人教b版数学选修2-3练习:1.2.2.1 组合及组合数公式
- 格式:doc
- 大小:309.50 KB
- 文档页数:3
1.2.2组合课标要求:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。
明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数m n A 与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同m n C的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤)6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合... 二、讲解新课:1组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同例1.判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合 2.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号mn C 表示. 3.组合数公式的推导:(1)从4个不同元素,,,a b c d 中取出3个元素的组合数34C 是多少呢?启发:由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcd dca cda adc dac cad acd acd dba bda adb dab bad abd abd cba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以,333434A A C =. (2)推广:一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分步计数原理得:m n A =m n C m mA ⋅. (3)组合数的公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 规定: 01n C =.三、讲解范例:例2.用计算器计算710C .解:由计算器可得例3.计算:(1)47C ; (2)710C ; (1)解: 4776544!C ⨯⨯⨯==35; (2)解法1:710109876547!C ⨯⨯⨯⨯⨯⨯==120.解法2:71010!10987!3!3!C ⨯⨯===120. 例4.求证:11+⋅-+=m n m n C m n m C . 证明:∵)!(!!m n m n C m n -= 111!(1)!(1)!m n m m n C n m n m m n m +++⋅=⋅--+-- =1!(1)!()(1)!m n m n m n m +⋅+--- =!!()!n m n m - ∴11+⋅-+=m n m n C mn m C 例5.设,+∈N x 求321132-+--+x x x x C C 的值解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x ,解得24x ≤≤, ∵x N +∈, ∴2x =或3x =或4x =,当2x =时原式值为7;当3x =时原式值为7;当4x =时原式值为11.∴所求值为4或7或11.例6. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法;第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种).例7.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 2101094512C ⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).例8.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 31001009998123C ⨯⨯=⨯⨯= 161700 (种). (2)从2 件次品中抽出 1 件次品的抽法有12C 种,从 98 件合格品中抽出 2 件合格品的抽法有298C 种,因此抽出的 3 件中恰好有 1 件次品的抽法有12298C C ⋅=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有12298C C ⋅种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有12298C C ⋅+21298C C ⋅=9 604 (种) .解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即3310098C C -=161 700-152 096 = 9 604 (种). 说明:“至少”“至多”的问题,通常用分类法或间接法求解。
1.2.2组合第1课时组合及组合数公式学习目标 1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.知识点一组合的定义思考①从3,5,7,11中任取两个数相除;②从3,5,7,11中任取两个数相乘.以上两个问题中哪个是排列?①与②有何不同特点?梳理组合的概念一般地,从n个不同的元素中,任意取出m(m≤n)个元素并成______,叫做从n个不同元素中任取m个元素的一个组合.知识点二组合数与组合数公式从3,5,7,11中任取两个数相除,思考1可以得到多少个不同的商?思考2如何用分步乘法计数原理求商的个数?思考3你能得出C24的计算公式吗?梳理(1)组合数的概念从n个不同元素中任意取出m(m≤n)个元素的________的个数,叫做从n个不同元素中,任意取出m个元素的组合数,用符号________表示.(2)组合数公式及其性质组合数公式C m n=__________________=__________性质①C m n=________;=________;②C m n+C m-1n③C0n=____类型一组合的有关概念例1给出下列问题:(1)从a,b,c,d四名学生中选两名学生完成一件工作,有多少种不同的安排方法?(2)从a,b,c,d四名学生中选两名学生完成两件不同的工作,有多少种不同的安排方法?(3)a,b,c,d四支足球队之间进行单循环比赛,共需赛多少场?(4)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结果?在上述问题中,哪些是组合问题,哪些是排列问题?反思与感悟区分一个问题是排列问题还是组合问题,关键是看它有无“顺序”,有顺序就是排列问题,无顺序就是组合问题,要判定它是否有顺序的方法是先将元素取出来,看交换元素的顺序对结果有无影响,有影响就是“有序”,也就是排列问题;没有影响就是“无序”,也就是组合问题.跟踪训练1判断下列各事件是排列问题还是组合问题.(1)8个朋友聚会,每两人握手一次,一共握手多少次?(2)8个朋友相互各写一封信,一共写了多少封信?(3)从1,2,3,…,9这九个数字中任取3个,组成一个三位数,这样的三位数共有多少个?(4)从1,2,3,…,9这九个数字中任取3个,组成一个集合,这样的集合有多少个?