初一数学下册知识点总结
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线及其判定平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。
初一下册数学知识点总结归纳初一下册数学知识点总结归纳(一)一、整数的概念和基本性质1. 整数的定义和性质(正整数、负整数、0、相反数等);2. 整数的加、减、乘、除法则;3. 整数比大小(绝对值大小比较);4. 整数的绝对值和相反数的性质。
二、分数的概念和基本性质1. 分数的定义和性质(有理数、分数线、分子、分母等);2. 分数的加、减、乘、除法则;3. 分数化简、约分;4. 分数的比较大小(通分后比较分子);5. 分数和整数的加、减、乘、除法。
三、小数的概念和基本性质1. 小数的定义和性质(有限小数、无限循环小数、无限不循环小数等);2. 小数的转化(小数转分数、分数转小数);3. 小数的加、减、乘、除法则。
四、代数式及其运算1. 代数式的基本概念(字母、常数、系数、项、次数);2. 代数式的加、减、乘、除法则;3. 多项式(单项式、多项式、常数项、一次项、二次项等);4. 四则运算(加、减、乘、除);5. 同类项的合并和分解、因式分解;6. 多项式除以一次式及其余数。
初一下册数学知识点总结归纳(二)五、图形的初步认识1. 图形的分类(平面图形、立体图形等);2. 平面图形(点、线、面、封闭图形、不封闭图形等);3. 立体图形(球、立方体、长方体、圆柱体、圆锥体、棱锥体等);4. 基本图形的名称和性质(正方形、长方形、圆形、三角形等);5. 图形坐标系(直角坐标系、平面直角坐标系、三维坐标系等)。
六、比例与变量1. 比例的基本概念(比、比值、比例等);2. 计算比例的方法(倍数、分数、百分数表示比例等);3. 比例运算的定理(倍数定理、分离变量法等);4. 并、集、差的基本概念;5. 变量的概念和使用。
七、图形的性质和运动1. 学习使用尺规作图;2. 放缩、旋转、平移的概念和性质;3. 图形的对称性和中心对称;4. 角度的概念和计算方法;5. 直线和平面的性质(平面内的角、直线的交角、平行线等)。
初一下册数学知识点总结范本二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.初一下册数学知识点总结范本(二)一.整式※1.单项式①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※____多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二.整式的加减1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幂的乘法※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)四.幂的乘方与积的乘方※2..※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同.※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数).※7.幂的乘方与积乘方法则均可逆向运用.五.同底数幂的除法※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).※2.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的____次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;初一下册数学知识点总结范本(三)多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
初一下册数学知识点总结归纳数学作为一门基础学科,对学生的数理思维和逻辑推理能力的培养起着重要的作用。
初一下册数学内容丰富多样,包括数的认识与运算、代数方程、几何初步等知识点。
本文将对初一下册数学的主要知识点进行总结归纳,帮助同学们更好地掌握这些知识。
一、数的认识与运算1. 整数概念及运算:正整数、负整数、零的概念,整数的加减乘除运算规则。
2. 实数的概念:有理数和无理数的区别,实数的基本性质。
3. 分数的概念及运算:真分数、假分数和整数,分数的加减乘除运算。
4. 百分数的概念及应用:百分数的意义、转化和应用。
二、代数方程1. 代数式的概念:代数式的定义及其基本性质。
2. 一元一次方程:解方程的基本方法,一元一次方程的实际应用。
3. 实际问题中的一元一次方程:通过实际问题建立一元一次方程,解决实际问题。
4. 实数的判断与表示:实数的比较大小,实数的表示方法。
三、几何初步1. 二维图形的认识:点、线、线段、射线的概念区分,平面图形的分类及性质。
2. 三角形的分类及性质:三角形的分类,三角形内角和为180度的性质。
3. 平行线与平行四边形:平行线的概念及判定方法,平行四边形的性质。
4. 直角三角形与勾股定理:直角三角形的概念及性质,勾股定理的应用。
四、数据分析1. 统计图的应用:条形图、折线图、饼图等统计图的绘制和应用。
2. 表格的分析与应用:从表格中获取信息,进行简单的统计和分析。
3. 问题解决能力:通过实际问题,掌握统计图和表格的分析应用方法。
