β+α)-(β-α),α+β=2·,= (α-)-(-β)等.②“变名”指的是切化弦(正切余切化成正弦余弦),③“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。
三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。
这些恒等变换在解决三角函数相关问题时非常有用。
下面是对一些常见的三角恒等变换进行总结和详解。
1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。
- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。
- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。
2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。
- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。
- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。
3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。
- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。
- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。
4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。
- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。
- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。
三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减)已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++=两式相加得,1322(cos sin sin cos )36αβαβ+-=化简得,59sin()72βα-=-即59sin()72αβ-=方法评析:式的变换包括:1、tan(α±β)公式的变用2、齐次式3、 “1”的运用(1±sin α, 1±cos α凑完全平方)4、两式相加减,平方相加减5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化)已知7sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故348tan()311πα-+-+===方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin332x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得 方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=. 方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。
三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。
在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。
本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。
一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。
三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。
在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。
二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。
这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。
1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。
三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。
三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36αβαβ+-= 化简得,59sin()72βα-=- 即59sin()72αβ-=方法评析:式的变换包括:1、tan(α±β)公式的变用2、齐次式3、 “1”的运用(1±sin α, 1±cos α凑完全平方)4、两式相加减,平方相加减5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化)已知7sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α, 于是3tan 4α=-故3tan()3πα-+=== 方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围. 解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a +=在(0,2)π内有相异二解,∴sin()sin 33x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=.方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩, 从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