类型二组合数公式与性质的应用命题角度1有关组合数的计算与证明例2(1)计算:C410-C37·A33;+C3n21+n的值;(2)求C38-n3n(3)证明:m C m n=n C m-1.n-1反思与感悟(1)涉及具体数字的可以直接用公式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!计算.(2)涉及字母的可以用阶乘式C m n=n!m!(n-m)!计算.(3)计算时应注意利用组合数的两个性质:①C m n=C n-mn ;②C m n+1=C m n+C m-1n.跟踪训练2(1)计算C98100+C199200=________.(2)计算C34+C35+C36+…+C32 015的值为() A.C42 015B.C52 015C.C42 016-1 D.C52 015-1命题角度2含组合数的方程或不等式例3(1)已知1C m5-1C m6=710C m7,求Cm8+C5-m8;(2)解不等式:C4n>C6n.反思与感悟(1)解题过程中应避免忽略根的检验而产生增根的错误,注意不要忽略n∈N+.(2)与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n中的m∈N+,n∈N+,且n≥m确定m、n的范围,因此求解后要验证所得结果是否适合题意.跟踪训练3(1)若1C3n-1C4n<2C5n,则n的集合为______.(2)解方程C x-2x+2+C x-3x+2=110A3x+3.1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加2个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中选出4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中组合问题的个数是()A.0 B.1 C.2 D.32.集合M={x|x=C n4,n≥0且n∈N},集合Q={1,2,3,4},则下列结论正确的是() A.M∪Q={0,1,2,3,4} B.Q⊆MC.M⊆Q D.M∩Q={1,4}3.若C2n=21,则n!3!(n-3)!的值为()A.6 B.7 C.35 D.704.不等式C2n-n<5的解集为________.5.从1,2,3,6,9中任取两个不同的数相乘.(1)列出所有的取法,并分别指出乘积为偶数与奇数的取法;(2)不同的乘积结果有多少个?1.排列与组合的联系与区别(1)联系:二者都是从n个不同的元素中取m(m≤n)个元素.(2)区别:排列问题中元素有序,组合问题中元素无序.2.巧用组合数公式解题(1)涉及具体数字的可以直接用nn-mC m n-1=nn-m·(n-1)!m!(n-1-m)!=n!m!(n-m)!=C m n进行计算.(2)涉及字母的可以用C m n=n!m!(n-m)!计算.(3)计算时应注意利用组合数的性质C m n=C n-mn简化运算.答案精析问题导学知识点一思考 ①是排列,①中选取的两个数是有序的,②中选取的两个数无需排列.梳理 一组知识点二思考1 A 24=4×3=12.思考2 第1步,从这四个数中任取两个数,有C 24种方法;第2步,将每个组合中的两个数排列,有A 22种排法.由分步乘法计数原理,可得商的个数为C 24A 22=12.思考3 因为A 24=C 24A 22,所以C 24=A 24A 22=6. 梳理 (1)所有组合 C m n(2)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!C n -m n C m n +1 1 题型探究例1 解 (1)两名学生完成的是同一件工作,没有顺序,是组合问题.(2)两名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠亚军是有顺序的,是排列问题.跟踪训练1 解 (1)每两人握手一次,无顺序之分,是组合问题.(2)每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别的.(3)是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到不同的三位数.(4)是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构成的集合都不变.例2 (1)解 原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)解 ∵⎩⎪⎨⎪⎧ 38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5, ∵n ∈N ,∴n =10,∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(3)证明 m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.跟踪训练2 (1)5 150 (2)C例3 解 (1)∵1C m 5-1C m 6=710C m 7,∴m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!.∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21.∵0≤m ≤5,∴m =2,∴C m 8+C 5-m 8=C 28+C 38=C 39=84.(2)由C 4n >C 6n ,得⎩⎨⎧ n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎨⎧ n 2-9n -10<0,n ≥6 ⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6, 又n ∈N +,∴该不等式的解集为{6,7,8,9}.跟踪训练3 (1){5,6,7,8,9,10,11}(2)解 原方程可化为C x -2x +3=110A 3x +3, 即C 5x +3=110A 3x +3, ∴(x +3)!5!(x -2)!=110·(x +3)!x !, ∴1120(x -2)!=110·1x (x -1)(x -2)!, ∴x 2-x -12=0,解得x =4或x =-3.又∵0≤x -3≤x +2且x +3≥3,x ∈N +,∴x ≥3且x ∈N +,∴x =4.当堂训练1.C 2.D 3.C 4.{2,3,4}5.解 (1)由于乘法满足交换律,所以本题与次序无关,是组合问题,现规定用数对(a ,b )表示每一种取法,并且(a ,b )与(b ,a )是同一种取法.从1,2,3,6,9中任取两个不同的数,不同的取法有(1,2),(1,3),(1,6),(1,9),(2,3),(2,6),(2,9),(3,6),(3,9),(6,9).其中乘积为偶数的取法有(1,2),(1,6),(2,3),(2,6),(2,9),(3,6),(6,9),乘积为奇数的取法有(1,3),(1,9),(3,9).(2)1×2=2,1×3=3,1×6=2×3=6,1×9=9,2×6=12,2×9=3×6=18,3×9=27,6×9=54,所以不同的乘积结果有8个.。