五、数学建模初探1. 模式与模型:模式与模型的概念及应用,数学建模的基本思路。
2. 实际问题的数学描述:把实际问题转化为数学模型,建立数学模型求解问题。
3. 生活中的实际问题:通过实例分析,解决生活中的实际问题。
通过对初一下册数学知识点的总结归纳,我们可以清晰地了解到这个学期数学学习的主要内容。
每一个知识点都有其特定的概念、规则和应用方法,因此在学习过程中要注重理论联系实际,强化实际问题的应用能力。
初一下册数学知识点归纳大全初一下册数学知识点主要包括以下几部分:
一、几何基础
1. 直线、射线、线段:定义、表示方法、性质与作图。
2. 角:定义、表示方法、度量。
3. 相交线:对顶角、邻补角、垂线及其性质。
4. 平行线:平行公理、平行线的性质及判定。
5. 垂直平分线:定义、性质及判定。
6. 三角形:三角形的边、角、周长与面积。
7. 全等三角形:全等三角形的性质与判定。
8. 轴对称与中心对称:定义、性质及判定。
9. 四边形:四边形的性质与判定。
10. 尺规作图:定义、基本作图及综合作图。
二、代数基础
1. 代数式:定义、性质及分类。
2. 整式:单项式、多项式、整式的加减法。
3. 因式分解:定义、方法与技巧。
4. 分式:定义、性质及运算。
5. 二次根式:定义、性质及运算。
6. 一元一次方程:解法及应用。
7. 二元一次方程组:解法及应用。
8. 一元一次不等式(组):解法及应用。
9. 方程的根与系数的关系。
10. 函数:定义、性质及图像。
11. 一次函数:定义、性质及图像。
12. 反比例函数:定义、性质及图像。
13. 二次函数:定义、性质及图像。
14. 三角函数:定义、性质及图像。
15. 概率初步知识:概率的定义与计算。
16. 数据收集与整理:方法与技巧。
17. 综合题解题思路与方法。
这些知识点涵盖了初一下册数学的主要内容,建议在学习时结合教材和练习题,掌握每个知识点的细节,提高自己的数学水平。
初一下册数学必考知识点归纳整理一、几何图形概念:从实物中抽象出来的各种图形,分为立体图形和平面图形。
1、立体图形:几何图形的各个部分没有都在同一平面内。
2、平面图形:几何图形的各个部分都在同一平面内。
二、点、线、面、体1、组成几何图形点:线和线相交的地方就是点,是几何图形中最基本的图形。
线:面和面相交的地方就是线,包括直线和曲线。
面:包围着体的就是面,包括平面和曲面。
体:几何体简称为体。
2、点动成线,线动成面,面动成体。
三、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,每个面都是长方形。
正方形是特殊的长方形,正方体是特殊的长方体。
棱柱:上下两个面是棱柱的底面,别的面是侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各个面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面,侧面是曲面,两个底面是半径相等的圆。
圆柱的表面展开图是两个相同的圆形和一个长方形组成。
圆锥:有一个底面和一个侧面,侧面展开图是扇形,底面是圆。
球:由一个面围成的几何体,这个面是曲面。
四、棱柱棱:在棱柱中,任何相邻两个面的交线叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,一共是(n+2)个面,3n条棱,n 条侧棱,2n个顶点。
五、正方体的平面展开图:有11种六、平面截几何体1、用平面去截正方体,截出来的面可能是三角形,四边形,五边形,六边形。
注意:正方体只有六个面,所以截面最多有六条边,截面边数最多的图形是六边形。
长方体、棱柱的截面与正方体的截面有相似的地方。
2、用平面截圆锥,可以截出圆和三角形两种截面。
3、用平面截球体,只能出现圆的截面。
七年级下册数学知识点总结一、整数与分数1. 整数 operations- 加法:同号相加,异号相减,零与任何数相加结果不变。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数相乘得正数,负数与负数相乘得正数,正数与负数相乘得负数。
- 除法:除以一个数等于乘以它的倒数,零不能做除数。
2. 分数 operations- 分数的加减:需要找到公共分母后进行加减。
- 分数的乘除:分子乘分子,分母乘分母。
- 带分数与假分数的转换:带分数转换为假分数,分子是原来的整数部分乘以分母加上分子,分母不变。
二、代数表达式1. 单项式- 定义:只包含乘法和除法运算的代数式。
- 系数:单项式中的数字因数。
- 次数:单项式中所有字母的指数之和。
2. 多项式- 定义:由若干个单项式通过加减法组成的代数式。
- 项:多项式中的每一项单项式。
- 合并同类项:将多项式中的系数相加,字母和指数保持不变。
三、方程与不等式1. 一元一次方程- 定义:只含有一个未知数,且未知数的最高次数为1的方程。
- 解法:通过移项、合并同类项、系数化为1等步骤求解。
2. 不等式- 定义:表示不等关系的数学式。
- 解集:满足不等式关系的所有数值集合。
- 基本性质:不等式两边加(或减)同一个数(或式子),不等号方向不变;不等式两边乘(或除以)同一个正数,不等号方向不变;不等式两边乘(或除以)同一个负数,不等号方向改变。
四、几何图形1. 平行线与相交线- 平行线:在同一平面内,永不相交的两条直线。