第3讲三角恒等变换知识与方法本专题主要知识为两角和与差的正弦、余弦和正切公式.同学们要会推导正弦、余弦、正切的倍角公式和辅助角公式,运用这些公式进行简单的恒等变换.要掌握以两角差的余弦公式为基础,推导两角和与差(或二倍角)的正弦、余弦、正切公式的方法,了解它们的内在联系.进行公式探究,能利用对比、联系、化归的观点来分析、处理问题.能依据三角函数式的特点,逐渐明确三角恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换.体验由简单到复杂、从特殊到一般的变换思想,代换和方程的思想,进而提高分析问题、解决问题的能力. 1.两角和与差的正弦、余弦和正切公式 2.二倍角公式sin22sin cos ααα=;缩角升幂2221sin2(sin cos ),1cos22cos ,1cos22sin ααααααα±=±+=-=.扩角降幂22sin21cos21cos2sin cos ,sin ,cos 222ααααααα-+===.3.辅助角公式()sin cos a b αααϕ+=+(其中cos ϕϕ==,辅助角ϕ所在象限由点(),a b 的象限决定,tan b a ϕ⎫=⎪⎭. 注意应用特殊角的三角函数值实现数值与三角函数间的转化,要加强各三角函数公式的正用、逆用及变形应用;尤其是二倍角的正弦公式在构成完全平方式中的应用和二倍角的余弦公式在升幂、降幂变形中的应用.在进行三角恒等变换时,要掌握三角函数式的化简及证明的基本方法与常用技巧.典型例题【例1】若()()13cos ,cos 55αβαβ+=-=,则tan tan αβ=________________. 【分析】本题为已知两个角,αβtan tan αβ,一般先“化切为弦”,发现sin sin tan tan cos cos αβαβαβ=,因此需探求角,αβ的同名三角函数值,分子恰为两角和与差的余弦公式的变形与应用.【解析】13cos cos sin sin ,cos cos sin sin 55αβαβαβαβ-=+=. 两式分别相加、相减得21cos cos ,sin sin 55αβαβ==,故sin sin 1tan tan cos cos 2αβαβαβ==. 【点睛】tan tan αβ转化为sin sin cos cos αβαβ,运用已知两角和与差的余弦公式展开,然后相加、相减可得;若为tan tan αβ,则化为sin cos cos sin αβαβ,利用两角和与差的正弦公式展开,然后相加、相减可得.【例2】若cos cos cos 0,sin sin sin 0αβγαβγ++=++=,则()cos αβ-=______. 【分析】本题涉及两角差的余弦公式的变形与应用,解决问题的关键在于将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γ,进而求出结论.【解析】因为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,所以22(cos cos )(sin sin )1αβαβ+++=,即()22cos cos sin sin 1αβαβ++=,整理得()22cos 1αβ+-=,所以()1cos 2αβ-=-. 【点睛】将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γsin sin ,cos cos ,m n p m n q αβαβ+=⎧⎨+=⎩求()cos αβ-;或已知sin cos ,cos sin ,m n p m n q αβαβ+=⎧⎨+=⎩求()sin αβ+.【例3】已知()sin 22sin αββ+=,且2tan1tan 22αα=-,则()tan αβ+=______.【分析】本题求角αβ+的正切值,涉及的角有2,,2ααββ+,函数名有正弦与正切.从待求目标出发,先利用二倍角正切公式求出α的正切,再将式子()sin 22sin αββ+=,化为关于α+β与α的三角函数值,得到()tan αβ+与tan α的关系求解.【解析】因为2tan1tan 22αα=-,所以22tan2tan 21tan2ααα==-.又()()sin 2sin αβααβα⎡⎤⎡⎤++=+-⎣⎦⎣⎦,所以()()()()sin cos cos sin 2sin cos 2cos sin αβααβααβααβα+++=+-+,即()()sin cos 3cos sin αβααβα+=+.等号两边同除以()cos cos ααβ+,得()tan 3tan 6αβα+==.【点睛】要善于将三角恒等变换公式展开和变形.在计算过程中注意角的配凑,把末知角用已知角表示,如将2αβ+表示为(),αβαβ++表示为()αβα+-;角α是2α的二倍. 【例4】计算4cos50tan40-=()B.21 【分析】本题为三角函数式4cos50tan40-的化简与求值,涉及的角有40,50,函数名和系数均不同,先将正切化为正弦和余弦的商,再通分.利用二倍角公式时,注意到2sin80sin40cos40-中的角有80,40,先将80化为12040-,再将()sin 12040-展开,合并求解.