课堂练习(五) 组合与组合数公式(建议用时:60分钟)[基础达标练]一、选择题1.下列四个问题属于组合问题的是( )A .从4名志愿者中选出2人分别参加导游和翻译的工作B .从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数C .从全班同学中选出3名同学出席深圳世界大学生运动会开幕式D .从全班同学中选出3名同学分别担任班长、副班长和学习委员 C [A 、B 、D 项均为排列问题,只有C 项是组合问题.]2.已知平面内A ,B ,C ,D ,E ,F 这6个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )A .3B .20C .12D .24B [C 36=6×5×43×2×1=20.]3.下列等式不正确的是( ) A .C mn =n !m !(n -m )!B .C m n =C n -mn C .C m n =m +1n +1C m +1n +1 D .C mn =C m +1n +1D [由组合数公式逐一验证知D 不正确.] 4.若A 3n =12C 2n ,则n 等于( ) A .8 B .5或6 C .3或4D .4A [A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=12×12n (n -1).由n ∈N *,且n ≥3,解得n =8.]5.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种C [甲选修2门有C 24=6种选法,乙、丙各有C 34=4种选法.由分步乘法计数原理可知,共有6×4×4=96种选法.]二、填空题6.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)210 [从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C 410=210种分法.]7.方程:C 2x4+C 2x -14=C 56-C 66的解集为________.{x |x =2} [由组合数公式的性质可知⎩⎪⎨⎪⎧2x ≤4,2x -1≤4,2x ∈N ,2x -1∈N ,解得x =1或x =2,代入方程检验得x =2满足方程,所以原方程的解为{x |x =2}.]8.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有________种.9 [父母应为A 或B 或O ,共有C 13·C 13=9种情况.] 三、解答题9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?[解] 从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C 36=6×5×43×2×1=20个.10.求式子1C x 5-1C x 6=710C x 7中的x .[解] 原式可化为:x !(5-x )!5!-x !(6-x )!6!=7·x !(7-x )!10·7!,∵0≤x ≤5,∴x 2-23x+42=0,∴x =21(舍去)或x =2,即x =2为原方程的解.[能力提升练]1.已知圆上有9个点,每两点连一线段,若任意两条线的交点不同,则所有线段在圆内的交点有( )A .36个B .72个C .63个D .126个D [此题可化归为圆上9个点可组成多少个四边形,所有四边形的对角线交点个数即为所求,所以交点为C 49=126个.]2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有( )A .140种B .84种C .70种D .35种C [可分两类:第一类,甲型1台、乙型2台,有C 14·C 25=4×10=40(种)取法,第二类,甲型2台、乙型1台,有C 24·C 15=6×5=30(种)取法,共有70种不同的取法.]3.某科技小组有女同学2名、男同学x 名,现从中选出3人去参观展览.若恰有1名女同学入选的不同选法有20种,则该科技小组中男同学的人数为________.5 [由题意得C 12C 2x =20,解得x =5(负值舍去).所以该科技小组有5名男同学.] 4.已知C m -1n 2=C mn 3=C m +1n 4,则m 与n 的值分别为________.14,34 [可得:⎩⎪⎨⎪⎧n !2(m -1)!(n -m +1)!=n !3m !(n -m )!,n !3m !(n -m )!=n !4(m +1)!(n -m -1)!,∴⎩⎪⎨⎪⎧5m =2n +2,7m =3n -4,⇒⎩⎪⎨⎪⎧m =14,n =34.]5.在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?[解] (1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有C 3100=100×99×981×2×3=161 700(种).(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12·C 298=9 506(种).(3)法一:抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12·C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 22·C 198+C 12·C 298=9 604(种).法二:抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604(种).。
组 合(第一课时)学习目标导航:1理解组合与组合数的概念,正确认识组合与排列的区别与联系易混点 2会推导组合数公式,并能解决简单的排列组合应用题重点 教学过程 复习提问:1概念提问:①排列的定义 ②排列数公式 2应用提问:分析下列事件,说出完成每个事件的结果数14支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? 24支球队以单循环进行比赛每两队比赛一次,这次比赛需要进行多少场次? 3从4个人里选出3个不同学科的课代表,有多少种选法? 4从4个人里选3个代表去开会,有多少种选法?设计目的:从概念和设计例子出发,感受排列与组合的联系与区别,引出课题知识点1组合的概念1.组合1一般地,从n 个不同元素中,任意取出mm≤n 个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合.2如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同组合.知识点2组合数公式2.组合数从n 个不同元素中,任意取出mm≤n 个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C 错误!表示[探究一]:组合数公式的推导过程设计目的:学生在例子中感受到排列是可以分步进行的,得出组合数的推导过程一般地,求从n 个不同元素中取出m 个元素的排列数,可以分为2步: 第一步,先求从这n 个不同元素中取出m 个元素的组合数C 错误!,第二步,求每个组合中m 个元素的全排列数mm A根据分步乘法计数原理,得 mm m n m n A C A =由此得到组合数公式+∈∈=N n N m AA Cm mm nmn,其中,探究:计算①4737C C +,4626C C -多少种不同取法?)其中不含红球,共有(共有多少种不同取法?)其中恰有一个红球,(?)