- 相交线:在平面内相交的两条直线,交点称为垂足。
2. 角的概念与分类- 角:由两条射线的一个公共端点(顶点)构成的图形。
- 锐角:大于0°小于90°的角。
- 直角:等于90°的角。
- 钝角:大于90°小于180°的角。
3. 三角形- 定义:由三条线段顺次首尾相接围成的图形。
- 类型:按边分类为等边三角形、等腰三角形和不等边三角形;按角分类为锐角三角形、直角三角形和钝角三角形。
最新初一下册数学知识点总结精选9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新初一下册数学知识点总结精选9篇人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
初一数学下册知识点汇总初一数学下册知识点1.已知面积和底边长求高回想三角形的面积公式。
三角形的面积公式是A=1/2bh。
A=三角形的面积b=三角形底边长h=三角形底边的高看一下你的三角形,确定哪些变量是已知的。
在本例中,你已经知道了面积,可以将面积的数值代入公式中的A。
你也已知底边长的大小,可以将数值代入公式中的"'b'"。
如果你不知道面积或底边长,那么你只能尝试其它的方法了。
无论三角形是如何绘制的,三角形的任意一边都可以作为底边。
为了更形象地展示它,你可以想象把三角形进行旋转,直到已知边长位于底部。
例如,如果已知三角形面积是20,一边长为4,那么带入得A=20,b=4。
将数值代入公式A=1/2bh,然后进行计算。
首先将底边长(b)乘以1/2,然后用面积(A)除以它。
运算得到的结果应该就是三角形的高!本例中:20=1/2(4)h20=2h10=h2.求等边三角形的高回忆等边三角形的特征。
等边三角形有三条相等大小的侧边,每个夹角都是60度。
如果你将等边三角形分成两半,就会得到两个相同的直角三角形。
在本例中,我们使用边长为8的等边三角形。
回忆勾股定理。
勾股定理将两个直角边描述为a和b、斜边为c:a2+b2=c2。
我们可以使用这个定理求出等边三角形的高!将等边三角形对半切开,并将数值代入变量a、b和c。
斜边c等于原始的斜边长。
直角边a的长度就变成了边长的1/2,直角边b就是所求的三角形的高。
以边长为8的等边三角形为例,其中c=8,a=4。
将数值代入勾股定理的公式,求出b2。
边长c和a分别乘以自身求平方值。
然后用c2减去a2。
42+b2=8216+b2=64b2=48求出b2的开方值就得到三角形的高了!使用计算机的开根号计算求得Sqrt(2)。
得到的结果就是等边三角形的高!b=Sqrt(48)=6.933.已知边长和角求高确定你已知的变量。
如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。
初一下册数学知识点总结归纳初一下册数学知识点总结归纳为题一、整数与有理数1. 整数的概念和性质2. 整数的加减法运算3. 整数的乘法运算4. 整数的除法运算5. 整数的混合运算6. 有理数的概念和性质7. 有理数的加减法运算8. 有理数的乘法运算9. 有理数的除法运算10. 整数和有理数运算的应用二、代数式与方程式1. 代数式的概念和性质2. 代数式的加减法运算3. 代数式的乘法运算4. 代数式的被除法运算5. 代数式的混合运算6. 方程式的概念和性质7. 一元一次方程的解的求法8. 一元一次方程的应用9. 解一元一次方程的推理三、平面图形的认识1. 点、线、面的相关概念2. 角的相关概念和性质3. 直线与平行线的判断和性质4. 直线与垂线的判断和性质5. 三角形的分类和性质6. 三角形的内角和外角7. 三角形的角平分线和三内角平分线8. 三角形面积的计算9. 四边形的分类和性质10. 四边形面积的计算11. 同位角和同旁内角四、数据和统计1. 数据的收集和整理2. 数据的展示3. 数据的分析和解读4. 柱状图和折线图的制作和分析5. 直方图和饼图的制作和分析6. 表格数据的分析和解读7. 数据的比较和归纳总结8. 数据的应用五、比例与变量1. 直接比例和反比例2. 比例式的应用3. 变量的概念和性质4. 变量的运算5. 变量的应用6. 速度和密度的计算7. 速度和时间的关系8. 密度和质量的关系六、数轴与坐标1. 数轴的概念和性质2. 数轴上点的表示3. 数轴上点的比较和计算4. 坐标系的概念和性质5. 平面直角坐标系和空间直角坐标系的应用6. 坐标的计算7. 中点和距离的计算8. 直线的方程七、几何变换1. 平移的概念和性质2. 平移的作图和性质3. 翻转的概念和性质4. 翻转的作图和性质5. 旋转的概念和性质6. 旋转的作图和性质7. 对称的概念和性质8. 对称的作图和性质9. 相关几何变换的应用以上是初一下册数学知识点的总结和归纳,涵盖了整数与有理数、代数式与方程式、平面图形的认识、数据和统计、比例与变量、数轴与坐标、几何变换等多个方面。
初一下册数学知识点总结第六章实数【知识点一】实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.____平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.____立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.初一下册数学知识点总结(二)多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