【解析】原式sin404sin40cos40sin402sin80sin404sin40cos40cos40cos40--=-==()2sin 12040sin403cos40sin40sin403cos40cos40--+-===,答案选 C.【点睛】利用同角三角函数的基本关系、诱导公式、两角差的正弦公式、二倍角公式化简所给的式子,注意角的变换和拆角等. 【例5】计算()sin40tan103-.【分析】本题计算()sin40tan103-的值,涉及的角有40,10,三角函数名有正切与正弦,一般先将正切化为正弦和余弦的商,再通分并运用辅助角公式进行恒等变换.求解时要充分运用特殊角和特殊值的隐含关系,注意公式的逆用.【解析】解法1:原式()sin40sin103cos10sin10sin403cos10cos10-⎛⎫=-=⎪⎝⎭解法2:原式()sin40tan10tan60=-【点睛】解法1,构建余弦的两角和的关系.解法2则是正切的差角公式的变形应用.【例6】()1sin cos sincos )θθθθθπ⎛⎫++- ⎪<<的结果是___________.【分析】,方法是缩角升幂,去根号,加绝对值符号,开方时注意θ的范围是0θπ<<.注意到分子中含有sincos22θθ-,因此分子1sin cos θθ++的处理也化为半角的三角函数.一方面,()1sin cos 1sin cos θθθθ++=++=222sin cos cos sin sin cos sin cos cos sin 2222222222θθθθθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫++-=+++- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2cos sin cos 222θθθ⎛⎫=+ ⎪⎝⎭;另一方面,()21sin cos 1cos sin 2cos 2θθθθθ++=++=+2sincos2cos sin cos 22222θθθθθ⎛⎫=+ ⎪⎝⎭,也就是合理分组、升幂、因式分解、提取公因式.涉及二倍角公式的应用,突出转化思想与运算能力. 【解析】0,cos0222θπθ<<>,原式212sin cos 2cos 1sin cos θθθθθ⎛⎫⎛⎫++-- ⎪⎪=222cos sin cos sin cos 2cos sin cos 222cos 2cos 2θθθθθθθθθθ⎛⎫⎛⎫⎛⎫+-- ⎪⎪ ⎪⎝⎭===-.【点睛】依题意,可求得cos 02θ>,利用二倍角的正弦与余弦公式将所求关系式化简并约分即可.【例7】已知,sin 2cos 2ααα∈+=R ,则tan2α=() A.43B.34C.34- D.43- 【分析】本题为已知同角α的正弦、余弦三角函数值的和,求角α的二倍角的正切值.通常做法是先利用同角三角函数的平方关系,解方程组,解出α的正弦、余弦三角函数值,再求出α的正切值,最后求二倍角的正切.若对原式平方,等号两边同除以“1”,化为关于tan α的二次齐次式,则更为方便.【解析】解法1:由22sin 2cos sin cos 1αααα⎧+=⎪⎨⎪+=⎩得222cos cos 1αα⎫+=⎪⎪⎝⎭.所以210cos 30αα-+=,解得cos α=.当cos α=,sin 2cos αα==,此时tan 3α=;当cos α=时,sin α=此时1tan 3α=-. 所以tan 3α=或13-,所以22tan 3tan21tan 4ααα==--.故选C.解法2:将sin 2cos αα+=平方,得225sin 4sin cos 4cos 2αααα++=. 所以2222sin 4sin cos 4cos 5sin cos 2αααααα++=+,所以22tan 4tan 45tan 12ααα++=+, 所以23tan 8tan 30αα--=,解得tan 3α=或13-,所以22tan 3tan21tan 4ααα==--. 故选C.【点睛】由题意,结合22sin cos 1αα+=可得sin ,cos αα,进而可得tan α,将其代入二倍角的正切公式求解.【例8】若50,sin 4413x x ππ⎛⎫<<-= ⎪⎝⎭,求cos2cos 4x x π⎛⎫+ ⎪⎝⎭的值.【分析】此题解法较多,若从条件与结论中角的关系入手,可发现2242x x ππ⎛⎫+=+⎪⎝⎭.若从诱导公式角度入手,可以把2x 看成是4x π+的“二倍角”.而44x x ππ⎛⎫=+- ⎪⎝⎭,从而将单角转化为两角差来处理.若从条件与结论的函数关系入手,可借助cos sin 44x x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭. 【解析】解法1:因为04x π<<,所以120,cos 44413x x πππ⎛⎫<-<-== ⎪⎝⎭, 所以120cos2sin 22sin cos 244169x x x x πππ⎛⎫⎛⎫⎛⎫=-=--=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 注意到442x x πππ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,所以5cos sin 4413x x ππ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭. 原式cos22413cos 4x x π==⎛⎫+ ⎪⎝⎭.解法2:因为04x π<<,所以044x ππ<-<.所以12sin sin cos 424413x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以原式sin 22sin cos 242442sin 413cos cos 44x x x x x x ππππππ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+= ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.