共有多少种不同取法(个球:从口袋中任取个红球,个不同白球和②一个口袋中有321517设计目的:学生在计算过程中发现组合数两个性质(易错题:忽略n ∈N 的范围而错解为-1<n <12)7式子 的值的个数为( ) A 1 B 2 D 48 =______ 9设集合A ={a ,b ,c ,d ,e},则集合A 的子集中含有3个元素的有____个 在下列条件下,有多少种不同的选法? 1任意选5人;2甲、乙、丙三人必需参加; 3甲、乙、丙三人不能参加; 4甲、乙、丙三人只能有1人参加.2现有10名教师,其中男教师6名,女教师4名.____,3____,12(2)C )1(.187712327101001057==-==-+n C C C n C A A C C n n n n n 则)已知(则解方程:若计算:练习543211)4(n n n C C C <解不等式:-221111342522565-++-++++++==x x x x x x x x x x C C C C C C )解方程:()解方程:()(*1710210N m C C m m ∈+-+nn 13n 172n C C 3+-+1现要从中选2名去参加会议,有多少种不同的选法?2现要从中选出男、女教师各2名去参加会议,有多少种不同的选法? 3从中选4名去参加会议,恰好有一名男老师,有多少种选法? 4从中选3名去参加会议,至少有一名男老师,有多少种选法?设计目的:感受特殊元素法,分类列举法,理解“至多、至少、恰好”的数学含义,选择合适的方法练习21要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? 1甲当选且乙不当选; 2至多有3男当选.2某科技小组有女同学2名、男同学名,现从中选出3人去参观展览. 若恰有1名女生入选时的不同选法有2021求该科技小组中男生的人数. )(___6,5,4,3,2,1.3用数字作答个有之和为偶数的四位数共和百位上的数字位数,其中个位、十位组成没有重复数字的四用数字 高考链接1(2021年江西高考适应性测试)学校组织同学参加社会调查,某小组共有5名男同学,4名女同学,现从该小组中选出3位 同学分别到A,B,C 三地进行社会调查,若选出的同学男女均有,则不同的安排方法有 ( )种 种 种 种 种 2(2021·全国‖卷)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由一人完成,则不同的安排方式 有 ( )种种 种 种 种 3(广东省茂名市2021届高三第一次综合测试)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科 一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方式有 ( )种 种 种 种 种 4(2021江西省南昌市十九中高二月考)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次数不同视为不同情形)共有( )种种 种 种 种设计目的:直击高考题,感受题型和方法本节收获小结1排列与组合的异同:24应用:直接法,间接法特殊元素,特殊位置,捆绑,插空,定序等。
1.2.2组合第一课时组合A组1.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为()A.4B.8C.28D.64解析:由于“村村通”公路的修建,是组合问题.故共需要建=28条公路.答案:C2.若=6,则n的值是()A.6B.7C.8D.9解析:原方程即为n(n-1)(n-2)=6×=6×,整理得=1.n=7.经检验知n=7是原方程的解.答案:B3.已知,则n等于()A.14B.12C.13D.15解析:∵,∴7+8=n+1,∴n=14.答案:A4.某施工小组有男工7人,女工3人,现要选1名女工和2名男工去支援另一施工小组,不同的选法有()A.种B.种C.种D.种解析:每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有种选法;第二步,选男工,有种选法.故共有种不同的选法.答案:D5.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种解析:分两类,A类选修课选1门,B类选修课选2门,或A类选修课选2门,B类选修课选1门,因此,共有=30种不同的选法.答案:A6.某单位需同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有种.解析:从10人中选派4人有种方法,对选出的4人具体安排会议有种方法,由分步乘法计数原理知,不同的选派方法有=2 520(种).答案:2 5207.某科技小组有女同学2名、男同学x名,现从中选出3人去参观展览.若恰有1名女同学入选的不同选法有20种,则该科技小组中男同学的人数为.解析:由题意得=20,解得x=5.所以该科技小组有5名男同学.答案:58.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故有=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有=246种选派方法.若从反面考虑,则有=246种选派方法.9.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,求共有多少种不同的赠送方法?解:依题意,就所剩余的1本进行分类:第1类,剩余的是1本画册,此时满足题意的赠送方法有4种;第2类,剩余的是1本集邮册,此时满足题意的赠送方法有=6种.因此,满足题意的赠送方法共有4+6=10(种).B组1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有()A.72种B.84种C.120种D.168种解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空中,所以关灯方案共有=120(种).答案:C2.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有()A.252种B.112种C.20种D.56种解析:每个宿舍至少安排2名学生,故甲宿舍安排的人数可以为2,3,4,5,甲宿舍安排好后,乙宿舍随之确定,所以共有=112种互不相同的分配方案.答案:B3.从0,1,,2这六个数字中,任取两个数字作为直线y=x tan α+b的倾斜角和截距,可组成条平行于x轴的直线.解析:要使得直线与x轴平行,则倾斜角为0,截距在0以外的五个数字均可.故有=5条满足条件.答案:54.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.在集合M=的所有非空子集中,具有伙伴关系的集合的个数为.解析:具有伙伴关系的元素组有-1;1;,2;,3,共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组.又集合中的元素是无序的,因此,所求集合的个数为=15.答案:155.(1)计算:;(2)求证:+2.(1)解:原式=×1==56+4 950=5 006.(2)证明:由组合数的性质可知,右边=()+()==左边.所以原等式成立.6.要从6名男生、4名女生中选出5人参加一项活动,按下列要求,各有多少种不同的选法?(1)甲当选且乙不当选;(2)至少有1名女生且至多有3名男生当选.解:(1)甲当选且乙不当选,只需从余下的8人中任选4人,有=70种不同的选法.(2)至少有1名女生且至多有3名男生时,应分三类:第1类是3名男生2名女生,有种不同的选法;第2类是2名男生3名女生,有种不同的选法;第3类是1名男生4名女生,有种不同的选法.由分类加法计数原理知,共有=186种不同的选法.7.某地区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从点A走向点B最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成的矩形有=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从点A到点B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有=210种走法.。