初一下册数学知识点总结归纳初一下册数学知识点总结归纳。
一、有理数。
1. 有理数的概念。
有理数包括整数和分数,可以用数轴上的点表示。
2. 有理数的加减法。
同号两数相加或相减,取绝对值相加,符号不变;异号两数相加,取绝对值相减,符号取绝对值较大的数的符号。
3. 有理数的乘法。
同号两数相乘,取绝对值相乘,结果为正;异号两数相乘,结果为负。
4. 有理数的除法。
有理数的除法可以转化为乘法,即分子乘以倒数。
5. 有理数的混合运算。
有理数的混合运算需要根据运算法则进行计算,注意运算符的优先级。
二、代数。
1. 代数式的概念。
代数式是由数字、字母及运算符号组成的式子,可以进行运算。
2. 代数式的加减法。
同类项相加减时,保持字母部分不变,进行系数的加减运算。
代数式的乘法遵循分配律,即先分别乘后再相加。
4. 代数式的除法。
代数式的除法需要将除数化为乘法的倒数,再进行乘法运算。
5. 一元一次方程。
一元一次方程是指未知数的最高次数为一的方程,可以通过逆运算求解。
三、平面图形。
1. 三角形。
三角形的分类、性质及计算方法。
2. 四边形。
四边形的分类、性质及计算方法。
3. 圆。
圆的相关性质及计算方法。
四、数据的收集和整理。
1. 调查与统计。
调查是收集数据的过程,统计是对数据进行整理和分析。
2. 数据的表示。
数据可以通过表格、图表等形式进行表示,便于分析和比较。
五、函数。
函数是一种特殊的关系,每个自变量对应唯一的因变量。
2. 函数的图像。
函数的图像可以通过坐标系进行表示,便于观察函数的性质。
六、几何变换。
1. 平移。
物体沿着某个方向移动一定的距离,保持形状和大小不变。
2. 旋转。
物体绕某一点或某条线旋转一定的角度,保持形状和大小不变。
3. 对称。
物体关于某个点、某条线或某个平面对称,保持形状和大小不变。
总结,初一下册数学知识点包括有理数、代数、平面图形、数据的收集和整理、函数、几何变换等内容,通过本文的总结归纳,希望能够帮助同学们更好地掌握这些知识点,提高数学学习的效果。
七年级数学下册重要知识点数学是一门需要一步步打基础的学科,因此对于初中生而言,需要仔细学习每个知识点,扎实掌握每种方法。
下面是七年级数学下册的重点知识点:
一、代数基础知识
1.1 代数式及其运算
1.2 代数方程及其解法
1.3 代数不等式及其解法
二、几何与图形
2.1 各类角的认识和测量
2.2 直线与角等基础概念
2.3 平面图形和空间图形的认识
三、数与测量
3.1 分数与小数的认识及其互化3.2 百分数和比的应用
3.3 计算器的使用方法
四、函数初步
4.1 函数及其概念
4.2 函数的图象
4.3 线性函数的应用
五、统计与概率
5.1 统计中的集合
5.2 数据的整理和表示方法
5.3 概率初步应用
以上是七年级数学下册的重点知识点,每一项知识点都是非常
重要的基础知识。
掌握这些知识点,才能更好地为高中数学学习
打下坚实的基础。
同时,在学习数学的过程中,需要注重计算方法的掌握和数学
思维的培养。
一方面需要严谨的计算规律、正确的公式推导方法;另一方面需要锻炼自己的数学感觉,增强自己的逻辑推理能力。
这些知识点的学习不光是为了数学考试,更是为了将来面对生
活和社会问题时,能够运用科学的方法处理和解决问题。
希望各
位同学能够认识到数学的重要性,并刻苦钻研,努力掌握这些知
识点。
初一下册数学知识点总结归纳精选6篇初一下册数学知识点总结归纳精选6篇知识产业、知识经济和知识社会是当今发达国家社会转型的重要标志。
知识在现代国家治理和公共管理中扮演着重要的角色。
下面就让小编给大家带来初一下册数学知识点总结归纳,希望大家喜欢!初一下册数学知识点总结归纳1初一数学下册期末考试知识点总结一(苏教版)第七章平面图形的认识(二) 1第八章幂的运算 2第九章整式的乘法与因式分解 3第十章二元一次方程组 4第十一章一元一次不等式 4第十二章证明 9第七章平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:判定定理性质定理条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补4、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
初一下册知识点总结归纳数学篇1:七年级下数学知识点总结第一章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
关于初一下册数学课本知识点总结初一下册数学课本知识点一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则(2)底数可以是具体的数,也可以是单项式或多项式(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
五、平方差公式表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:六、完全平方公式完全平方公式中常见错误有:①漏下了一次项②混淆公式③运算结果中符号错误④变式应用难于掌握。
七、整式的除法1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。
初一下册数学重要知识点1.1正数与负数在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