解法3:由5sin 413x π⎛⎫-=⎪⎝⎭展开得()5cos sin 213x x -=,所以cos sin 13x x -=.所以)22cos2cos sin cos 4x x x x π==+⎛⎫+ ⎪⎝⎭. 因为22(cos sin )(cos sin )2x x x x -++=,所以cos sin 13x x +=. 故原式2413=. 【点睛】(1)解有条件的三角函数求值题,关键是从条件与结论中角的关系和函数关系入手,变换条件或结论,在变换条件过程中注意角的范围的变化.(2)在恒等变形中,注意变角优先,要根据函数式中的“角”“名”“形”的特点(即有没有与特殊角相关联的角;有没有互余、互补的角;角和角之间有没有和、差、倍、半的关系)来寻求已知条件和所求式子之间的关系,从而找到解题的突破口. (3)对于条件求值题,一般先化简,再代入求值.【例9】化简1sin4cos41sin4cos4αααα+-++.【分析】可以考虑正弦、余弦的倍角公式的和与积的互化,2(sin cos )1sin2ααα±=±及1-22cos22sin ,1cos22cos αααα=+=;考虑用余弦倍角公式的升幕形式.【解析】1 原式()()221cos4sin42sin 22sin2cos21cos4sin42cos 22sin2cos2αααααααααα-++==+++ 【解析】2原式()()222222(sin2cos2)cos 2sin 2(sin2cos2)cos 2sin 2αααααααα+--=++- 【点睛】对于较复杂的三角函数式的化简与求值题,一般先观察式子的结构特征,在熟练堂握三角函数变换公式的基础上,灵活运用公式的变形、公式的逆用等.【例10】已知02πβαπ<<<<,且12cos ,sin 2923βααβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,求()cos αβ+的值.【分析】本题已知cos ,sin 22βααβ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,要求角αβ+的余弦值.观察已知角和所求角,可作222αββααβ+⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭的配凑角变换,利用余弦的差角公式求2αβ+的正弦值或余弦值,最后用二倍角公式求角αβ+的余弦值.【解析】因为02πβαπ<<<<,所以,,,24242βπαππαπβ⎛⎫⎛⎫-∈-∈- ⎪ ⎪⎝⎭⎝⎭.所以sin 22βααβ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭, 所以coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以()22239cos 2cos1212729αβαβ++=-=⨯-=-⎝⎭.【点睛】“凑角法”是解三角函数题的常用技巧,本题计算角αβ+的余弦函数值,而已知角只有,22βααβ--,因此要将αβ+配凑为22βααβ⎛⎫--- ⎪⎝⎭的二倍.【例11】已知都是锐角,若sin αβ==,则αβ+=______________. A.4πB.34πC.4π和34πD.4π-和34π- 【分析】本题要求角αβ+的大小,一般方法是求其某一三角函数值,结合角的范围求角的大小(或范围).考虑到,αβ都是锐角,0αβπ<+<,为使角的三角函数值唯一,则考虑选用求()cos αβ+.【解析】因为sin αβ==且,αβ都是锐角,所以cos αβ==所以()cos cos cos sin sin αβαβαβ+=-==. 又()0,αβπ+∈,所以4παβ+=.故选A.【点睛】例已知,αβ的正弦值,根据同角的正弦值与余弦值的平方关系,可分别求出,αβ的余弦值,接下来利用两角和的余弦公式求出()cos αβ+,然后结合αβ+αβ+的取值范围这里选用()cos αβ+求解,若选用()sin αβ+求解,应先考虑缩小αβ+的取值范围,否则会产生增解34παβ+=.【例12】已知函数()226sin cos 2cos 1,4f x x x x x x π⎛⎫=++-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期.(2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【分析】本题研究三角函数()f x 的性质,计算化简时利用相关三角恒等变换公式,需要将已知函数式化为()()sin f x A x b ωϕ=++的形式,常用公式为辅助角公式.【解析】(1) ()3sin2cos2f x x x x x⎫=+-⎪⎪⎭所以()f x 的最小正周期2T ππω==.(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤-∈-⎢⎥⎣⎦.所以sin 242x π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以max min?()()2f x f x ==-.【点睛】用二倍角公式降幂,结合辅助角公式研究三角函数的图象与性质.强化训练1.若()()13sin ,sin 55αβαβ+=-=,则tan tan αβ=________________. 