人教版高中数学选修2-3知识点梳理重点题型(常考知识点)巩固练习组合【学习目标】1.理解组合的概念.2.能利用计数原理推导组合数公式.3.能解决简单的实际问题.4.理解组合与排列之间的联系与区别.【要点梳理】要点一:组合1.定义:≤)个元素并成一组,叫做从n个不同元素中取出m个元一般地,从n个不同元素中取出m(m n素的一个组合.要点诠释:①从排列与组合的定义可知,一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关.排列与元素的顺序有关,而组合与元素的顺序无关,这是它们的根本区别.②如果两个组合中的元素相同,那么不管元素的顺序怎样都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.因此组合问题的本质是分组问题,它主要涉及元素被取到或未被取到.要点二:组合数及其公式1.组合数的定义:m≤)个元素的所有组合的个数,叫做从n个不同元素中取出m个元从n个不同元素中取出m(nC.素的组合数.记作mn要点诠释:“组合”与“组合数”是两个不同的概念:一个组合是指“从n个不同的元素中取出m(m≤n)个元素并成一组”,它不是一个数,而是具体的一件事;组合数是指“从n个不同元素中取出m(m≤n)个元素的所有组合的个数”,它是一个数.例如,从3个不同元素a,b,c中取出2个元素的组合为ab,ac,bc,其中每一种都叫做一个组合,而数字3就是组合数.2.组合数的公式及推导A,可以按以下两步来考虑:求从n个不同元素中取出m个元素的排列数mn第一步,先求出从这n 个不同元素中取出m 个元素的组合数mn C ; 第二步,求每一个组合中m 个元素的全排列数mm A .根据分步计数原理,得到m m mn n m A C A =⋅.因此2)(!n m m -+ 这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为!()!mn n A n m =-,所以组合数公式还可表示为:!!()!mn n C m n m =-.要点诠释:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题。
组合及组合数公式1.理解组合与组合数的概念,正确认识组合与排列的区别与联系.(易混点)2.会推导组合数公式,并会应用公式进行计算.(重点)[基础·初探]教材整理1 组合与组合数的概念阅读教材P15~P16第二行,完成下列问题.1.组合的概念一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合.2.组合数的概念从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中,任意取出m个元素的组合数,用符号C m n表示.判断(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是其中的元素完全相同.( )(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.( )(5)现有4枚2015年抗战胜利70周年纪念币送给10人中的4人留念,有多少种送法是排列问题.( )【解析】(1)√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.(2)√由组合数的定义可知正确.(3)×因为选出2名同学还要分到不同的两个乡镇,这是排列问题.(4)√因为从甲、乙、丙3人中选两名有:甲乙,甲丙,乙丙,共3个组合,即有3种不同选法.(5)× 因为将4枚纪念币送与4人并无顺序,故该问题是组合问题. 【答案】 (1)√ (2)√ (3)× (4)√ (5)× 教材整理2 组合数公式及性质阅读教材P 16~P 18例3以上部分,完成下列问题. 组合数公式及其性质(1)公式:C m n=A mn A m m =n !m !n -m !.(2)性质:C m n =C n -m n ,C m n +C m -1n =C mn +1. (3)规定:C 0n =1.1.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________.【解析】 甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C 23=3×22=3. 【答案】 32.C 26=________,C 1718=________. 【解析】 C 26=6×52=15, C 1718=C 118=18. 【答案】 15 183.方程C x14=C 2x -414的解为________.【解析】 由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-2x -4,2x -4≤14,x ≤14,解得x =4或6. 【答案】 4或64.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________.【导学号:62980016】【解析】 从四个数中任取两个数的取法为C 24=6. 【答案】 6[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2:解惑:疑问3:解惑:[小组合作型]组合的概念判断下列各事件是排列问题还是组合问题.(1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?【精彩点拨】要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.【自主解答】(1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[再练一题]1.从5个不同的元素a,b,c,d,e中取出2个,写出所有不同的组合.【解】要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .组合数公式的应用(1)式子n n +1n +2…n +100100!可表示为( )A.A 100n +100 B.C 100n +100 C.101C 100n +100D.101C 101n +100(2)求值:C 5-nn +C 9-nn +1.【精彩点拨】 根据题目的特点,选择适当的组合数公式进行求值或证明.