初一下册数学知识点总结一、相交线与平行线(一)相交线1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的和为 180°。
2、对顶角:一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
对顶角相等。
(二)垂线1、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
3、垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(三)平行线1、平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、平行线的判定方法(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
二、实数(一)平方根1、定义:如果一个数的平方等于 a,那么这个数叫做 a 的平方根或二次方根。
2、表示:正数 a 的平方根记为±√a ,其中正的平方根叫做算术平方根,记为√a 。
3、性质:一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
(二)立方根1、定义:如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根。
2、表示:数 a 的立方根记为³√a 。
3、性质:正数的立方根是正数;负数的立方根是负数;0 的立方根是 0 。
(三)实数1、定义:有理数和无理数统称为实数。
2、实数的分类(1)按定义分类:实数分为有理数和无理数。
有理数包括整数和分数;无理数是无限不循环小数。
(2)按正负分类:实数分为正实数、0、负实数。
3、实数与数轴上的点一一对应。
初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。
5、移项:叫做移项。
(切记:移项必须)。
二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。
设,②。
列,③。
解,④。
检,⑤。
答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。
二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2、加减消元的条件:两个方程中,其中一未知数的系数或。
(当两个方程中,其中一未知数系数成倍数关系时,最适合)。
三、解三元一次方程组的一般步骤:①。
先用代入法或加减法消去系数较简单的一个未知数,转化为;②。
然后再解,得到两个未知数的值;③。
最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。
第八章一元一次不等式一、几个概念1、不等式:叫做不等式。
2、不等式的解:叫做不等式的解。
3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。
,②。
,③。
,④。
,⑤。
2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。
②再画范围:小于号向画;大于号向画。
3、一元一次不等式组的解法:先分别求;再求4、注意:①。
在不等式两边同时乘或除以负数时,不等号必须②。
求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。
初一数学下册知识点总结
知识点、概念总结
1.不等式:用符号"","","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号"",""连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,y那么x(传递性)
(3)如果xy,而z为任意实数或整式,那么x+z(加法那么)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么x÷z如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次幂y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10. 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。
(也可以说成是下结论) 13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X-1,X2 ,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式组的解集是X-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x2,x3 ,不等式组的解集是X3
(2)同小取小
例如,x2,x3 ,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,•根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。