【答案】2- 【解析】1sin cos cos sin 5αβαβ+=,3sin cos cos sin 5αβαβ-=,两式分别相加、相减得,21sin cos ,cos sin 55αβαβ==- 所以tan sin cos 2tan cos sin ααββαβ==-.2.已知22sin sin ,cos cos 33x y x y -=--=,且,x y 为锐角,则()tan x y -的值是()B.C.【答案】B 【解析】已知22sin sin ,cos cos 33x y x y -=--=,两式平方并相加得 ()822cos cos sin sin 9x y x y -+=, 即()5cos 9x y -=. 因为,x y 为锐角,sin sin 0x y -<,所以x y <.所以()sin x y -==()()()sin tan cos 5x y x y x y --==--. 3.求值:tan20tan403tan20tan40++.【解析】原式()()tan 20401tan20tan403tan20tan40=+-+ )1tan20tan403tan20tan403=-+=. 4.化简2cos10sin20cos20-. 【解析】:原式2cos10sin20cos20-==5.求值():cos4013tan10+. 【解析】原式3sin10cos10cos40cos10+=⨯()2sin 1030cos40cos10+=⨯ 2sin40cos40sin801cos10cos10===.6.化简()()()()22:cos 60cos 60cos 60cos 60θθθθ-+++-+. 【解析】解法1:原式=()()1cos 12021cos 120211cos cos 222222θθθθθθ+-++⎛⎫⎫⎛+++- ⎪⎪ ⎪⎪⎝⎝⎭⎭34=.解法2:由余弦的平方差公式得()()22cos cos cos sin αβαβαβ+-=-,所以原式()()()()2cos 60cos 60cos 60cos 60θθθθ⎡⎤=-++--+⎣⎦34=.7.已知3sin 4cos 0αα-=,则23cos2α+=_______.【答案】2925【解析】因为3sin 4cos 0αα-=所以4tan 3α=.所以222222cos sin 1tan 7cos2cos sin 1tan 25ααααααα--===-++, 所以212923cos222525α+=-=. 8.已知1sin cos 2αα=+,且0,2πα⎛⎫∈ ⎪⎝⎭,则cos2sin 4απα⎛⎫- ⎪⎝⎭的值为_______.【答案】 【解析】解法1:由1sin cos 2αα=+和22sin cos 1αα+=,0,2πα⎛⎫∈ ⎪⎝⎭可得11sin 44αα+-+==, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭ 解法2:由1sin cos 2αα=+可得1sin cos 2αα-=,等号两边平方可得3sin24α=, 则27(sin cos )4αα+=. 又0,2πα⎛⎫∈ ⎪⎝⎭,则sin cos 2αα+=, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭9.设3,22παπ⎛⎫∈ ⎪⎝⎭,. 【解析】因为3,22παπ⎛⎫∈ ⎪⎝⎭,所以3,24αππ⎛⎫∈ ⎪⎝⎭.原式cos cos 22αα====-.10.已知函数(),12f x x x π⎛⎫=-∈ ⎪⎝⎭R . (1)求6f π⎛⎫- ⎪⎝⎭的值. (2)若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(1)164f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭. (2)因为33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,所以4sin 5θ=-. 故4324sin22sin cos 25525θθθ⎛⎫==⨯-⨯=- ⎪⎝⎭, 所以27cos212sin 25θθ=-=-.从而1722cos2sin23425f ππθθθθ⎛⎫⎛⎫+=+=-= ⎪ ⎪⎝⎭⎝⎭. 11.已知()113cos ,cos 714ααβ=-=,且02πβα<<<.(1)求tan2α的值.(2)求β.【解析】(1)因为1cos ,072παα=<<,所以sin tan 7αα==所以22tan tan21tan 14847ααα===---. (2)因为02παβ<-<,所以()sin αβ-==所以()cos cos βααβ⎡⎤=--⎣⎦11317142=⨯+=. 因为02πβ<<,所以3πβ=.12.已知函数()26cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,,B C 为图象与x 轴的交点,ABC 为正三角形.(1)求ω的值及函数()f x 的值域.(2)若()0f x =且0102,33x ⎛⎫∈- ⎪⎝⎭,求()01f x +的值.【解析】(1)由已知可得,()3cos 3f x x x x πωωω⎛⎫==+ ⎪⎝⎭.所以正三角形ABC 的高为从而4BC =. 所以函数()f x 的周期428T =⨯=,即28πω=,4πω=函数()f x 的值域为⎡-⎣.(2)已知()0f x =由(1)有()00435f x x ππ⎛⎫=+= ⎪⎝⎭, 即04sin 435x ππ⎛⎫+= ⎪⎝⎭. 由0102,33x ⎛⎫∈- ⎪⎝⎭知0,4322x ππππ⎛⎫+∈- ⎪⎝⎭,所以03cos 435x ππ⎛⎫+== ⎪⎝⎭.故()001443f x x πππ⎛⎫+=++⎪⎝⎭00sin cos 43435x x ππππ⎤⎛⎫⎛⎫=+++= ⎪ ⎪⎥⎝⎭⎝⎭⎦.。