【自主解答】 (1)分式的分母是100!,分子是101个连续自然数的乘积,最大的为n +100,最小的为n ,故n n +1n +2…n +100100!=101·n n +1n +2…n +100101!=101C 101n +100. 【答案】 D (2)由组合数定义知:⎩⎪⎨⎪⎧0≤5-n ≤n ,0≤9-n ≤n +1,所以4≤n ≤5,又因为n ∈N +, 所以n =4或5.当n =4时,C 5-nn +C 9-nn +1=C 14+C 55=5; 当n =5时,C 5-nn +C 9-nn +1=C 05+C 46=16.关于组合数计算公式的选取1.涉及具体数字的可以直接用公式C m n=A mn A m m=n n -1n -2…n -m +1m !计算.2.涉及字母的可以用阶乘式C mn =n !m !n -m !计算.3.计算时应注意利用组合数的性质C mn =C n -mn 简化运算.[再练一题]2.求等式C 5n -1+C 3n -3C 3n -3=195中的n 值. 【解】 原方程可变形为C 5n -1C 3n -3+1=195,C 5n -1=145C 3n -3,即n -1n -2n -3n -4n -55!=145·n -3n -4n -53!,化简整理,得n 2-3n -54=0.解此二次方程,得n=9或n =-6(不合题意,舍去),所以n =9为所求.[探究共研型]组合的性质探究1 试用两种方法求:从a ,b ,c ,d ,e 5人中选出3人参加数学竞赛,2人参加英语竞赛,共有多少种选法?你有什么发现?你能得到一般结论吗?【提示】 法一:从5人中选出3人参加数学竞赛,剩余2人参加英语竞赛,共C 35=5×4×33×2×1=10(种)选法.法二:从5人中选出2人参加英语竞赛,剩余3人参加数学竞赛,共C 25=5×42=10(种)不同选法.经求解发现C 35=C 25.推广到一般结论有C m n =C n -mn .探究2 从含有队长的10名排球队员中选出6人参加比赛,共有多少种选法? 【提示】 共有C 610=10×9×8×7×6×56×5×4×3×2×1=210(种)选法.探究3 在探究2中,若队长必须参加,有多少种选法?若队长不能参加有多少种选法?由探究2、3,你发现什么结论?你能推广到一般结论吗?【提示】 若队长必须参加,共C 59=126(种)选法.若队长不能参加,共C 69=84(种)选法. 由探究2、3发现从10名队员中选出6人可分为队长参赛与队长不参赛两类,由分类加法计数原理可得:C 610=C 59+C 69.一般地:C m n +1=C m n +C m -1n .(1)计算C 34+C 35+C 36+…+C 32 016的值为( ) A.C 42 017 B.C 52 017 C.C 42 017-1D.C 52 017-1(2)解方程3C x -7x -3=5A 2x -4; (3)解不等式C 4n >C 6n .【精彩点拨】 恰当选择组合数的性质进行求值、解方程与解不等式.【自主解答】 (1)C 34+C 35+C 36+…+C 32 016 =C 44+C 34+C 35+…+C 32 016-C 44 =C 45+C 35+…+C 32 016-1=… =C 42 016+C 32 016-1=C 42 017-1. 【答案】 C(2)由排列数和组合数公式,原方程可化为 3·x -3!x -7!4!=5·x -4!x -6!,则3x -34!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0, 解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11. (3)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!n -4!>n !6!n -6!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.又n ∈N +,∴该不等式的解集为{6,7,8,9}.1.性质“C mn =C n -mn ”的意义及作用意义—→映的是组合数的对称性,即从n 个不同的元素中取m 个元素的一个组合与剩下的n -m 个元素的组合相对应↓作用—→当m >n2时,计算C mn 通常转化为计算C n -m n2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C mn 中的m ∈N +,n ∈N +,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.[再练一题]3.(1)化简:C 9m -C 9m +1+C 8m =________; (2)已知C 7n +1-C 7n =C 8n ,求n 的值.【解析】 (1)原式=(C 9m +C 8m )-C 9m +1=C 9m +1-C 9m +1=0. 【答案】 0(2)根据题意,C 7n +1-C 7n =C 8n , 变形可得C 7n +1=C 8n +C 7n , 由组合数的性质,可得 C 7n +1=C 8n +1,故8+7=n +1, 解得n =14.[构建·体系]1.下列四个问题属于组合问题的是( )A.从4名志愿者中选出2人分别参加导游和翻译的工作B.从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数C.从全班同学中选出3名同学出席深圳世界大学生运动会开幕式D.从全班同学中选出3名同学分别担任班长、副班长和学习委员 【解析】 A 、B 、D 项均为排列问题,只有C 项是组合问题. 【答案】 C2.若A 3n =12C 2n ,则n 等于( ) A.8 B.5或6 C.3或4D.4【解析】 A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=12×12n (n -1).由n ∈N +,且n ≥3,解得n =8. 【答案】 A3.C 58+C 68的值为________.【解析】 C 58+C 68=C 69=9!6!×3!=9×8×73×2×1=84.【答案】 844.6个朋友聚会,每两人握手1次,一共握手________次.【导学号:62980017】【解析】 每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次. 【答案】 155.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 【解】 由已知得2C 5n =C 4n +C 6n , 所以2·n !5!n -5!=n !4!n -4!+n !6!n -6!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14, 于是C 1214=C 214=14×132×1=91.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.以下四个命题,属于组合问题的是( ) A.从3个不同的小球中,取出2个排成一列 B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开同一辆车往返甲、乙两地【解析】从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.【答案】 C2.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为( )A.4B.8C.28D.64【解析】由于“村村通”公路的修建,是组合问题.故共需要建C28=28条公路.【答案】 C3.组合数C r n(n>r≥1,n,r∈N)恒等于( )A.r+1n+1C r-1n-1 B.(n+1)(r+1)Cr-1n-1C.nr C r-1n-1D.nrC r-1n-1【解析】nrC r-1n-1=nr·n-1!r-1!n-r!=n!r!n-r!=C r n.【答案】 D4.满足方程C x2-x16=C5x-516的x值为( )A.1,3,5,-7B.1,3C.1,3,5D.3,5【解析】依题意,有x2-x=5x-5或x2-x+5x-5=16,解得x=1或x=5;x=-7或x=3,经检验知,只有x=1或x=3符合题意.【答案】 B5.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是( )A.20B.9C.C39D.C24C15+C25C14【解析】分两类:第1类,在直线a上任取一点,与直线b可确定C14个平面;第2类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.【答案】 B二、填空题6.C03+C14+C25+…+C1821的值等于________.【解析】原式=C04+C14+C25+…+C1821=C15+C25+…+C1821=C1721+C1821=C1822=C422=7 315.【答案】7 3157.设集合A={a1,a2,a3,a4,a5},则集合A中含有3个元素的子集共有________个.【解析】从5个元素中取出3个元素组成一组就是集合A的子集,则共有C35=10个子集.【答案】 108.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)【解析】 从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C 410=210种分法.【答案】 210 三、解答题9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?【解】 从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C 36=6×5×43×2×1=20个.10.(1)求式子1C x 5-1C x 6=710C x 7中的x ;(2)解不等式C m -18>3C m8. 【解】(1)原式可化为:x !5-x !5!-x !6-x !6!=7·x !7-x !10·7!.∵0≤x ≤5,∴x 2-23x +42=0,∴x =21(舍去)或x =2,即x =2为原方程的解. (2)由8!m -1!9-m !>3×8!m !8-m !,得19-m >3m,∴m >27-3m , ∴m >274=7-14.又∵0≤m -1≤8,且0≤m ≤8,m ∈N , 即7≤m ≤8,∴m =7或8.[能力提升]1.已知圆上有9个点,每两点连一线段,若任意两条线的交点不同,则所有线段在圆内的交点有( )A.36个B.72个C.63个D.126个【解析】 此题可化归为圆上9个点可组成多少个四边形,所有四边形的对角线交点个数即为所求,所以交点为C 49=126个.【答案】 D2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种【解析】可分两类:第一类,甲型1台、乙型2台,有C14·C25=4×10=40(种)取法,第二类,甲型2台、乙型1台,有C24·C15=6×5=30(种)取法,共有70种不同的取法.【答案】 C3.对所有满足1≤m<n≤5的自然数m,n,方程x2+C m n y2=1所表示的不同椭圆的个数为________.【解析】∵1≤m<n≤5,所以C m n可以是C12,C13,C23,C14,C24,C34,C15,C25,C35,C45,其中C13=C23,C14=C34,C15=C45,C25=C35,∴方程x2+C m n y2=1能表示的不同椭圆有6个.【答案】 64.证明:C m n =nn -mC m n-1.【导学号:62980018】【证明】nn-mC m n-1=nn-m·n-1!m!n-1-m!=n!m!n-m!=C m n.11。
第一课时组合与组合数公式及组合数的两个性质[对应学生用书P11][例1](1) 10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路点拨]要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.[精解详析](1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序区别的.[一点通]要区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.1.求从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,得到的对数的个数有多少,是________问题;若把两个数相乘得到的积有几种,则是________问题.(用“排列”“组合”填空)解析:从2,3,4,5四个数中任取2个数作为对数式log a b的底数与真数,交换a,b的位置后所得对数值不同,应为排列问题;取两个数相乘,如2×3与3×2的积是相等的,没有顺序,故为组合问题.答案:排列组合2.判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?解:(1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站的车票与乙站到甲站的车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中选出3种,按一定顺序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.[例2] (1)1073(2)证明:m C m n =n C m -1n -1;(3)已知1C m 5-1C m 6=710C m 7,求C m 8+C 5-m 8. [思路点拨] (1)(2)运用公式进行化简即可,(3)先求出m 的值,再进行计算.[精解详析] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.(3)∵1C m 5-1C m 6=m !(5-m )!5!-m !(6-m )!6!, 710C m 7=7×(7-m )!m !10×7!, ∴m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21. 而0≤m ≤5,∴m =2.∴C m 8+C 5-m8=C 28+C 38=C 39=84.[一点通] 1.组合数公式C m n =n (n -1)(n -2)…(n -m +1)m !体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.2.组合数公式C m n =n !m !(n -m )!的主要作用:一是计算m ,n 较大时的组合数;二是对含有字母的组合数的式子进行变形和证明.另外,当m >n 2时,计算C m n 可用性质C m n =C n -mn转化,减少运算量.3.C410-C37·A33=________.解析:原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.答案:04.若A3n=12C2n,则n=________.解析:∵A3n=n(n-1)·(n-2),C2n=12n(n-1),∴n(n-1)(n-2)=6n(n-1).又n∈N+,且n≥3,∴n=8. 答案:85.解不等式1C3n-1C4n<2C5n.解:n的取值范围是{n|n≥5,n∈N+}.∵1C3n-1C4n<2C5n,∴6n(n-1)(n-2)-24n(n-1)(n-2)(n-3)<240n(n-1)(n-2)(n-3)(n-4).又∵n(n-1)(n-2)>0.∴原不等式化简得n2-11n-12<0,解得-1<n<12.结合n的取值范围,得n=5,6,7,8,9,10,11,∴原不等式的解集为{5,6,7,8,9,10,11}.[例3](10分)5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.[思路点拨]本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断.[精解详析](1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.[一点通]解简单的组合应用题时,要先判断它是不是组合问题,只有当该问题能构成组合模型时,才能运用组合数公式求解.解题时还应注意两个计数原理的运用,在分类和分步时,应注意有无重复或遗漏.6.设集合A={a1,a2,a3,a4,a5},则集合A的含有3个元素的子集共有________个.解析:从5个元素中取出3个元素组成一组就是集合A的含有3个元素的子集,则共有C35=10个.答案:107.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解:(1)从10名教师中选出2名去参加会议的选法数就是从10个不同的元素中取出2个元素的组合数,即C210=10×92×1=45种.(2)从6名男教师中选2名,有C26种选法,从4名女教师中选2名,有C24种选法.根据分步乘法计数原理可知,共有不同的选法C26C24=90种.1.排列与组合的异同:[对应课时跟踪训练(五)] 1.从7人中选出3人参加座谈会,则不同的选法有()A.210种B.42种C.35种D.6种解析:参加座谈会与顺序无关,是组合问题,共有C37=35种不同的选法.答案:C2.若A3m=6C4m,则m的值为()A.6 B.7C.8 D.9解析:由A3m=6×C4m得m!(m-3)!=6·m!4!(m-4)!,即1m-3=14,解得m=7.答案:B3.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A.C310C35B.C410C25C.C515D.A410A25解析:按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C410C25种抽法.答案:B4.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是() A.20 B.9C.C39D.C24C15+C25C14解析:分两类:第一类,在直线a上任取一点,与直线b可确定C14个平面;第二类,在直线b上任取一点,与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.答案:B5.若C13n=C7n,则C18n=________.解析:∵C13n=C7n,∴13=n-7,∴n=20.∴C1820=C220=190.答案:1906.10个人分成甲、乙两组,甲组4人、乙组6人,则不同的分组种数为________.(用数字作答)解析:先给甲组选4人,有C410种选法,余下的6人为乙组,故共有C410=210种选法.答案:2107.某科技小组有女同学2名、男同学x名,现从中选出3人去参观展览.若恰有1名女生入选时的不同选法有20种,求该科技小组中男生的人数.解:由题意得C12·C2x=20.解得x=5.故该科技小组有5名男生.8.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法?(1)甲当选且乙不当选;(2)至多有3男当选.解:(1)甲当选且乙不当选,只需从余下的8人中任选4人,有C48=70种选法.(2)至多有3男当选时,应分三类:第一类是3男2女,有C36C24种选法;第二类是2男3女,有C26C34种选法;第三类是1男4女,有C16C44种选法.由分类加法计数原理知,共有C36C24+C26C34+C16C44=186种选法.。
1.2.2 组合
第一课时组合及组合数公式
课时过关·能力提升
1.计算)
A.120
B.240
C.60
D.480
:A
2.则m=( )
A.6
B.7
C.8
D.9
,得m(m-1)(m-2)
即m-3=4,解得m=7.
3.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )
A.24
B.18
C.12
D.6
:第一类,从0,2中选数字2,从1,3,5中任选两个数字所组
第二类,从0,2中选数字0,从1,3,5中任选两个数字所组成的无重复数字的
故满足条件的奇数的总数为12+6=18.
4.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种.
在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,
( )
D.27
解析由已知n=
能构成钝角三角形的三条线段的长度分别为2,4,5或2,3,4,所以m=2.故
答案
5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )
A.6种
B.12种
C.30种
D.36种
种);
种).所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30(种).
6.对所有满足1≤m<n≤5的自然数m,n,方程x22=1所表示的不同椭圆的个数为.
1≤m<n≤5,计算可知
故x22=1能表示6个不同椭圆.
7.从4名男生和3名女生中选4人参加某个座谈会,若这4人中必须既有男生又有女生,则共有种不同的选法.
:第一类,;第二类,;
第三类,,则总的选法为种).
★8.马路上有编号为1,2,3,…,9的九盏路灯,为了节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,则满足条件的关灯方法有种.
种).
9.
,∴该不等式的解集为{6,7,8,9}.
∵n∈N
+
★10.一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:
(1)这位教练从这17名学员中可以形成多少种学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?
由于上场学员没有角色差异,所以可以形成的学员上场方案种数为
(2)教练员可以分两步完成这件事情:
第1步,从17名学员中选出11人组成上场小组,;
第2步,从选出的11人中选出1名守门员,.。